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Abstract

A Distributed Architecture for Spam Mitigation on 4G Mobile Networks

Elias Bou Harb

The 4G of mobile networks is considered a technology-opportunistic and user-centric system com-

bining the economical and technological advantages of various transmission technologies. Part of

its new architecture dubbed as the System Architecture Evolution, 4G mobile networks will im-

plement an evolved packet core. Although this will provide various critical advantages, it will

however expose telecom networks to serious IP-based attacks. One often adopted solution by the

industry to mitigate such attacks is based on a centralized security architecture. This centralized

approach nonetheless, requires large processing resources to handle huge amount of traffic, which

results in a significant over dimensioning problem in the centralized nodes causing this approach

to fail from achieving its security task.

In this thesis, we primarily contribute by highlighting on two Spam flooding attacks, namely RTP

VoIP SPIT and SMTP SPAM and demonstrating, through simulations and comparisons, their fea-

sibility and DoS impact on 4G mobile networks and subsequent effects on mobile network opera-

tors. We further contribute by proposing a distributed architecture on the mobile architecture that

is secure by mitigating those attacks, efficient by solving the over dimensioning problem and cost-

effective by utilizing ‘off the shelf’ low-cost hardware in the distributed nodes. Through additional

simulation and analysis, we reveal the viability and effectiveness of our approach.
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Chapter 1

Introduction

1.1 Thesis Introduction

Cellular or mobile networks have enabled impressive advances, trends and changes in telecommu-

nications over the last two decades, and mobile operators have significantly matured to dominate

the industry, providing their subscribers an extremely rich service package that competes with their

wire-line competitors in addition to providing mobility. Nevertheless, with the broadband market

success in cable, xDSL and Wi-Fi, the competitive landscape is shifting.

Even though 3G technologies deliver considerably higher bit rates than 2G technologies and con-

tribute to the average revenue per user growth for wireless data services, there is still more possi-

bilities for wireless operators to capitalize on the ever increasing demand for wireless broadband,

as well as lower latency and increased throughput services. Figure 1.1 reveals that broadband sub-

scriptions are expected to reach 3.4 billion by 2014 and about 80% of these consumers will use

mobile broadband [1]. Consequently, there is a mounting revenue opportunity from an expanding
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Figure 1.1: Broadband growth 2007–2014 [1]

pool of undeserved consumers that can only be satisfied with next generation networks. Indeed, the

solution is the Long Term Evolution (LTE) Project 3GPP [3], dubbed as the next-generation net-

work beyond 3G. The fourth generation of mobile networks will be a technology-opportunistic and

user-centric system combining the economical and technological advantages of various transmis-

sion technologies to provide a ubiquitous, context-aware adaptive service. Besides offering fixed

to mobile migrations of Internet applications such as voice over Internet protocol, video streaming,

music downloading, pictures uploading, mobile TV and several others, LTE 4G mobile networks

will as well provide the capability to support an explosion in demand for connectivity from a new

generation of consumer equipment tailored specifically to those new innovative mobile applica-

tions.

Part of its new architecture that is branded as the System Architecture Evolution (SAE), LTE

4G mobile networks will implement a packet switched approach in its evolved network core. This

all IP approach, however, is a double edged sword. On one hand, it will enable the support of uni-

versal IP access from any network to and from LTE 4G networks in addition to providing various
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critical advantages including multi-megabit bandwidth, seamless and improved mobility, extensive

quality of service and significant latency reduction among various others. On the other hand, it will

pave the way to serious security concerns since theoretically, any security attack that is feasible on

an IP network will as well be viable on 4G mobile networks.

Two important application services that may be vulnerable to such attacks on 4G mobile net-

works are VoIP and SMTP which are introduced and discussed next.

1.2 VoIP and SPIT Flooding

Voice over Internet protocol (VoIP), an ever flourishing supported and provided application ser-

vice on those networks, refers to the technology that enables routing of voice conversations over

a network. It is governed by certain protocols for signaling and transport such as the Session

Initiation Protocol (SIP) [4] and the Real Time Protocol (RTP) [5]. It is disclosed that 45% of

today’s Internet traffic is VoIP (voice & video) and this number is anticipated to increase to 60%

in 2016 [6]. Moreover, with the booming of mobile Internet broadband, an increasing number of

devices such as tablets (ipads/playbooks), netbooks and handhelds is connected to high speed mo-

bile Internet through 3G and soon 4G USB sticks or built-in modems. These devices in addition

to smart-phones, will contribute in increasing the demand for VoIP in 4G mobile networks. These

facts convey that VoIP is and will be playing an increasingly critical role in communications that

attracts both businesses and end users. However, in a recent report [7], Cisco Systems predicted
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that VoIP abuse will grow significantly in the very near future. The report highlights the facts

that VoIP is widely deployed, may not be well protected and possibly there exist various meth-

ods to abuse it. A specific misdemeanor against VoIP is coined SPAM Over Internet Telephony

(SPIT) [8]. SPIT refers to unsolicited calls intended for advertising, social engineering and more

severely bandwidth and processing utilization. As mentioned earlier, the fact that 4G will offer

increased bandwidth coupled with the flourishing of various user equipments, is expected to make

VoIP SPIT a very serious threat in the near future. The latter statement is greatly supported by

3GPP in their technical report [9], where they quantified that approximately 250 GB of SPIT traf-

fic per month could be generated from only one SPIT bot. In a typical SPIT scenario, the Spitter

fabricates an INVITE request carrying an SDP (Session Description Protocol [10]) body, given

arguments such as the destination information, codec and other media attributes. When the call

is answered, the Spitter retrieves the audio record and streams it to the intended target. The core

threat resides when a synchronized, highly effective botnet of Internet Spitters flood the mobile

network with such unsolicited traffic. As a result, the VoIP SPIT campaign can severely decrease

the voice QoS of mobile users and ultimately denies the service on the LTE 4G mobile network.

1.3 SMTP SPAM Flooding

Another highly relied on application service on LTE 4G networks is the Simple Message Transfer

Protocol (SMTP) [11]. SMTP is the Internet standard for electronic mail (email) transmission

across IP networks. It is a text-based protocol, in which a mail sender communicates with a

mail receiver by issuing command strings and supplying necessary data over a reliable ordered
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data stream channel. Often, mobile operators put into service SMTP servers in the network to

provide outgoing email access to their clients. However, the critical issue arises when exploited

malicious clients’ user equipments from within the LTE network flood the operator’s SMTP server

with email SPAM in order to launch a SPAM campaign towards the Internet. As a result, this

SPAM campaign will 1) cause a DoS to the SMTP server by overloading it with unsolicited emails

and hence denying it from processing legitimate email requests in a timely manner and 2) more

critically will cause the operator’s SMTP server to be blacklisted by Internet DNS servers after

being detected as a SPAM server. Consequently, this will have a major adverse influence on the

operator’s business, reliability and reputation. Furthermore, the mobile operator will face serious

legal issues under, for example, the Canadian House Government Bill C-28 Act [12], for misusing

the mobile infrastructure for Spamming purposes.

1.4 Defining DoS in Attack Scenarios

In this thesis, we focus on RTP VoIP SPIT flooding and SMTP SPAM flooding in order to demon-

strate their DoS feasibility and impact on 4G mobile networks and subsequent effects on mobile

network operators. Our intention is to shed the light on the fact that LTE 4G networks are vulner-

able to IP-based attacks which forces mobile network operators to preventively react to preserve

their provided application services and thus their business and reputation. Moreover, for clarifica-

tion purposes, we explain in the following when exactly will a DoS occur in both attack scenarios.
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1.4.1 DoS for VoIP SPIT Flooding

When using VoIP, there are three critical metrics that determine the QoS:

• One-way Latency,

• One-way Jitter,

• Packet Loss Rate.

One-way latency or end-to-end delay for voice packets is the ‘mouth-to-ear’ delay. It includes

network delay (the measured time from when the sender node provides the voice packet to RTP

to the time the receiver retrieves it from RTP), encoding and decoding delays and compression

and decompression delays. The International Telecommunication Standardization Union (ITU-T)

recommends the following limits for voice one-way transmission time [13]:

• 0 to 150 ms: Acceptable for most user applications,

• 150 to 400 ms: Acceptable provided that administrations are aware of the transmission time

impact on the transmission quality of user applications,

• above 400 ms: Unacceptable for general network purposes.

On the other hand, jitter is defined as the variation in the delay of received packets. Generally, at the

sending side, packets are sent in a continuous stream with constant delay between them. However,

due to network congestion, improper queuing, or routing configuration errors, this steady stream

can become unstable and hence the delay between each packet can vary. If the jitter is so large,

it can cause packets to be received out of the range of the ‘playout delay buffer’ (a mechanism

6



to buffer packets with variable delay and sent them out with constant delay), causing packets to

be discarded and consequently voice dropouts will be heard in the transmitted audio. The ITU-R

advocates that the average one-way jitter should be targeted at less than 30 ms [14]. Furthermore,

packet loss rate is the percentage of dropped VoIP packets along the data path, which severely

degrades the voice application service. ITU recommends a packet loss rate less than 1% [15].

In this work, we assert that if the average end-to-end delay for voice packets metric exceeds the

400 ms threshold and the one-way jitter metric surpasses 30 ms and the VoIP packet loss rate is over

1%, then a severe and unacceptable degradation in VoIP QoS will occur, prohibiting or denying the

service on the 4G mobile network. Additionally, we will use those metrics to show relative service

improvements, under the attack, after implementing our proposed distributed architecture.

1.4.2 DoS for SMTP SPAM Flooding

Generally, overloading SMTP servers does not cause a system crash. In fact, the SMTP protocol

contains countermeasures for DoS attacks. If the load is too high, the server will cease to receive

emails with temporary errors or simply by refusing connections. As SMTP is a delay tolerant

service, the other party can send a particular email later. Thus, defining a DoS condition as a

system crash or lost emails is inadequate. Note that, the most important point is the user experience.

Therefore, if a single email is processed by the server after an unacceptable threshold because of

a severe server performance bottleneck, then it can be correctly inferred as a DoS. Therefore we

assume that SMTP DoS will occur when:

1. The SMTP server’s CPU Utilization metric reaches 100%. This result will guarantee that
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the server is overloaded with SPAM email requests which will affect its ability to process

legitimate emails in a timely manner.

