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Abstract

We present a new approach to distributing

processed telemetry data among spacecraft

flight controllers within the Control Centers

at NASA's Johnson Space Center. This ap-

proach facilitates the development of appli-

cation programs which integrate spacecraft-

telemetered data and ground-based synthe-

sized data, then distribute this information

to flight controllers for analysis and decision-

making.

The new approach combines various dis-

tributed computing models into one hybrid

distributed computing model. This model

employs both client-server and peer-to-peer

distributed computing models cooperating to

provide users with information throughout a

diverse operations environment. Specifically,

it provides an attractive foundation upon

which we are building critical real-time mon-

itoring and control applications, while simul-

taneously lending itself to peripheral applica-

tions in playback operations, mission prepa-

rations, flight controller training, and pro-

gram development and verification.
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ini Ave., R20A-4, Houston, TX, 77058.

t Unisys Space Systems, 600 Gemini Ave., U04D,
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We have realized the hybrid distributed

computing model through an information

sharing protocol. We shall describe the mo-

tivations that inspired us to create this pro-

tocol, along with a brief conceptual descrip-

tion of the distributed computing models it

employs. We describe the protocol design in

more detail, discussing many of the program

design considerations and techniques we've

adopted. Finally, we describe how this model

is especially suitable for supporting the im-

plementation of distributed expert system ap-

p4ications.

1 Introduction

The past approach to spacecraft data distri-

bution in the Mission Control Center (MCC)

used a centralized computing model. Main-

frame computers processed the incoming

telemetry and trajectory data, applied var-

ious computations to this data, then dis-

tributed this information to hundreds of flight

controller displays. This approach worked

well for many years, but its cost, inflexibil-

ity and resistance to change have become

unappealing. Meanwhile, advancing work-

station and networked, distributed comput-

ing technologies which overcome these limi-
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tations grew more compelling. Accompany-
ing these advancementswere new software
development packages,man-machineinter-
faces,and artificial intelligencetechnologies.
The application potential of theseexciting
technologiesinspired flight controllers to as-
sumemore interactive roles in the develop-
ment of computational tools which enhance
their spacecraftoperations capabilities. The
desire to implement theseenhancementsen-
courageda revolution in the MCC computing
architecture.

The MCC began the transition from cen-
tralized to distributed computing several
years ago. The current MCC employsboth

configurations simultaneously, running work-

station and mainframe applications side-by-

side. As the MCC evolves into the Control

Center Complex (CCC) for dual Space Shut-

tle and Space Station operations, the work-

stations and network will become the princi-

pal computing platform.

The current dual-configuration mode of op-

erations in the MCC has afforded flight con-

trollers an opportunity to prototype new op-

erations applications. Until recently these ef-

forts have focused on the development of real-

time monitoring and fault detection and diag-

nosis applications for individual flight control

disciplines. These efforts have been success-

ful in demonstrating the enhanced capabil-

ities provided by the distributed computing

platform. Moreover, they have encouraged

the pursuit of distributed applications which

span several flight control disciplines. These

distributed applications exploit networking

capabilities to provide inter-user information

sharing.

The new distributed computing model we

describe herein was created to support and

encourage this inter-user information shar-

ing. The information sharing protocol (ISP)

was designed to provide elegant computing

techniques which enable workstation applica-

tions to communicate with each other. This

protocol also supports inter-host communi-

cations on a heterogeneous platform comply-

ing with industry-standard operating systems

and networking protocols. Consequently, the

ISP provides users with a consistent commu-

nications interface for all of the various oper-

ations, training, and development platforms

they use in everyday business; lack of such

an interface has caused many problems in the

past.

There were several motivations that led

to the development of the ISP. First, there

has been a strong desire to reduce the man-

power required for real-time Space Shuttle

operations. This reduction in manpower ne-

cessitates the development of enhanced com-

puter programs which can perform many of

the real-time data monitoring, fault detection

and diagnosis, and planning tasks previously

performed by flight controllers. These de-

velopments have also spawned many projects

pursuing "intelligent systems" which meet or

exceed the flight controller's reasoning ca-

pabilities. Many such systems have already

been deployed in the MCC, but there are

many more of these intelligent systems ap-

pearing on the horizon. The potential for

these systems to capture precious spacecraft

operations expertise is a clear motivating fac-

tor in our work. Second, the increasing num-

ber of workstation programs being developed

to enhance operations has been accompa-

nied by a significant growth in software de-

velopment and maintenance costs. The de-

velopment of the ISP was meant to restrain

this growth by providing a package of dis-

tributed computing tools which support the

basic needs of all flight control disciplines.