2. The SMTP server’s Email Processing Time metric (measured from the time when a single

request arrives at the server to the time it is completely processed) exceeds 200 ms. 1

1.5 Problem Statement

Motivated by the fact that RTP VoIP SPIT and SMTP SPAM flooding are two alarming attacks

coupled with the new evolution in mobile networks and the adoption of an IP-based network core,

there is a critical need to investigate the feasibility and impact of such attacks, their effects on the

network QoS metrics and mitigating architectures on LTE 4G mobile networks. Particularly, there

is a need to answer questions, including the following: Can RTP VoIP SPIT and SMTP SPAM

flooding attacks take advantage of the evolved IP-based network core to trigger a DoS? More-

over, what is the impact of that DoS and subsequent effects? Furthermore, what are the adopted

approaches to mitigate the effects of these attacks? Additionally, how can we propose a security

architecture on the mobile network infrastructure that mitigates the effect of such attacks yet is

efficient and cost-effective?

In this thesis, we try to answer those questions by revealing that RTP VoIP SPIT and SMTP

SPAM flooding attacks will indeed trigger a DoS, benefiting from LTE’s evolved packet core. On

1This threshold is based on our Opnet simulation results that we had performed on 3 different SMTP servers. The
least performant server was a single core windows 2000 server, the others were 4 and 8 core machines running Ubuntu
server 9.04. Although this may not reflect realistic benchmark results, however as we will demonstrate in Section
4.3.2, this metric measured 2 ms under normal load and peaked at a significant 4 sec under attack load. Thus we
consider the 200 ms threshold as a reference to a timely manner behavior and not as an absolute value.
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one hand, we disclose, after performing large scale simulations, that RTP VoIP SPIT flooding by

exploited Internet workstations targeting user equipments (UEs) on the mobile network, will cause

a momentous degradation in VoIP QoS that ultimately denies the service on the LTE network. On

the other hand, We demonstrate that SMTP SPAM flooding by exploited UEs targeting the mobile

network operator’s SMTP server, will cause a significant performance bottleneck on the server

which will drastically affect its ability to process legitimate requests in a timely manner. Con-

sequently, a crucial subsequent effect of that attack is the eventual blacklisting of the operator’s

SMTP server in addition to liability and negative reputation that will affect the mobile network

operator. Additionally, by studying and analyzing specific detection algorithms employed by vari-

ous intrusion detection systems (IDSs) and undergoing profiling on various hardware, we estimate

the cost of those algorithms in terms of processing/detection delay on 4G networks specific infras-

tructure nodes. Having achieved that, we discuss and compare two mediating approaches based

on two different mobile security architectures. Through measurement, simulation and analysis we

compare the conventional centralized architecture and our proposed distributed architecture on the

4G infrastructure. As a result, we demonstrate that the distributed approach is secure by mitigating

the effects of those attacks, is more efficient by solving the over dimensioning problem caused

by the centralized approach and cost-effective by utilizing ‘off the shelf’ low-cost hardware in the

distributed nodes.
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1.6 Thesis Contribution

To summarize the above, in this thesis, we contribute by:

• Demonstrating, through large scale simulations, the feasibility and DoS impact of two SPAM

flooding attacks on 4G mobile networks,

• Computing and quantifying the practical complexity in terms of packet processing filtering

delay for the two most widely adopted content filtering algorithms on 4G mobile networks

specific infrastructure nodes. We achieve that by undergoing profiling of rule matching on

various hardware using an open source network intrusion detection and prevention system.

• Proposing a distributed architecture on the 4G mobile network infrastructure that is secure,

efficient and cost-effective.

1.7 Thesis Organization

This thesis is organized as follows. Chapter 1 presented the need for LTE and highlighted on two

protocols that may be vulnerable to flooding attacks on 4G mobile networks. Moreover, we de-

fined DoS under both attack scenarios, discussed the problem statement and research questions and

summarized our thesis contributions. Chapter 2 conveys some background and related work. Fur-

thermore, Chapter 3 demonstrates the working environment and thus explains the 4G architectural

infrastructure, reviews the mitigation methods including content filtering detection algorithms and

discusses secure mobile architectures. Additionally, Chapter 4 reveals the algorithms’ profiling

discussion and results, portrays our topological simulation scenarios and illustrates the attack and
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countermeasure simulation results. Finally, Chapter 5 summarizes our contributions, reveals our

future work and concludes this thesis.
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Chapter 2

Background

2.1 General Vulnerabilities and Attacks

Wireless technology has opened up a new and exciting area for research. This emerging technology

is advancing and changing every day. Moreover, networks enabled by such technology continue

to be developed and their use have grown significantly and flourished ubiquitously. However, the

broadcast nature of such networks and their mobility features created new kinds of intrusions and

anomalies taking advantage of their wireless vulnerabilities. Because of the radio links and the

mobile equipment features of wireless networks, wireless intrusions and attacks are more complex

because they add to the intrusions developed for wired networks, a large spectrum of complex

attacks targeting wireless environments. Hence, the biggest concern with wireless communications

has been and will always be security.

Since LTE 4G mobile networks are part of these wireless networks, it is significant to discuss

vulnerabilities and attacks in Wireless Networks. Therefore, this section will highlight on general

12



threats, in both LAN-like wireless networks and cellular networks, and then discuss certain attacks

on those networks.

2.1.1 Wireless Vulnerabilities

A vulnerability is a weakness (or fault) in the communication medium or protocol that compro-

mises the security of a network component [16]. Most of the existing vulnerabilities in wireless

networks are caused by the medium. Because transmissions are broadcast, they are easily available

to anyone who has the appropriate equipment. According to [17], threats in wireless communi-

cations include device theft, malicious hacker, malicious code, theft of service, and espionage.

Furthermore, there are numerous wireless vulnerabilities and threats that have been studied in the

literature for the purpose of detecting attacks that exploit them. In the following, we distinguish be-

tween two categories of vulnerabilities and threats: those existing in a LAN-like wireless (WLAN)

networks and those existing in cellular-like wireless networks.

WLAN Threats & Vulnerabilities

The subsequent are common vulnerabilities existing in the main component of WLANs, which is

the Access Point (AP) [18].

• Signal range of an authorized AP: This vulnerability lies in the possibility of extending the

AP signal strength beyond a given perimeter. Consequently, the AP’s placement and signal

strength have to be modified to make sure that the transmitting coverage is just enough to

cover the intended area and not some other area that could be compromised.
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• Physical security of an authorized AP: The physical placement of an AP is critical. An

AP has to be correctly placed in order to avoid accidental damage, such as direct access to

the physical network cable or access to it by unauthorized personnel that may comprise its

security.

• Rogue AP: This vulnerability is a sort of man-in-the middle attack, where an attacker can

place an unauthorized (or rogue) AP on the network and configure it to look legitimate to

gain access to wireless users’ sensitive data. This vulnerability can succeed because by

default, users’ devices connect to the strongest available AP signal.

• The AP configuration: If the AP is poorly configured, then it can provide an open door to

hackers. This is caused by using a default configuration that annihilates the recommended

security controls and encryption mechanisms.

• Protocol weaknesses and capacity limits on authorized AP’s: These limitations can cause

DoS from hackers using unauthorized AP’s where they may flood authorized APs with traffic

forcing them to reboot or deny service access.

Cellular Threats & Vulnerabilities

The subsequent are typical vulnerabilities existing in cellular systems [19].

• Service interruption: The increased capacity provided by high speed mobile technologies

have resulted in fewer cable routes necessary to meet capacity requirements. Consequently,

this has decreased the number of switches. The lack of overall diversity in cabling and

switching has increased the vulnerability of telecommunication infrastructures. Coupled
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with malicious hosts taking advantage of such technologies in an illicit way, this can cause

DoS on various mobile cells.

• Natural threats: Natural threats comprise the category of threats caused by climatic, geo-

logical, or seismic events. Severe damage resulting from natural disaster can cause long-term

damage to telecommunication infrastructures.

• Handset vulnerabilities: Unlike computer systems, handsets are limited regarding their se-

curity features. With the flourishing of custom created mobile applications, mobile handsets

executing malicious code is one issue. Another closely related issue are botnets which are

being tailored nowadays to run and exploit mobile handsets. On the other hand, cellular mes-

sages encryption can cause a threat to handsets, since the receiver of these messages have no

means of detecting what the encrypted messages actually contain.

2.1.2 Wireless Attacks

In this section, we discuss certain attacks that are generally feasible on both, WLANs and cellular-

like wireless networks.

Wireless network sniffing

When wireless packets traverse the air, attackers equipped with appropriate devices and software

can capture them. Sniffing attack methods [17] include:

• Passive scanning: This attack aims at listening to each channel and capturing packets with-

out sending any information.
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• Service set identifier (SSID) detection: This attack consists of retrieving the SSID by

scanning frames of the following types: beacon, probe requests, probe responses, association

requests, and re-association requests [18].

• Gathering of MAC addresses: For the purpose of performing attacks such as frame spoof-

ing, the attacker collects and stores legitimate MAC addresses.

• Probing and network discovery: This attack aims to identify various wireless targets. It

uses two forms of probing [20]: active and passive. Active probing involves the attacker

actively sending probe requests with no identification using the SSID configured in order

to solicit a probe response with SSID and other information from any active AP. When an

attacker uses passive probing, he listens on all channels for all wireless packets.

• Inspection: The attacker can inspect network information using various hardware and soft-

ware tools. He could identify MAC addresses, IP address ranges, gateways and packet pay-

loads.

Wireless Spoofing

The purpose of spoofing attacks is to modify identification parameters in data packets. New

values of selected parameters can be collected by sniffing. Typical spoofing attacks include

[21]:

• MAC address spoofing: MAC spoofing aims at changing the attacker’s MAC address by

the legitimate MAC address. This attack is made easy to launch because some client-side

software allows the user to view and modify their MAC addresses.
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• IP spoofing: IP spoofing attempts to change source or destination IP addresses by commu-

nicating directly with the network device [22]. IP spoofing is used in various attacks such as

DoS attacks.

• Frame spoofing: The attacker injects frames having the 802.11 specification with spoofed

information. Due to lack of authentication, spoofed frames cannot be detected.

Man in the Middle Attacks

This attack attempts to insert the attacker in the middle of a communication for purposes

of intercepting client’s data and/or modifying them before discarding them or sending them

out to the real destination. Two main forms of the this attack exist: eavesdropping and

manipulation [23]. Eavesdropping can be done by intercepting radio waves on the wireless

network. On the other hand, manipulation requires not only having the ability to receive the

victim’s data but to be able to retransmit the data after modifying it without being detected.