These tools reduce both development and

testing costs. Third, the use of workstations

outside of the MCC has increased tremen-

dously over the last few years. Flight con-

trollers now find themselves performing many

of their mission preparation, training, and

software development tasks in facilities lo-
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cated in their officesor laboratories around
the center. Sincemany of the computer pro-
gramsthey usemustwork in all _f thesefacili-
ties, there is a strongmovementtoward stan-
dardization. This movementis encouraging
the use of industry-standard hardware and
commercially-developedsoftware to reduce
development and maintenance costs. The
ISP promotes thesestandards while provid-
ing a layer of customizable telemetry data
distribution tools for program development
in a heterogeneousfacilities environment.Fi-
nally, drawing from eachof these individual
motivations, we envision a tremendousutil-
ity in the deployment of distributed expert
systems. The ISP wasdesignedto provide a
mechanismfor theseexpert systemsto com-
municate with eachother.

2 Distributed

Computing

A distributed computing architecture is a

programming model in which computing re-

sources can be allocated in various ways.

Typically this involves a network of high-

performance workstations providing informa-

tion to a user. There are two predominant

models of how to distribute the available com-

puting resources. A client-server computing

model refers to a special case of distributed

computing in which an application is divided

into separate client and server processes. The

client process makes requests of the sever pro-

cess. The server process receives requests

from one or more clients and performs some

action on their behalf. Servers can provide

resource sharing by servicing many clients.

Frequently, the client and server pieces are

running on different machines; however, this

need not be the case. In a peer-to-peer com-

puting model, the distributed components of

the application act as independent equals,

communicating with one another to accom-

plish a common goal.

The distributed computing model realized

in the ISP reaps the benefits of both of these

models. At a global level, the goal of the

application is to distribute telemetry data to

flight controllers. In the client-server role, the

primary purpose of the server part of the ap-

plication is to process telemetry data from a

certain data source. The clients request this

processed data from the servers. In the peer-

to-peer role, the servers allocate computing

resources and communicate with one another

to provide their clients with data collected

from several data sources. The combination

of these models provides a system of cooper-

ating agents which supports a wide variety of

potential applications.

The user assigns each server to process

a portion of data available from the data

source. The server provides this data to its

clients on a change-only basis; i.e. a client

will receive data only when it changes from

its previous value. Since there are a variety of

data sources available, we have written a col-

lection of server programs each of which has

been uniquely outfitted to process a particu-
lar data source. The data sources include two

real-time data streams and various sorts of

recorded telemetry files. The server prepro-

cessing includes reading data from the data

source, performing noise filtering and other

preprocessing on the data, determining what

data has changed since the last cycle, and

then distributing the changes to the clients.

Each server is responsible for any time syn-

chronization and polling tasks.

The user may run clients that receive data

from the server and generate new results to

supplement the telemetry data. Therefore,

the servers also perform the task of reading

and distributing this client-synthesized data.

Clients that synthesize data for other clients

are said to be publisher clients, while clients

that request any sort of data are said to be

subscriber clients. Since each server "owns" a
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portion of the data source,the serverscan in-
teract in the peer-to-peerrole to acquiredata
for clients which subscribeto data ownedby
other servers.In this situation, oneserverbe-
comesa subscriberof another server. Along
with resourceallocation and data distribu-
tion, this techniqueprovidesa way to enforce
data security.

Although there areunique serversfor each
data source, the data sourceis transparent
to a client. Using the ISP, a client receives
data the sameway regardlessof where the
data originated. This feature provides a
high degreeof portability betweencomput-
ing platforms, and insulatesthe clients from
the nuancesof the data source. Essentially,
this meansthat a client program canbe de-
ployedagainsta variety of data sourceswith-

out change. This data-source independence

simplifies application program development

efforts and reduces the costs associated with

software testing and certification.

3 Design Considerations

This section describes a few of the considera-

tions we have made in the design of the ISP.