Denial of Service Attacks

DoS attacks can target different network layers as explained in the following [22]:

• Application layer: DoS occurs when a large amount of legitimate requests are sent. It aims

to prevent other users from accessing the service by forcing the server to respond to a large

number of request’s transactions.

17



• Transport layer: DoS is successful when many connection requests are sent. It targets

the operating system of the victim’s computer. The typical attack in this case is a SYN

flooding [24].

• Network layer: DoS succeeds if the network allows to associate clients. In this case, an

attacker can flood the network with traffic to deny access to other devices. This attack could

consist of the following tasks [20]:

-The malicious node participates in a route but simply drops several data packets. This

causes a deterioration in the quality of the connection.

-The malicious node transmits falsified route updates or replays stale updates. These

might cause route failures thereby deteriorating performance.

-The malicious node reduces the time-to-live field in the IP header so that packets never

reach their destinations.

• Data link layer: DoS targeting the link layer can be performed as follows:

-Since we assume that there is a single channel that is reused, keeping the channel busy

in the node leads to a DoS attack at that node.

-By using a particular node to continually relay spurious data, the battery life of that

node may be drained. An end-to-end authentication may prevent these attacks from being

launched.

• Physical layer: This kind of DoS can be executed by emitting a very strong RF interfer-

ence on the operating channel. This will cause interference to all wireless networks that are
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operating at or near that channel.

2.2 On VoIP Attacks and SPIT Prevention

In the past few years, a plethora of papers discussed attacks against VoIP. Sisalem et al. [25] ad-

dressed the issue of denial of service attacks targeting the hardware and software of VoIP servers

by misusing specific features in the session initiation protocol. The authors delivered an overview

of different attack possibilities and explained some attacks in more details, including attacks utiliz-

ing the DNS system and those targeting the parser. In another closely related work, Luo et al. [26]

investigated the impact of DoS attacks on the SIP infrastructure, using a popular open source SIP

server as a test bed. They identified four attack scenarios that can exploit vulnerabilities in exist-

ing SIP authentication protocols, and then they demonstrated the practical impact of these attacks

on the target server. Moreover, the authors in [27] examined how the vulnerabilities of SIP can

be exploited to compromise the reliability and trustworthiness of the billing of SIP-based VoIP

systems. Specifically, they focused on the billing attacks that will create inconsistencies between

what the VoIP subscribers received and what the VoIP service providers have provided. Addition-

ally, they presented four billing attacks on VoIP subscribers. In another interesting study, Zhang et

al. [28] demonstrated that a remote attacker who is not initially in the path of VoIP traffic can in-

deed launch all kinds of man-in-the-middle (MITM) attacks on VoIP by exploiting DNS and VoIP

implementation vulnerabilities. They showed that the remote attacker can effectively wiretap and

hijack targeted VoIP calls after becoming the remote MITM. Their results demonstrated that (1)

the MITM attack on VoIP is much more realistic than previously thought; (2) securing all nodes
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along the path of VoIP traffic is not adequate to prevent MITM attack on VoIP; (3) vulnerabilities

of non-VoIP-specific protocols (e.g., DNS) can indeed lead to compromise of VoIP.

Detection methods for such attacks and others on VoIP were also discussed thoroughly in the

literature. In [29], the author proposed a method to detect DoS attacks that involve flooding SIP

entities with illegitimate SIP messages. The author modified the original finite-state machines for

SIP transactions in such a way that transaction anomalies can be detected in a stateful manner.

He also proposed to use four threshold parameters to confirm an attack. Furthermore, Sengar et

al. [30] presented an online statistical detection mechanism, called vFDS, to detect DoS attacks

in the context of VoIP. The authors stated that the core of vFDS is based on Hellinger distance

method, which computes the variability between two probability measures. Using Hellinger dis-

tance, they characterized normal protocol behaviors and then detected the traffic anomalies caused

by flooding attacks. Additionally, the authors of [31] proposed a change-point detection method

to prevent DoS attacks on VoIP systems based on SIP behavior analysis. They developed efficient

adaptive sequential change-point method to detect attacks which lead to changes in network traffic.

Their experimental results showed that the method achieves a very small delay, high rate and low

false alarm rate of VoIP-specific DoS detection.

To detect and mediate SPIT, several approaches were proposed. Specifically, Quittek et al. [32]

presented a method to detect SPIT calls by comparing hidden turing tests that compare the calls

with typical human communication patterns. Additionally, Guang-Yu et al. [33] proposed a multi-

layered SPIT detection and prevention method. Their method analyzed the unique characteristics
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of SPIT and then utilized signal monitoring algorithms and correlation algorithms to identify the

behavior trace and reconstruct the attack scenario. Last but not least, Hongchang et al. [34] dis-

cussed a multilayered fusion method for SPIT calls detection. They explained that before a call is

connected, the historical signal information about the caller number is collected to judge whether

it is from a suspicious caller, then during the call communication period, some acoustic parameters

of the speech are calculated to judge whether it is a text to speech voice, and after the connection

is released, two parameters about user behavior pattern are calculated to decide whether the call is

from a machine.

2.3 On DoS and 3G Attacks

DoS Attacks and mitigation methods have been discussed thoroughly in many contexts. A plethora

of papers focused on DNS systems including [35, 36], while other research focused on Web ser-

vices [37]. Furthermore, SMTP services were pinpointed in [38, 39]. Additionally, DoS attacks

targeted Search engines [40], VoIP servers [41,42] and not surprisingly e-commerce services [43].

The notion of exploiting a system to utilize it to launch a DoS attack was tackled in [44], where

Naoumov et al. described two approaches to create a DoS engine out of a P2P system. The au-

thors stated that for both approaches, the targeted host does not have to be a participant in the P2P

system, and could be a web server, a mail server, or even a user’s desktop. Additionally, they im-

plemented their approaches in a P2P file-sharing system and revealed that with modest effort, both

attacks could direct significant amount of traffic from diverse peers to flood any target. In another
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closely related study [45], Defrawy et al. stated that BitTorrent enormous traffic can be converted

into a firepower for launching a distributed denial of service attack that can exhaust a victim’s

resources, including access bandwidth and connection resources. Moreover, the authors identified

novel exploits in the BitTorrent system and conducted real-life experiments that demonstrated the

feasibility and severity of such attacks.

The evolution of mobile devices from basic voice terminals into advanced computing platforms

makes attacks originating from within the mobile network a reality. Lee et al. [46] introduced a

signaling attack which seeks to overload the control plane of 3G mobile networks using low-rate,

low-volume traffic. They affirmed that the low-volume nature of the signaling attack allows it to

avoid detection by existing intrusion detection algorithms. In another approach, Traynor et al. [47]

characterized a DoS attack using selected service request types on the Home Location Register

(HLR), the central repository of user location and profile information in a 3G mobile network,

by a botnet composed entirely of mobile phones. Their results showed that botnets as small as

11,750 phones can cause a reduction of throughput of more than 90% to area-code sized regions

supported by most currently deployed systems. Moreover, Enck et al. [48] evaluated the security

impact of the SMS interface on the availability of the cellular phone network. Specifically, they

demonstrated the ability to deny voice service to cities, the size of Washington D.C. and Manhat-

tan, using a regular cable modem. Another interesting study was conducted by Zhao et al. [49],

where they presented a DoS attack against IMS. They stated that by congesting the presence ser-

vice, a core service of IMS, a malicious attack can cause chained automatic reaction of the system,

thus blocking all the services of the IMS.
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While some basic form of malware targeting mobile devices has surfaced in the past, including

Cabir [50], Mabir [51] and Skulls [52], advanced malicious applications exploiting today’s full-

featured powerful UEs are yet to be reported. However, with the adoption of LTE’s evolved system

architecture, vulnerabilities in mobile operating systems, non-safety of developed applications and

software and the evolution of various types of botnets, their consequences and impacts must be

investigated.

2.4 Security in 4G Networks

As 3G communication is moving to 4G communication, many standardization societies such as

ITU, 3GPP and IEEE are working on the next generation of communication networks. Since

security plays a critical role for the adoption of 4G network services, it is significant to discuss

the need for secure architectures and their corresponding objectives on such networks, the threat

model and various security threats on fourth generation networks.

2.4.1 Security Objectives

Traditionally, network security has focused on securing network edges to prevent external threats

from accessing network resources. However, this approach is not adequate because attackers seek

to discover security vulnerabilities in networking protocols, operating systems or applications, and

exploit these vulnerabilities to propagate malware that may evade security measures at the edges.

Hence, there is a need for comprehensive, network-wide security architecture integrated into both
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the network core and the end-user devices. The key objectives in designing the security architecture

can be summarized as:

• Availability: that enforces networks and services not to be disrupted or interrupted by, for

example, malicious attacks.

• Interoperability: that ensures the security solutions can avoid interoperability problems, e.g.,

by using generic solutions applicable to most applications and service scenarios.

• Usability: that makes it easy for the end-users to use the security-enabled services.

• QoS guarantee: that requires security solutions like cryptographic algorithms to meet QoS

constraints of voice and multimedia traffic.

• Cost-effectiveness: that minimizes the additional cost of security and makes it lower than

the cost of risks.

2.4.2 Threat Model

Possible threats to 4G include: IP address spoofing, user ID theft, Theft of Service (ToS), DoS, and

intrusion attacks. Among them, network operators are most concerned about ToS and DoS attacks

because they harm their revenue, reputation and service availability.

Besides this general categorization, protocol-specific attacks must be identified. For exam-

ple, SIP-targeted attacks include: (i) malformed message attacks, (ii) buffer overflow attacks, (iii)

Denial-of-Service (DoS) attacks, (iv) RTP session hijacking, (v) injection of unauthentic RTP, (vi)
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reuse of compromised SIP credentials, and (vii) bogus SIP network elements.

It is almost impossible to make a 100% secure system because new threats and vulnerabilities

will continue to arise and take place. Additonally, there exist different stakeholders including at

least network operators, service providers and users, having their own, sometimes mutually con-

tradictory interest, leading to different security requirements. Hence, the 4G security architecture

must be flexible enough to adapt itself to future threats and vulnerabilities as well as varying secu-

rity requirements.

2.4.3 4G Security Analysis

To manage the threats that a network infrastructure is exposed to, it is essential to clearly identify

key risks and threats. In this section, we analyze the security related to well-known 4G standards

including WiMAX and 3GPP LTE.

WIMAX Security

WiMAX [53] addresses the compatibility and interoperability of broadband wireless access prod-

ucts using the IEEE 802.16 standards consisting of IEEE 802.16-2004 and 802.16e-2005 for fixed

and mobile architectures, respectively [54]. These two standards specify different sets of security

mechanisms. IEEE 802.16-2004 defines a Privacy Key Management (PKM) protocol by which

Mobile Station (MS) authenticates itself, obtains Authorization Key (AK) from the Base Station

(BS), and derives other keys like Key Encryption Key (KEK), Traffic Encryption Key (TEK) and

so on. It also supports two encryption algorithms, i.e. DES in CBC mode and AES in CCM mode,
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with an option to use a proprietary encryption algorithm.

However, a number of weaknesses were discovered in IEEE 802.16-2004 [54]. First, it is vul-

nerable to an attack from bogus BS since there’s no mutual authentication between BS and MS.

Second, the encryption keys are solely generated by BS instead of the two parties, MS and BS,

equally contributing to the values of keys. Third, it does not support integrity protection of man-

agement frames, exhibiting a potential risk of denial-of-service (DoS) attacks. Finally, it does not

define how to manage, store, renew and revoke certificates.

In IEEE 802.16e-2005 [55], an improved version of PKM is developed to fix known vulner-

abilities of PKM as well as offer more options. The key difference is that the improved PKM

makes it mandatory to perform mutual authentication between MS and BS via RSA and/or EAP

(Extensible Authentication Protocol). Besides, most of the management frames are now signed to

ensure integrity protection, and AES-based encryption (in CBC, CTR and CCM modes) is used to

provide communication flow protection.

Although IEEE 802.16e-2005 corrected almost all of the security weaknesses of its precur-

sor [55], it still suffers several security vulnerabilities [56]; for instance, TEK is still chosen by

BS while certificate management is not yet comprehensive. It is, therefore, important for the

researchers and standards developers to keep on improving the security protocols as well as un-

covering possible unknown vulnerabilities.
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3GPP LTE Security

Security in cellular systems evolved as the generation changed. In the first generation (1G) cellu-

lar system, there was not much consideration for security; there was no over-the-air encryption in

place and mobile phones could be easily cloned by intercepting the serial number. Furthermore,

eavesdropping of conversations could easily and practically occur.

The 2G, exemplified by Global System for Mobile (GSM), uses Authentication and Key Agree-

ment (AKA), called GSM AKA, for encryption and authentication [57]. It uses a challenge-

response mechanism, where the user proves its identity by providing a response to a time-variant

challenge raised by the network. However, its security is weak in which its authentication is

performed only unidirectional; the user cannot authenticate to the serving network. Moreover, au-

thentication data (which are called triplets), authentication information and cipher keys are reused

indefinitely. In 3GPP AKA [58], improvements addressed mutual authentication and agreement

on an integrated key between the mobile terminal and the serving network, as well as the freshness

assurance of agreed cipher key and integrity key. In addition, a sequence number is used for fresh-

ness where two counters (one for the network and one for the mobile terminal) are synchronized

for the purpose of sequence number verification.

Although the 3GPP AKA has been accepted as reliable and have been used excessively, there

still exist weaknesses in 3GPP AKA as shown in [59]. The weaknesses include (1) redirecting user

traffic using false BS and mobile terminals, (2) given the fact that the counter value could be set

to a high value by an adversary, the mobile terminals’ life time may be shortened, (3) because a
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home network keeps a counter and dynamically synchronize for every mobile terminal, a fault in

the counter database may affect all mobile terminals. Additionally, because resynchronization is

requested by the MT, this may result in a resynchronization message attack to the home network

[60].

2.4.4 Possible Threats on 4G

Possible security risks mostly arise from the open nature of 4G as summarized next. First of all,

a large number of external connectivity points with peer operators, with third-party applications

providers, and with the public Internet, as well a numerous heterogeneous technologies accessing

the infrastructure, serve as potential security holes if the security technologies do not fully interop-

erate. Moreover, multiple service providers share the core network infrastructure meaning that a

compromise of a single provider may result in collapse of the entire network infrastructure. Finally,

service theft and billing fraud can take place if there are third-parties masquerading as legitimate

ones.

New end-user equipment can also become a source of malicious (e.g., DoS) attacks, viruses,

worms, spam mails and calls, etc... In particular, Spam over Internet Telephony (SPIT) as men-

tioned in the introductory chapter of this thesis, the new spam for VoIP, will become a serious

problem just like the e-mail spam nowadays. For example SPITs targeting VoIP gateways can con-

sume available bandwidth, thereby severely degrading QoS and voice quality. Clearly, the open

nature of VoIP makes it easy for the attackers to broadcast SPITs similarly to the case of spam

emails. Other possible threats include: (1) spoofing that misdirects communications, modifies
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data, or even transfer cash from a stolen credit card number, (2) general SIP registration hijacking

that substitutes the IP address of packet header with attacker’s own, (3) eavesdropping of private

conversation that intercepts and crypt-analyzes IP packets, and (4) phishing attacks that steal user

names, passwords, bank accounts, credit cards, and even social security numbers.

2.5 Conclusion

In this chapter, we presented a background on some of our related work. Specifically, we com-

menced by pinpointing various vulnerabilities and attacks on both WLANs and cellular wireless

networks. Moreover, we highlighted on VoIP attacks and misdemeanors and reviewed some SPIT

prevention mechanisms. Additionally, we discussed DoS attacks and 3G UMTS exploits. More

importantly, we shed the light on 4G security. Consequently, we briefed various security objectives,

illustrated the threat model, provided a security analysis of 4G technologies, namely of WIMAX

and LTE and finally discussed possible threats on 4G networks.

In the subsequent chapter, we aim to expand the notion of threats on LTE 4G mobile networks,

by firstly presenting the 4G architecture that is responsible for triggering such threats. Further-

more, we discuss the working environment and our preventive methodology which will function

as building blocks to Chapter 4 which will eventually reveal our SPAM flooding attacks and sub-

sequent effects and ultimately show the viability and effectiveness of our proposed distributed

security architecture.
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Chapter 3

Architecture and Mitigation Methodology

In this chapter, we aim to present, describe and illustrate the new LTE 4G mobile network. More-

over, we present and discuss SPAM mitigation methods and secure mobile architectures.

3.1 4G Mobile Networks Overview

LTE 4G mobile networks are expected to support various types of services including extensively

rich web browsing, file transfer of enormous data, multi-party audio and video streaming, online

gaming, real time video, push-to-talk and push-to-view. Therefore, 4G mobile networks are being

designed to be high data rate and low latency systems as indicated by the key performance criteria

shown in Figure 3.1 [2].

The bandwidth capability of a user equipment (UE) is expected to be 20MHz for both trans-

mission and reception. However, the service provider can deploy cells with any of the bandwidths
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Figure 3.1: LTE Metric Requirements [2]

listed in Figure 3.1. This gives flexibility to the service providers to tailor their offering dependent

on the amount of available spectrum or the ability to start with limited spectrum for lower upfront

cost and grow the spectrum for extra capacity. Beyond the metrics, LTE 4G networks are as well

aimed at minimizing cost and power consumption while ensuring backward-compatibility and a

cost effective migration from UMTS 3G systems. Enhanced multicast services, superior support

for end-to-end QoS and minimization of the number of options and redundant features in the ar-

chitecture are also being targeted. Moreover, the spectral efficiency in the LTE downlink will be

3 to 4 times of that of the High-Speed Downlink Packet Access (HSDPA) while in the uplink,

it will be 2 to 3 times that of the High-Speed Uplink Packet Access (HSUPA) [61]. The han-

dover procedure within LTE networks is intended to minimize interruption time to less than that

of circuit-switched handovers in 2G networks [3]. Furthermore, the handovers to 2G/3G systems

from LTE are designed to be seamless.

3.2 LTE 4G Pillars

LTE encompasses the pillars of next-generation networks: [62] [63]

• Broadband wireless as the new access reality: High-throughput, low-latency mobile ac-

cess based on advanced multiplexing and spectrum techniques, efficiently delivering unicast,
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multicast and broadcast media.

• Convergence of technology and networks: A single applications domain serving customers

across multiple networks and devices.

• Intelligence at the services edge: Implementing policy enforcement and decisions at the

network edge, in an access-agnostic but access-aware framework.

• Technology shift to all-IP: Simplifying and streamlining the network, improving scalability

and deployment flexibility and enabling consistent access-aware policy enforcement and

billing.

• Embedded security: A multi-layer multi-vendor approach to security is critical to ensure that

security is endemic to the network and not just focused on point solutions.

3.3 LTE: The Evolved Wireless Access

The challenge for next-generation wireless networks is to provide wireless broadband at a cost

and performance better than that achievable with DSL technologies, while maintaining seamless

mobility, service control and maximizing network capacity with limited spectrum resources.

Specific technical requirements include: [64] [65]

• Low latency and high throughput,

• Efficient always-on operation, with instantaneous access to network resources,
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• Support for real-time and non-real-time applications,

• Flexible spectrum allocations,

• High spectrum efficiency for unicast, multicast and broadcast data.

In addition to the requirements above, there is a set of minimum performance requirements

defined by the 3GPP [66]. These objectives include:

• Increased spectral efficiency and capacity: LTE is expected to deliver three to five times

greater capacity than the most advanced current 3G networks.

• Lower cost per bit: Increased spectral efficiency combined with the operational benefits of

an all-IP network will reduce the cost per bit compared to 3G solutions.

• Improved quality of experience: One of the benefits LTE/SAE will bring is a reduction in

latency time, which will enhance the behavior of time-sensitive applications, such as VoIP,

thus improving the user experience. For example, the latency time, expressed as the time for

a 32 byte Ping, is expected to reach 20 ms (compared with 120 ms for a typical 3G network).

3.4 Enabling Technologies

Two key enabling technologies will help meet and exceed the LTE performance objectives:
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3.4.1 Orthogonal Frequency Division Multiplexing

Orthogonal Frequency Division Multiplexing (OFDM) is fundamentally able to handle the most

common radio frequency distortions without the need for complex equalization techniques, and

scales easily to fit different bandwidth requirements.