Most of these considerations reflect the moti-

vations established above, while others reflect

the specific nature of the telemetry data pro-

cessing problem. We discuss here only the

considerations which we believe to be Space

Shuttle-independent. Primarily, we discuss

the construction of our hybrid distributed

computing model by presenting the attrac-

tive features of the two underlying models.

3.1 Client-Server Model

The client-server model is the most influential

part of the ISP model. Using this model, we

separate the telemetry data source from the

client programs. We create server programs

to manage the data source and distribute pre-

processed data, and we create client programs

to do something useful with this informa-

tion. Usually the client programs perform

analysis of the information and display the

results to the flight controllers. This separa-

tion of tasks is crucial to the hybrid model:

it provides the cability to support a vari-

ety of data sources and various computing

platforms with the minimum number of pro-

grams; and it allows user to run various com-
binations of clients in servers in different con-

texts, such as playbacks or otNine simulations

and training cases.

The ISP servers provide information to

their clients on a change-only basis. This

means that the client programs may operate

in an event-driven fashion, instead of having

to poll the data stream continuously) When

new data is made available to the client, that

data is considered an interrupt "event" that

the program must handle. The client han-

dles this event by reading the data, process-

ing and perhaps displaying it, then return-

ing to its wait state to receive subsequent

events. This provides an efficient allocation

of computing resources and reduces the effort

necessary to build real-time computer pro-

grams. Furthermore, to make better use of

the distributed computing platform, we can

divide this effort among several functionally-

equivalent servers processing a different sub-

set of the full telemetry stream. By not ex-

traneously reprocessing the unchanged values

every second, each client realizes a significant

computational resource savings and, perhaps

more importantly, appears more responsive

to user interaction.

We assume that there will normally be

many servers running. Each server will pro-

cess a portion of the full data stream. At ini-

tialization time, the server assumes an owner-

ship which identifies those symbols from the

IHistorical Space Shuttle mission data shows that
during on-orbit operations only 10-15% of the 25,000
telemetry values change during any second.
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symbol dictionary that it becomes responsi-

ble for. The server will acquire and process

all of the symbols from the symbol dictionary

which have the same ownership as the server.

For example, the Propulsion (PROP) console

server started with ownership prop will ac-

quire from the data source all of the symbols

in its dictionary with ownership prop. All

PROP client programs need connect only to

a prop server; similarly all Guidance, Naviga-

tion and Control (GNC) console clients only

need connect to a gnc server, and so on.

Although the server's primary purpose is

to process telemetry data, the server is also

capable of processing and redistributing data

generated by publisher clients. This feature

is vital to distributed client applications, par-

ticularly fault detection and diagnosis appli-

cations, which intend to share their results

with other clients. Under the ISP, this dis-

tribution occurs when the publisher client

writes its results back to the server, which

enqueues the information for any subscriber
clients. Since the distribution mechanism is

the same for any kind of data, the ultimate

subscriber client will not be able to discern

where the data originated, i.e. from teleme-

try or from a publisher client, z

Finally, since the servers are meant to be

background tasks, they do not have user in-

terfaces. To provide server status informa-

tion and control features, we simply employ

a collection of client programs which act only

as user interfaces to their server. These user

interface clients don't subscribe for any data

from the server; instead, they read the server

log files for status information, and they send
W

the server control commands through packet

messages. Furthermore, this design embodies

an additional feature that the separated user

interface can converse with any of the servers

2In fact, we have built a server which does not
process a data source at all: it simply redistributes

information generated by its publisher clients. We
refer to this a.s a null data source server.

without modification.

3.2 Peer-to-Peer Model

Commonly, clients from one flight control dis-

cipline may need to process symbols "owned"

by another discipline. We perform this ex-

change with a server-to-server, or peer-to-

peer, interconnection. Fundamentally, this

means that one server defers requests for sym-
bols that it doesn't own to another server.

For example, if a PROP client program needs

access to some GNC telemetry symbols, the

prop server will defer requests for these sym-

bols to the gnc server. In this situation, the

prop server effectively becomes a client of the

gnc server. The gnc server will send the re-

quested data to the prop server, which in

turn will forward the data to the prop client

program. 3 This situation is depicted in fig-

ure 1. The ownership field in the symbol

dictionary provides some of the information

needed to establish this connection. Basi-

cally, it provides the name of the server which

publishes that symbol. Therefore, when a

client subscribes with its server for a symbol

published by a different server, that client's

server looks for the publishing server running

somewhere on the network. The ISP network

registration service (NRS) is employed to per-

form this search. Once connected, the defer-

ring server forwards the symbol subscription

to the peer server, while the peer server regis-

ters the deferring server as its client. Symbol

values will flow from the peer server to the

deferring server then on to the client. We

use this process to perform data security: by

requiring configuration management of the

symbol dictionaries, we can prevent clients

from subscribing to symbols that. they aren't

authorized to receive.