OFDM is already an extremely successful access technology currently deployed in a number

of wireless and wireline applications [67]. These applications include digital audio and video

broadcast [68], wireless WLAN (IEEE 802.11a and IEEE 802.11g) [69] , WiMAX (IEEE 802.16)

[70] and wireline Asynchronous Digital Subscriber Loop (ADSL/ADSL2+) [71]. OFDM is widely

accepted as the basis for the air interface, necessary to meet the requirements for next-generation

mobile networks.

3.4.2 Multiple Input/Multiple Output

Multiple Input/Multiple Output (MIMO) increases peak throughput by transmitting and receiving

multiple streams of information within the same spectrum. MIMO exploits the multi-path effects

typical in wireless environments.

MIMO employs multiple transmit and receive antennas to substantially enhance the air inter-

face. It uses space-time coding of the same data stream mapped onto multiple transmit antennas,

which is an improvement over traditional reception diversity schemes where only a single transmit

antenna is deployed to extend the coverage of the cell. MIMO processing also exploits spatial

multiplexing allowing different data streams to be transmitted simultaneously from the different

34



transmit antennas, to increase the end-user data rate and cell capacity. In addition, when knowl-

edge of the radio channel is available at the transmitter (e.g. via feedback information from the

receiver), MIMO can also implement beam-forming to further increase available data rates and

spectrum efficiency.

The combined use of OFDM and MIMO will improve the spectral efficiency and capacity of

the wireless network, and will prove to be a very valuable asset in maximizing usage of scarce

spectrum typically controlled by regulatory bodies.

3.5 LTE 4G Network Architecture

In this section we present the 4G network architecture and describe its elements and corresponding

functionalities. Figure 3.2 illustrates a unified view of the overall LTE mobile architecture which

is marked by the elimination of the circuit-switched domain and a simplified access network.

The 4G system is comprised of two networks: the E-UTRAN (also referred to as the ‘LTE’ part)

and the Evolved Packet Core (EPC) (part of the new System Architecture Evolution (SAE)) [3].

The result is a system characterized by its simplicity, a non-hierarchical structure for increased

scalability and efficiency, and a design optimized to support real-time IP-based services.

The access network, E-UTRAN is characterized by a network of Evolved-NodeBs (eNBs) which

support orthogonal frequency-division multiple access (OFDMA) and advanced antenna tech-

niques. E-NBs interface with user equipments and perform numerous functions including radio
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Figure 3.2: LTE 4G Mobile Architecture

resource management, admission control, scheduling, ciphering/deciphering and compression/de-

compression of user and control plane data. On the other hand, the packet domain of LTE network

is called the Evolved Packet Core (EPC) and is depicted in Figure 3.3.

It is a flat all-IP system (ie. end to end IP based) designed to provide much higher packet

data rates and significantly lower-latency. It consists of six nodes; the Mobility Management En-

tity (MME) which manages UEs and their sessions, additionally controls establishment of evolved

packet system (EPS) bearers in the selected gateways. The Serving Gateway (SGW) which acts as

the mobility anchor for the user plane during inter-eNB handovers, as well manages and stores UE

contexts such as parameters of the IP bearer service and network internal routing information in

addition to routing data packets between the P-GW and the E-UTRAN. The Packet Data Network
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Figure 3.3: LTE Evolved Packet Core

Gateway (P-GW) provides connectivity to external packet data networks by being the point of exit

and entry of traffic, also performs policy enforcement and packet filtering. Moreover, the Home

Subscriber Server (HSS) is the master database that stores subscription-related information to sup-

port call control and session management entities. Furthermore, the Policy and Charging Control

Function (PCRF) is the single point of policy-based QoS control in the network. It is responsible

for formulating policy rules from the technical details of Service Date Flows (SDF) that will apply

to users’ services, and then passing these rules to the P-GW for enforcement. Finally, the evolved

Packet Data Gateway (ePDG) is used for interworking with un-trusted non-3GPP IP access sys-

tems.

Hence, and as discussed in the introductory chapter of this thesis and conversed here in this

section, the new 4G mobile architecture or SAE, will be vulnerable to serious IP based attacks. A
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specific criteria of IP based attacks that we study in this thesis and is of interest to us, are attacks

based on SPAM flooding, originating from outside as well as from within the 4G mobile network.

As a result, it is worthy to subsequently discuss methods for SPAM flooding mediation, in which

we later, adopt them, on specific functional elements of the 4G mobile architecture for the purpose

of SPAM mitigation. Having achieved that, we will be in a position to discuss secure mobile

architectures, aiming to reveal that our proposed distributed architecture is secure, more efficient

and cost-effective comparing with the de-facto industry widely adopted centralized architecture

where both approaches will be discussed consequently in the remaining portion of this chapter.

3.6 SPAM Mitigation Methods

There are three general forms of SPAM (SPIT) flooding mitigation methods discussed throughout

the literature [72].

3.6.1 Pattern Detection

These techniques seek to find patterns in requests and then determine if those patterns are as-

sociated with legitimate requests. Often these systems have predefined lists of signatures which

indicate a common attack. Pattern Detection can be sub-divided into two sections:

• Exact String Matching: A special case of pattern matching where the pattern is described by

a finite sequence of symbols (or alphabet Σ). It consists of finding one or more generally all

the occurrences of a short pattern P=P[0]P[1]· · ·P[m−1] of length m in a large text
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T=T[0]T[1]· · ·T[n−1] of length n, where m, n>0 and m ≤ n. Both P and T are built over the

same alphabet Σ.

• Regular Expressions Matching: This method provides a concise and flexible means for iden-

tifying strings of text, such as particular characters, words, or patterns of characters. A

regular expression is written in a formal language that can be interpreted by a regular ex-

pression processor, a program that either serves as a parser generator or examines text and

identifies parts that match the provided specification. A regular expression, often also called

a pattern, is an expression that describes a set of strings. They are usually used to give a

concise description of a set, without having to list all its elements.

To implement pattern detection, various algorithms were proposed which will be discussed

next.

String Matching Algorithms

• Brute Force:

The Brute-Force (BF) algorithm, which is the simplest, performs character comparisons

between a character in the text and a character in the pattern from left to right [73]. In any

case, after a mismatch or a complete match of the entire pattern it shifts exactly one position

to the right. It requires no pre-processing phase and no extra space. The BF algorithm

has O(m×n) worse-case time complexity. The average number of character comparisons is

n(1+ 1
|Σ|−1 ) [74].
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• Knuth-Morris-Pratt:

The Knuth-Morris-Pratt (KMP) algorithm, which was the first linear time string matching

algorithm discovered, performs character comparisons from left to right. In case of mismatch

it uses the knowledge of the previous characters that we have already examined in order to

compute the next position of the pattern to use [73]. In addition, this algorithm provides the

advantage that the pointer in the text is never decremented. The pre-processing phase of the

KMP algorithm requires O(m) time and space. The searching phase needs O(m+n) time in

the worse and average cases [75].

• Boyer-Moore:

The next algorithm is Boyer-Moore (BM) algorithm, which is known to be very fast in prac-

tice, performs character comparisons between a character in the text and a character in the

pattern from right to left. After a mismatch or a complete match of the entire pattern it

uses two shift heuristics to shift the pattern to the right. These two heuristics are called the

occurrence heuristic and the match heuristic [75]. Note that the length of the shift is the max-

imum shift between the occurrence heuristic and the match heuristic. These heuristics are

pre-processed in O(m+|Σ|) time and space. The searching phase of the BM algorithm needs

O(n×m) time in the worse case. Finally, the expected performance of the BM algorithm is

sub linear requiring about n
m

character comparisons on average [74].

• Boyer-Moore-Horspool:

The Boyer-Moore-Horspool (BMH) algorithm does not use the match heuristic. In case of

mismatch or match of the pattern, the length of the shift is maximized by using only the
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occurrence heuristic for the text character corresponding to the rightmost pattern character

(and not for the text character where the mismatch occurred) [74]. The pre-processing phase

of the BMH algorithm requires O(m+|Σ|) time and reduces the space requirements from

O(m+|Σ|) to O(|Σ|). Finally, the searching phase requires O(m×n) time in the worse case

but it can be proved that the average number of character comparisons is | n
Σ
| [75].

• Shift-Or:

The Shift-Or (SO) algorithm represents the state of the search as a number and each search

step costs a small number of arithmetic and logical operations, provided that the numbers

are large enough to represent all possible states of the search. Assuming that the pattern

length is no longer than the computer word of the machine, the time complexity of the pre-

processing phase is O((m+|Σ|)×(⌈m/w⌉)) using O(m×|Σ|) extra space [74]. Finally, the time

complexity of the searching phase is O(n×(⌈m/w⌉)) in the worse and average cases, where

(⌈m/w⌉) is the time to compute a shift or other simple operation on numbers of m bits using

a word size of w bits [75].

Regular Expression Algorithms

• Non-Deterministic Finite Automata:

A non-deterministic finite automaton (NFA) is a mathematical model that consists of

1. A set of states S

2. A set of input symbols Σ (the input symbol alphabet)

3. A transition function that maps state-symbol pairs to sets of states
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4. A state s0 that is distinguished as the start (or initial) state

5. A set of states F distinguished as accepting (or final) states

An NFA accepts an input string x if and only if there is some path in the transition graph

from the start state to some accepting state, such that the edge labels along this path spell

out x. A path can be represented by a sequence of state transitions called moves. Regarding

the NFA’s complexity, if given an NFA N, an input string x, a set of final states and a regular

expression r, then the time complexity is O(|N|× |x|) where |N| is the number of states in N

and |x| is the length of x. N has at most twice as many states as |r| . Thus, space complexity

is O(|r|).

• Deterministic Finite Automata:

A deterministic finite automaton (DFA) is a special case of a non-deterministic finite au-

tomaton in which

1. No state has an ε-transition, i.e., a transition on input ε, and

2. For each state s and input symbol a, there is at most one labeled edge a leaving s. If we

convert NFA to DFA, it generates at most 22×|r| states. Therefore, the space complexity for

the DFA is O(22×|r|). The time complexity is O(|x|).

• Extended Finite Automata:

As we have stated, representing network intrusion detection signatures as deterministic finite-

state automata (DFAs) results in very fast signature matching but for several classes of sig-

natures, DFAs can blow-up in space. On the other hand, using non-deterministic finite-state
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automata (NFA) to represent NIDS signatures result in a concise representation but at the ex-

pense of higher time complexity for signature matching. The main idea of Extended Finite

Automata (XFA) is to find an ideal case in which we implement the advantages of both DFA

and NFA. As a result, XFAs have time complexity similar to DFAs and space complexity

similar to NFAs. According to the authors of [76], XFAs use 10 times less memory than a

DFA-based solution, yet achieve 20 times higher matching speeds. Additionally, according

to [75], the authors provide a small example and reveal that the space complexity of he XFA

is linear in n and hence the time complexity is O(n).

• Delayed Input DFA:

In [77] , the authors introduce a new representation for regular expressions, called the De-

layed Input DFA (D2FA), which substantially reduces space requirements as compared to

a DFA. A D2FA is constructed by transforming a DFA via incrementally replacing several

transitions of the automaton with a single default transition. Their approach dramatically

reduces the number of distinct transitions between states. According to the authors, for a

collection of regular expressions drawn from current commercial and academic systems, a

D2FA representation reduces transitions by more than 95%. Furthermore, the time complex-

ity is O(n2logn) and the space complexity is O(n2) where n is the number of states. Note that

in [78], the authors proposed another algorithm based on D2FA that produced the following

enhanced complexities: time complexity is O(n2) and space complexity is O(n).

• Content Addressed Delayed Input DFA:

Although D2FA decreased the space requirement needed for DFA, however, it sacrificed
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throughput (performance). For that reason, in [79], the authors propose Content Addressed

Delayed Input DFA (CD2FA), which provided a compact representation of regular expres-

sions that match the throughput of traditional uncompressed DFA’s. A CD2FA addressed

successive states of a D2FA using their content, rather than a ‘content-less’ identifier. This

makes selected information available earlier in the state traversal process, which makes it

possible to avoid unnecessary memory accesses. Moreover, CD2FAs use as little as 10%

of the space required by a conventional compressed DFA and match the throughput of an

uncompressed DFA. Concerning the complexities, the time complexity is ≈ O(|x|) where x

is the input string and the space complexity is ≈ O(22×|r| )×(10%).

It is extremely worthy to mention that the Boyer-Moore algorithm coupled with NFA regular

expressions detection algorithms are the two most widely adopted content filtering mechanisms in

which they are implemented in various approaches and forms in leading SPAM/IDS detection tools

such as Snort [80], Barracuda [81], Bro IDS [82], Suricata [83], CleamMyMail [84], Cloudmark

Desktop [85] and Spamfighter [86].

3.6.2 Anomaly Detection

In this method, a base line for ‘normal’ traffic is generated and then used to identify possible

attacks. These anomalies may be in the form of unusual traffic flows (for example, a large amount

of traffic to a machine which generally receives little traffic), or a behavior (for example, a failure

to respect TCP flow control mechanisms for a TCP flow). This is hard to achieve on real networks,

as traffic flows can be highly variable whilst not being malicious. However, this approach holds

the most promise for SMTP as anomalies would present themselves as unusual traffic flows, either
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in a larger than normal number of emails being delivered to one recipient, or a larger number of

emails than usual coming from a limited number of clients.

3.6.3 Third Party Detection

These are systems which do not perform any attack detection themselves, but act on instructions

from an external source. This might be in the form of a commercial service or a network wide

traceback mechanism such as CenterTrack [87].

In this thesis, we implement a pattern detection approach and we assert that it will be effective

in mediating the effect of the SPAM flooding attacks. As mentioned in Section 1.5, in this work we

aim to study and analyze specific detection algorithms and undergo profiling on various hardware

to estimate the cost of those algorithms in terms of processing/detection delay on LTE 4G specific

infrastructure nodes. Having achieved that, we will be in a position to discuss and compare two

mediating approaches based on two different mobile security architectures. Through measurement,

simulation and analysis we will be capable to compare the conventional centralized architecture

and our proposed distributed architecture on the 4G mobile infrastructure.

3.7 Secure Mobile Architectures

In the past few years, we have witnessed an explosion in demand for security measures motivated

by the proliferation of mobile/wireless networks, the fixed-mobile network convergence, and the
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emergence of new application services. 4G systems play a key role in this network evolution, and,

thus, all stakeholders are interested in the security level supported in the new evolved emerging

mobile environment.

In this thesis, we intend to shed the light on the fact that 4G mobile networks are vulnerable

to IP-based attacks which forces mobile network operators to preventively react to preserve their

provided application services and thus their business and reputation. Hence a security architectural

solution is required and for those reasons may be proposed on the LTE 4G network infrastructure.

The notion of a secure mobile architecture was initiated by the Open Group in their technical

report [88] that was published in 2004. The report mainly describes an integration architecture that

provides a framework and various building blocks for implementing a secure mobile environment.

The report concluded with the following recommended practices and approaches concerning three

areas:

• Session Management: Until ubiquitous wireless coverage is a reality, session management

is a necessary part of doing business in a mobile environment. Thus, there is a need to plan

for and develop a secure and efficient session management client-server solution for mobile

and roaming users.

• Security: Develop a security architecture that takes into account all the layers of wireless

security and is an integrated approach to end-to-end security. The critical point is to adopt a

‘host payload inspection mechanism’ as the core security feature of the network architecture
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to move away from address-based security.

• Vision: Create an IT body to deal with wireless and mobility issues. Create an architec-

ture that technically and efficiently meets the wireless and mobility requirements within an

organization.

Following the ‘Security’ recommended practice by the Open Group community, we adopt in

our appraoch a security mechanism on 4G architectural elements.

Although there exist various mobile network architectures for mitigation methods deployment,

in this thesis we present, compare and analyze two major design trends; the conventional central-

ized architectural approach and our proposed distributed architectural approach. By doing so, we

would be providing the scientific and the industrial communities with a unique approach on the

placement of SPAM flooding mitigating mechanisms on LTE 4G mobile networks. In this work,

we aspire to show that the proposed distributed approach is:

1. Secure by mitigating the effects of the SPAM flooding attacks,

2. Efficient by solving the over dimensioning problem caused by the conventional centralized

architectural approach,

3. Cost-Effective compared with the centralized approach; by utilizing commercial less per-

formant less expensive ‘off-the-shelf’ hardware in the distributed nodes rather than utilizing

specialized immensely performant expensive hardware in the centralized node.

In an LTE 4G mobile network and in the centralized security architectural approach, all miti-

gating mechanisms are concentrated in only one node, mainly in the P-GW as illustrated in Figure
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3.4. This approach can be considered the de facto in current real world implementations since the

Figure 3.4: Centralized Security Architecture

P-GW acts as the exclusive point of entry from and exit to the Internet. Hence, all traffic passes

through it and thus ingress and egress filtering can be practically achieved in it. In contrast, in a

distributed security architectural approach, mitigating mechanisms are distributed on various LTE

nodes. Although there are several valid candidates for that task, we believe that the S-GW has

the right granularity to be a strong candidate. The S-GW, similar to the P-GW, covers all ingress

and egress traffic from and to the Internet. However, the traffic on the S-GW is some order of

magnitude less than on the P-GW, thus the overall filtering load is distributed over the entire set

of S-GWs and is consequently, far less than the filtering load on the centralized P-GW. Moreover,

the S-GW is the only node other than the P-GW that deals with data plan traffic during an active
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data connection (other nodes deal with signaling, control or policy enforcement and/or charging).

Figure 3.5 depicts this approach. The rationale behind this scheme states that if we re-allocate the

Figure 3.5: Distributed Security Architecture

mitigating algorithms from the P-GW and distribute them unto the S-GWs, even after we acknowl-

edge the fact that the S-GWs are less performant in terms of processing power than the P-GW, we

will still be able to achieve the security task of mediating the effect of the SPAM flooding attacks

while in addition preserve the efficiency on the LTE network by solving the over dimensioning

problem in the P-GW caused by the centralized approach. Moreover, since the S-GWs can uti-

lize ‘off the shelf’ hardware compared to the P-GW that uses dedicated high-priced hardware, this

countermeasure is also cost-effective.
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Furthermore, and since in this thesis we are discussing two various security approaches and

eventually validating the advantages of the distributed security architecture on the 4G mobile ar-

chitecture, it would be creditable to pinpoint as well some of the general advantages and disadvan-

tages of a generic distributed design approach.

Advantages of Distributed Systems:

• Performance: very often a collection of processors can provide higher performance (and

better price/performance ratio) than a centralized node.

• Distribution: many applications involve, by their nature, spatially separated machines (bank-

ing, commercial, automotive system).

• Reliability (fault tolerance): if some of the distributed machines crash, the system can still

operate.

• Incremental growth: as requirements on processing power increase, new nodes can be added

incrementally and practically.

• Sharing of data/resources: shared data is essential to many applications (banking, computer-

supported cooperative work, reservation systems).

Disadvantages of Distributed Systems:

• Difficulties of developing distributed software: how should operating systems, programming

languages and applications be implemented on the distributed nodes?
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• Networking problems: several problems are created by the network infrastructure, which

have to be dealt with; ie: loss of messages, overloading, etc...

• Security problems: sharing generates the problem of data security.

• Maintenance: the cost of maintenance can skyrocket because each distributed node has its

own share of problems and errors.

It is worthy to note that in this thesis and in our proposed distributed security architecture,

the set of distributed nodes (the SGWs) function individually and independently on the traffic to

perform the filtering and the detection. Hence, many disadvantages of a collaborative distributed

design approach such as signaling, inter-node communications overhead and combining and coor-

dinating of data are not present in our proposed distributed architecture.

3.8 Conclusion

In this chapter, we presented, explained and illustrated the evolved 4G mobile architecture. By

doing so, we highlighted on the fact that its new SAE ‘All IP’ architecture is vulnerable to IP

based attacks. Moreover, and since in this thesis we focus on SPAM flooding attacks and their

effects on network metrics and subsequent effects on mobile network operators, we consequently

discussed SPAM mitigation approaches. Furthermore, we presented and compared two secure mo-

bile architectures, namely the de-facto centralized approach and our proposed distributed approach.