3Note that although they are independently pro-
cessing different information, these two server pro-
cesses are instances of the same program that were
given different ownerships at run time.
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GNO Parm

PROP Parm

Telemetry

Figure 1: Inter-operator data distribution model. The PROP client can receive both PROP

and GNC telemetry data, but it must acquire the GNC-owned data indirectly from the GNC

server.

Telemetry LAN

Figure 2: A distributed-resource situation. The DPS flight control discipline allocates a

special server to the task of processing fault detection messages generated by the spacecraft

software. This server distributes these messages to DPS clients directly, and to the PROP

clients through a peer-to-peer connection.
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These peer-to-peer connections also are

important because they manifest how the

model achieves global data processing. All

of the processing necessary to make a par-

ticular data value "useful" can be performed

by the server or client that "owns" that

symbol. All other clients which may need

the data, but don't own it, do not need

to duplicate the processing; they simply re-

quest it from the owner. This feature es-

sentially replaces the centralized computing

feature which performs all of the data pre-

processing before passing the data on to user

applications. 4 This enables a wide variety

of distributed resource allocation schemes in

which each server provides a different data

processing function. Figure 2 suggests one
such distributed-resource situation.

3.3 Implementation

In realizing this protocol we have employed

many industry standards. Primarily, we

allow Unix do the things it was meant

to do, such as managing resources. We

use the TCP/IP protocols for network ser-

vices, and we use point-to-point connection-

oriented stream sockets for interprocess com-

munications. Since the majority of our facili-

ties employ the X-Windows system, we mimic

certain facets of the X toolkit. Each ISP

event has an associated enumerated type def-

inition uniquely identifying that event. Many

events also have associated data structures

containing event-relevant information, such

as a telemetered sensor value and time stamp.

All of the events are distributed via message

packets. Each message includes a header and

a body, and the body can be of arbitrary

length. Like the X toolkit, the ISP toolkit

provides a callback mechanism whereby the

4This is particularly important for data that is
limit-sensed in some manner. The owner of the data

applies the proper limits before forwarding the results
to subscriber clients.

programmer can register a series of functions

to be called automatically upon arrival of

a given event packet. Each registered in-

stance of a callback function can have unique

callback data to be passed to that function

through the argument list. Essentially, this

implementation allows programs built around

the X protocol to use the same processing

logic for "data" events that they use for "dis-

play" events.

When a client wishes to establish a session

with a server, a variety of information must

first be exchanged (figure 3 depicts the event

exchanges). The client opens a socket connec-

tion with a server, then issues a connection-

request event to it. If the server receives and

accepts the connection request, it will reply

with a connection-accept event. Upon receiv-

ing the connection-accept event, the client

submits a series of subscription requests for

all of the symbols it wants to process. The

server validates all of these subscription re-

quests and updates its internal symbol tables.

When the client is done submitting subscrip-

tion requests, it sends an event to enable the

data stream. The server will then begin is-

suing data-change events to the client as its

symbol values change. The client will receive

these events and process them, possibly send-

ing some synthesized data back to the server

for publication. When the session has com-

pleted, the two programs exchange disconnec-

tion events to gracefully terminate communi-

cations and release resources.

4 Distributed Expert

Systems

Some of the most exciting applications of

the ISP technology lie in the support of dis-

tributed expert systems applications. Tra-

ditionally, these distributed expert systems

have required that each component employ

the same inference engine or expert system
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Figure 3: Client-server event exchanges.

shell. Using the ISP, however, we overcome

this limitation by establishing a common in-

terface enabling these expert system compo-
nents to communicate with each other. Fur-

thermore, since the ISP message packets can

contain arbitrary data, a variety of informa-

tion can be communicated. The information

can be a sensor reading, a CLIPS fact, the

results of a simulation or analysis, a fault

message, and so on. These features promote

a gradual development of heterogeneous dis-

tributed expert systems using the most ap-

propriate inference engine or shell for the

task.