In the next chapter, we present the SPAM flooding attacks use cases and reveal their effects

on the 4G network and consequent effects on mobile network opertors. More importantly, we
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put our proposed distributed security architecture under investigation in which we demonstrate

its feasibility and effectiveness under the SPAM flooding attacks compared with the centralized

security architecture.
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Chapter 4

Attack and Defense Scenarios

4.1 Profiling for SPAM Flooding Mitigation

As we have stated in Section 3.6.3, we intend to measure specific pattern mitigating algorithms

in terms of detection/packet processing delay. Our ultimate goal is to identify how much time

an algorithm will require to inspect a packet on specific LTE nodes (S-GWs & P-GWs). Having

achieved that, we will be in a position to simulate their effect when implemented on the 4G net-

work infrastructure for the purpose of SPAM flooding mediation.

To accomplish that task, Snort [80] an open source network intrusion prevention and detection

system, combining the benefits of signature, protocol and anomaly-based inspection, was investi-

gated. Snort, and part of its content signature detection, implements the Boyer-Moore (BM) exact

string matching detection algorithm in addition to a non-deterministic finite automata regular ex-

pression (NFA RegEx) detection algorithm. In fact, those generic algorithms are as well widely
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adopted in various forms in many intrusion detection systems such as Bro [82] and Suricata [83].

However, we have selected Snort since it is very well established and supported and employs a

very descent scientific profiling engine which was vital in our case.

To obtain the measurement results for the BM and NFA RegEx algorithms, we performed pro-

filing of rule-matching. This procedure enabled us to take advantage of the detection rules to trig-

ger the detection algorithms and consequently measure the time they require to inspect and detect

Spam in data packets. The procedure was executed on two Linux machines operating an Ubuntu

9.10, Snort Version 2.8.5.3 (Build 124) with PCRE version 7.8. The first machine was dual core

with 4GB of memory. This machine will model the Serving Gateway (S-GW) in terms of process-

ing power in our simulations. The second was a dual quad core (8 core) machine with 160GB of

memory which will model our Packet Data Network Gateway (P-GW) in our simulations in terms

of processing power. Furthermore, we took advantage of the ‘config profile_rules’ command in

Snort’s configuration file to acquire profiling statistics similar to Figure 4.1. To obtain the most

Figure 4.1: Rule Profiling Snapshot

precise scientific results possible, we followed the subsequent methodology. We progressed with

just two rules; one rule that takes advantage of the BM algorithm (using the ’content’ keyword)

and the other takes advantage of NFA RegEx algorithm (using the ’pcre’ keyword). We profiled
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Algorithm/ Boyer-Moore/ NFA-RegEx/ Total Time/
Machine 160 Bytes VoIP 160 Bytes VoIP 160 Bytes VoIP

Type Packet (µs) Packet (µs) Packet (ms)
Dual Core (S-GW) 2671.8 8465.63 11.3

Dual Quad-Core (P-GW) 641.25 1021.25 1.67

Table 4.1: VoIP SPIT Profiling Results

Algorithm/ Boyer-Moore/ NFA-RegEx/ Total Time/
Machine SMTP SMTP SMTP

Type Packet (ms) Packet (ms) Packet (ms)
Dual Core (S-GW) 23.96 75.34 99.3

Dual Quad-Core (P-GW) 5.79 6.29 15.08

Table 4.2: SMTP SPAM Profiling Results

those rules independently using ten data samples ranging from 2KB to 1024KB and for each sam-

ple we ran the profiling procedure ten times. To further develop the results, and after using simple

Linux commands including ’grep, pipe and wordcount (wc)’ on Snort rule-set directory, we un-

veiled that in a default Snort distribution there is approximately 4000 rules in which 57% of them

utilize Boyer-Moore and 43% utilize NFA Regular Expressions. Moreover for practical reasons,

we assumed that only 20% of the rules will actually be employed to inspect the traffic 2. As a result

and acting upon the above assumptions, the results are summarized in Tables 4.1 & 4.2. According

to our profiling results, the overhead of analyzing VoIP packets using both BM and NFA RegEx

would be 11.3 milliseconds on a dual core machine (the S-GW) and 1.67 milliseconds on a dual

quad core machine (the P-GW). On the other hand, the overhead of inspecting SMTP packets using

both algorithms would be 99.3 milliseconds on the S-GW and 15.08 milliseconds on the P-GW.

2During the profiling procedure, we noticed that the percentage of rules being employed to inspect the traffic varied
from 15% to 25%.
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The previous outcome will be employed to simulate and analyze the effect of the mitigating

algorithms when implemented on the 4G network infrastructure and that will be the foundation of

our presented mobile security architectures and ultimately our proposed distributed approach.

4.2 Scenario I: RTP VoIP SPIT Flooding

In this section, we focus on RTP VoIP SPIT flooding in order to demonstrate its DoS impact on

the LTE 4G mobile network. Our intention is to shed the light on the fact that 4G mobile networks

are vulnerable to IP-based attacks which forces mobile network operators to preventively react to

preserve their provided application services. Hence a security architectural solution is required and

for that reason may be proposed on the 4G mobile network infrastructure.

4.2.1 Simulation Setup

For our simulations, we have utilized Opnet Modeler version 16.0 with the LTE specialized model

[89] on a Windows 7 machine, running a quad core 2.5GHZ CPU with 4GB of memory. The

simulated architecture illustrated in Figure 4.2, consists of 720 Internet connected nodes 3, 1 PDN-

GW, 7 S-GWs, 7 eNBs/1S-GW (49 eNBs in total) and 100 UEs/1eNB (4900 simultaneous UEs).

We believe that this topology is very close to depict a realistic 4G network deployment in a large

city. Additionally, the links configuration 4 is given in Table 4.3.

3According to our simulations, this number of nodes is the minimum number that will cause a VoIP DoS
4Our intention by selecting this broad bandwidth links configuration is to eliminate any possible delay caused by

the links
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Figure 4.2: SPIT Flooding Topology

Link Type Bandwidth

eNode-EPC Ethernet-1000BX 1 Gbps
EPC-Internet PPP-Sonet-OC48 2.37 Gbps

Internet-WorkStation PPP-Sonet-OC24 1.18 Gbps

Table 4.3: Links Configuration

4.2.2 RTP VoIP SPIT Flooding Impact

In this section, we aim at manipulating the traffic parameters of the scenario of Figure 4.2 to

model the network environment in two cases; the first case illustrates the network under normal

functionality and the second case demonstrates the network under an RTP VoIP SPIT flooding

attack. Having accomplished that, we will be capable to compare both scenarios, specifically the

average end-to-end delay for voice packets metric, the one-way jitter metric and the VoIP packet

loss rate metric, and thus analyze the feasibility and impact of the attack on the QoS and availability

of the VoIP application service on LTE 4G mobile networks.
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Normal Network Load

According to [6], the mobile broadband data traffic is divided according to the following: 40%

is data (Http/Ftp/Email), 20% is peer-to-peer, 10% is audio and 30% is video traffic. Therefore,

modeling those distributions on the 4G mobile network will provide us with a baseline that highly

replicates a normal network functionality scenario. We simulated that traffic for 30 minutes in ac-

cordance with the proposed scenario of Figure 4.2 and the simulation parameters of Section 4.2.1.

Specifically, we configured the workstations to initiate the various traffic services and communicate

with the UEs in a random manner.

Network Load Under RTP SPIT Flooding Attack

To model the network under the RTP VoIP SPIT flooding attack, we presume that the workstations

have been exploited by malicious bots and aim to flood the mobile network, more specifically, the

user equipments with VoIP SPIT. Under the same parameters defined in Section 4.2.1, we setup

and ran the simulation for 30 minutes. Figures 4.3, 4.4 and 4.5 depict our simulation results of

both case scenarios. Under a normal network load, the three critical VoIP QoS metrics are ac-

ceptable, tolerable and conform with ITU recommendations as discussed in Section 1.4.1. This is

demonstrated when the average end-to-end delay for voice packets ranges from 69 ms to 75 ms

(Figure 4.3), the average one-way jitter is below 30 ms (Figure 4.4) and the VoIP packet loss rate

is almost negligible (Figure 4.5). On the other hand and under the RTP VoIP SPIT flooding attack,

the results disclose the severe impact of the attack on the QoS and availability of the VoIP service

on the LTE 4G mobile network. This is revealed in Figure 4.3 when the average end-to-end delay

for voice packets surpasses the 400 ms threshold just after 5 minutes of attack simulation time.
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Figure 4.3: Avg.One Way Latency - Normal Load Vs Attack Load

Moreover, the average one-way jitter peaks at 460 ms (Figure 4.4) and the VoIP packet loss rate

is around 33% (Figure 4.5). These indicators 5 strongly imply the feasibility of RTP VoIP SPIT

flooding attacks on LTE mobile networks, in which a severe unacceptable and intolerable degrada-

tion in VoIP QoS occurs, causing a DoS to the VoIP application service on the mobile network as

confirmed by the discussion in Section 1.4.1.

5These simulation based results should not be taken as absolute values on real LTE network systems, rather they
depict the feasibility and severity of such attacks. In addition, we use them to show relative service improvements
under our proposed distributed architecture.
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Figure 4.4: Avg. One-Way Jitter - Normal Load Vs Attack Load

Therefore, in order for mobile network operators to mediate all the effects of the attack and pre-

serve the VoIP service on the LTE network, a mitigating security architecture must be implemented

and validated.
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Figure 4.5: VoIP Packet Loss Rate - Normal Load Vs Attack Load

4.2.3 Simulation Results: SPIT Flooding Security Architectures

Centralized Architecture

In this scheme that is based on the conventional centralized network security architecture, we pro-

pose to add both mitigating algorithms (BM & NFA RegEX) in the Packet Data Network Gateway

as discussed in Section 3.7 and depicted in Figure 3.4. We achieve this by adding the detec-

tion/packet filtering delay that we acquired from the profiling results of Section 4.1 to the P-GW

as packet processing delay. Note that our profiling results take into consideration the processing

power of the P-GW and thus represent a realistic approach to the filtering/detection power of the

P-GW.
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Distributed Architecture

This scheme proposes a distributed architecture as discussed in Section 3.7 and depicted in Figure

3.5. Hence, we distributed the mitigating algorithms on the S-GWs, utilizing the profiling results

from Section 4.1 and implementing them as packet processing delay. It is worthy to mention that

we assume that the different S-GW nodes act independently on the traffic to perform the detection.

Additionally, note that our profiling results take into consideration the processing power of the

S-GWs and thus represent a realistic approach to the filtering/detection power of S-GWs.

To demonstrate relative service improvements under our proposed distributed security architec-

ture, we setup, implemented and simulated both security architectures under the RTP VoIP SPIT

flooding attack for 20 minutes. It is creditable to note, that since we are implementing the same

algorithms in both mitigating architectures where the algorithms are solely based on IP packets,

we expected and assumed the same rate for false positives and false negatives.

Although the centralized architectural approach may be secure, however under the attack, it

will cause an over dimensioning problem in the P-GW; since the exploited Internet workstation

are generating huge number of RTP VoIP SPIT sessions, the P-GW will struggle to process and

filter all the sessions. This fact is depicted in Figure 4.6 where the CPU Utilization of the P-GW

hits 100% at the end of the simulation. Furthermore, this fact negatively affected the VoIP QoS

metrics under this architecture. This is proven when the end-to-end delay for voice packets metric

exceeds the 400 ms threshold (Figure 4.7), the average one-way jitter metric ranges from 80 ms to

140 ms (Figure 4.8) and the VoIP packet loss rate metric is around 19% (Figure 4.9).
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Figure 4.6: P-GW: CPU Utilization in Both Security Architectures

On the other hand, and comparing with the centralized architecture, our proposed distributed

architectural approach, under the attack, is secure yet efficient. According to the simulation results,

this architecture solves the over dimensioning problem in the P-GW as depicted in Figure 4.6 and

preserves the VoIP service on the LTE network. The latter statement is confirmed and backed

up by Figures 4.7, 4.8 and 4.9 where the end-to-end delay for voice packets metric, the one-way

jitter metric and the VoIP packet loss rate metric were respectively more efficient, on average and
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Figure 4.7: Avg. One Way Latency In Both Security Architectures

approximately, by 50%, 66% and 16% comparing with the conventional centralized architecture.

64



Figure 4.8: Avg. One-Way Jitter In Both Security Architectures

As a result, we affirm that this proposed scheme that is based on a distributed mobile network

security architecture will not only achieve the security task of mediating the effects of the attack

which will consequently preserve the VoIP application service on LTE 4G mobile networks, but

will also preserve and provide efficiency to the mobile network in addition to being cost-effective

for the reason mentioned in Section 3.7.
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Figure 4.9: VoIP Packet Loss Rate In Both Security Architectures

4.3 Scenario II - SMTP SPAM Flooding

In the previous scenario, we have demonstrated that RTP VoIP SPIT flooding launched from the

Internet towards the LTE network will trigger a DoS by denying the VoIP voice service. However,

by implementing our proposed distributed architecture on the 4G network, we were able to mediate

the effect of the attack and at the same time provide and preserve the efficiency of the network.

In this scenario, we further experiment the feasibility of triggering a DoS from within the LTE

network and consequently the effectiveness of our proposed distributed security architecture by

studying another application service under a different attack scenario which is illustrated in Figure

4.10. The topology consists of the operator’s SMTP Server, 1 P-GW, 7 S-GWs, 7 eNBs/1S-GW
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Figure 4.10: SMTP SPAM Flooding Topology

and 100 UEs/1eNB. Other parameters are similar to those mentioned in Section 4.2.1.

4.3.1 Scenario Rationale

With the ever increase flourishing of multi-vendor UEs and various complex applications being

developed for diverse, advanced and unsecured mobile operating systems, it is deemed that UEs

will be exploited for malicious purposes. According to [90], approximately 40% of all Android

applications are low quality applications. This means that these applications may have not been

verified and most probably will contain issues with programming, functionality and more critically

security. This fact was greatly established recently when Google removed a group of applications

from its Android Market after it was discovered that they contained malicious code that could

be used to send SMS SPAM [91]. Moreover in 2009, a major mobile botnet was identified by the

name ‘Ikee.B’ [92] that targeted UEs running Apple’s mobile operating system. Hence specifically

in this scenario, we demonstrate the feasibility of malicious exploited UEs from within the LTE

network flooding the opertator’s SMTP server with email SPAM. As a result, this will cause a
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DoS to the SMTP server by overloading it with unsolicited emails and hence denying it from

processing legitimate email requests in a timely manner. Furthermore more critically, will cause the

operator’s SMTP server to be blacklisted by Internet DNS servers after being detected as a SPAM

server. Consequently, this will adversely affect the operator’s business, reliablity and reputation in

addition to facing serious legal issues (e.g., under the Candian House Government Bill C-28 Act)

for misusing the mobile infrastructure for Spamming purposes.

4.3.2 SMTP SPAM Flooding Impact

Similar to Section 4.2.2, we aim at manipulating the traffic parameters of the scenario of Figure

4.10 to model the network environment in two cases; the first case illustrates the network under

normal functionality and the second case demonstrates the SMTP SPAM flooding attack targeting

the operator’s SMTP server. Having accomplished that, we will be capable to compare both sce-

narios and analyze the impact of the attack on the SMTP server in terms of its CPU Utilization and

Email Processing Time (measured time from when a single email request arrives at the server to

the time it is completely processed) as discussed in Section 1.4.2. Furthermore, we will be able to

show the subsequent impacts of the attack on the mobile network operator.

Normal Network Traffic

Following the traffic distributions highlighted in [6], we simulated this scheme for 20 minutes.

Specifically, we configured the UEs to initiate the various traffic services and communicate with

the corporate SMTP server and their corresponding Internet servers.
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SMTP Spam Flooding Attack

To model the SMTP Spam flooding against the SMTP server, we presume that the UEs have been

exploited and aim to flood the operator’s server with Spam email. In accordance with the topology

of Figure 4.10, we setup and ran this attack scenario for 20 minutes.

Figures 4.11 and 4.12 respectively depict our simulation results of the operator’s SMTP server’s

CPU Utilization and Email Processing Time in a normal network behavior scenario and under the

SMTP SPAM flooding attack. The results reveal that under a normal load, the SMTP server is

able to process emails in a very (almost negligible) timely manner (0.002 sec/email) and its CPU

Utilization is very acceptable (max 15%).

On the other hand, the results disclose the severe impact of the SPAM flooding attack on the

SMTP server. This is revealed when the server hits a steady 100% CPU Utilization after the 15th

minute. Moreover, this fact drastically affected the server’s ability to process email requests in a

timely manner in which this task took an additional highly significant 4 seconds to complete caus-

ing a drastic bottleneck. Relating this to our DoS definition and discussion from Section 1.4.2, we

assert that this attack successfully caused a DoS targeting the operator’s SMTP Server.

It is extremely noteworthy to mention that this SPAM flooding will force as well the operator’s

SMTP server to be utilized as a SPAM server which will be ultimately identified and blacklisted

by Internet DNS servers. Furthermore, the mobile network operator will be liable under the law

since its infrastructure was misused. Therefore, to mediate all those effects, a security architecture
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Figure 4.11: SMTP Server: CPU Utilization in Both Scenarios

must be implemented and validated.

4.3.3 SMTP Spam Flooding Security Architectures

Similar to Section 4.2.3, this section aims to implement and compare the conventional centralized

security architecture and our proposed distributed architecture. Through additional simulation, we

intend to reveal that our approach is secure and more efficient.
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Figure 4.12: SMTP Server: Email Processing Time/Email in Both Scenarios

Centralized Vs Distributed Architectures

Following the same methodology of Sections 4.2.3 and 4.2.3, we implemented and simulated both

security architectures for 20 minutes.

Although the centralized architecture may be secure, however under the attack, it will cause

an over dimensioning problem in the P-GW; since the exploited UEs are generating huge number

of SMTP SPAM sessions, the P-GW will struggle to process and filter all the sessions. This fact
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is depicted in Figure 4.13 where the CPU Utilization of the P-GW hits 70% and keeps steadily

increasing. Thus, we confirm that the centralized architecture may be secure but not efficient and

will affect the functionality of the LTE network.

Figure 4.13: P-GW: CPU Utilization in Both Architectures

On the other hand and under the SMTP SPAM flooding attack, the results of our proposed dis-

tributed architecture on the SMTP Server’s performance are illustrated in Figures 4.14 and 4.15.

According to the simulation results, the distributed security architecture is secure and efficient. On
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one side, it will be able to mediate the effect of the SPAM flooding attack targeting the SMTP

Server and at the same time preserve the efficiency of the LTE network. This is confirmed when

the SMTP Server’s CPU Utilization reaches a very reasonable maximum 30% (Figure 4.14) still

permitting the server to process emails in a timely manner as depicted in Figure 4.15. In addition,

this distributed architecture solved the over dimensioning problem caused by the centralized archi-

tecture as demonstrated in Figure 4.13. On the other side, it will mediate the significant subsequent

effects of the attack which are characterized by the blacklisting of the operator’s SMTP server and

related legal issues.

Figure 4.14: Distributed Architecture: SMTP SRV CPU Under Attack Load
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Figure 4.15: Distributed Architecture: SMTP SRV Email Processing Time/Email Under Attack
Load
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Chapter 5

Conclusion

In this thesis, we focused on two SPAM flooding attacks, namely RTP VoIP SPIT and SMTP SPAM

and revealed, through performing large scale simulations, their feasibility and significant negative

direct and indirect impacts on 4G mobile network. We confirmed that IP-based attacks, taking

advantage of 4G’s evolved packet core are feasible. Moreover, in an effort to mitigate the effects

of the attack, we investigated generic detection algorithms employed by various IDSs. By utilizing

Snort and performing profiling of rule-matching, we predicted the cost of the detection/filtering

delay of the Boyer-Moore and NFA Regular Expression detection algorithms on LTE 4G’s Serving

Gateways and Packet Data Network Gateways. Consequently, we discussed various mitigating

methods and secure mobile architectures. Additionally, we simulated, compared and analyzed

the conventional centralized mobile security architecture and our proposed distributed security

architecture. We concluded that our proposed architecture is secure by mitigating the effects of the

RTP VoIP SPIT flooding attack, more efficient by solving the over dimensioning problem caused

by the centralized architectural approach and cost-effective by utilizing ‘of the shelf’ low-cost
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hardware in the S-GW nodes.

5.1 Future Work

For future work, we are planning to target the following:

• Investigate the impact of other content matching algorithms such as the Aho Corasick string

matching algorithm on the LTE network infrastructure,

• Study the feasibility of other IP based attacks and prevention mechanisms on the mobile

network,

• Work on collaborative design approaches between various LTE nodes for SPAM flooding

mitigation in 4G mobile networks.
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