Using the ISP, we have already begun to

deploy some exciting distributed expert sys-

tem applications for the CCC. We summarize

a few of the highlights below:

these procedures, and adapting them to

new situations. The PRS agents con-

verse with each other in a peer-to-peer

fashion, distributing the workload and

knowledge bases according to the var-

ious tasks being performed by the ap-

plication. These agents exchange infor-

mation on a change-only basis, updating

each other's data bases and contexts in

order to monitor and control the behav-

iors of the physical system. Using the

ISP, we empower sophisticated fault de-

tection and analysis programs to provide

status information to the PRS malfunc-

tion management systems, and provide

an interface through which we merge

PRS results into conventional telemetry

displays.

PRS We have already deployed the ISP

within prototype applications of the Pro-

cedural Reasoning System (PRS) [1, 2].

PRS is a real-time, multi-agent reasoning

system capable of monitoring and con-

trolling complex physical systems. The

PRS development work performed for

NASA has focused on the problem of

handling spacecraft malfunctions and ex-

ecuting diagnostic procedures, assisting

the operator in monitoring execution of

VISTA Working with the Vista project

team at the Rockwell Science Center

Palo Alto Laboratory, we are develop-

ing an integrated decision-theoretic ap-

proach to the problem of managing the

complexity of displays used in high-

stakes, time-critical decision contexts [3,

4]. As a side effect of this effort, we

have also employed the same belief net-

work and utility models we use for dis-

play management for the problems of
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fault detection, diagnosis,and ideal ac-
tion selection. By using the ISP to
distribute the results of these models
amongvarious applications,we are able
to build integrated decision-makingsys-
tems based on probability and utility.
For example, we can distribute the re-
sults of decision-theoreticmodelsto win-
dowmanagerclients to automatically se-
lect the optimum collection and configu-
ration of displays for the human opera-
tor, therebymaximizing thepresentation
of relevant information while minimizing
irrelevant clutter. We canalsodistribute
the results of the various action mod-
els to the Flight Director, who integrates
theseactions within the current context
into a prioritized list of actionsfor the
astronauts or ground crews.

SELMON We are working with the JPL
selectivemonitoring (SELMON) project
team to integrate SELMON techniques
within the distributive computing mod-
els [5, 6]. SELMON provides a collec-
Lion of sensor importance measures to

determine which of the observered sen-

sor values contain the most interesting

information. There currently are seven

sensor importance measures that can be

applied to each value. The four empiri-

cal measures, surprise, alarm, alarm an-

ticipation, and value change, can be ap-

plied directly within the ISP servers as

part of the preprocessing, providing a

relative information content "score" to

each changing sensor value. This score

is passed along with the sensor value to
the clients. The three model-based mea-

sures, deviation, sensitivity, and cascad-

ing alarms, are excellent candidates for

client-based calculations which can be

redistributed through the servers. Since

it is then left to the consumer clients to

deal with this relative information score,

we can gradually deploy this additional

information within the clients as they

become more "intelligent." For exam-

ple, we can use color changes to attract

attention to sensor readings with high

scores, directly influencing the user's

decision-making efforts while monitoring

component behaviors. We can also ac-

cumulate aggregate scores for entire dis-

plays, based on the accumulation of in-

dividual sensor scores, and prompt the
user to concentrate his attention on that

display because it contains more interest-

ing information than others. These tech-

niques fall nicely in line with the auto-

mated display management ideas of the

Vista project. This work also is provid-

ing a substrate for the follow-on diag-

nostic reasoning embedded in monitor-

ing (DREMON) project currently being

pursued at JSC.

Beyond these few examples, there are also a

variety of other distributed expert system ap-

plications, in various stages of development,

which assuredly will benefit from a common

cpmmunications protocol.

5 Information

We encourage questions and comments about
the ISP from both inside and outside the

spacecraft operations community, as we hope

to diversify into other application areas as we

continue our refinement of this distributed-

computing protocol. For more information,

or to obtain the latest ISP source and pro-

gram distribution, contact the authors at

NASA/Johnson Space Center, Mail Code

DF6, Houston, TX, 77058, or send elec-

tronic mail to barry©rpal.rockwell.com,

nunikls©j scprofs, nasa. gov or nunispw©-

j scprofs, nasa. gov.
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