A Distributed Content-Based Search Engine Based on
Mobile Code

Volker Roth Ulrich Pinsdorf Jan Peters
Fraunhofer IGD Fraunhofer IGD Fraunhofer IGD
Germany Germany Germany

vroth@igd.fhg.de

ABSTRACT

Current search engines crawl the Web, download content, and di-
gest this content locally. For multimedia content, this involves con-
siderable volumes of data. Furthermore, this process covers only
publicly available content because content providers are concerned
that they otherwise loose control over the distribution of their in-
tellectual property. We present the prototype of our secure and dis-
tributed search engine, which dynamically pushes content based
feature extraction to image providers. Thereby, the volume of data
that is transported over the network is significantly reduced, and the
concerns mentioned above are alleviated. The distribution of fea-
ture extraction and matching algorithms is done by mobile software
agents. We give a description of the search engine’s architecture,
quantitative evaluation results, a discussion of related security is-
sues, and a summary of a simulation study in which our retrieval
system was evaluated in an electronic commerce scenario from the
perspective of German law.

Keywords

Content based retrieval, distributed search engines, mobile agents,
images

1. INTRODUCTION

The availability of vast amounts of multimedia contents in the
Internet requires sophisticated means for searching and retrieval.
Current search engines are generally based on a centralized gath-
erer which traverses the hyperlinks of the World Wide Web starting
from known entry points, and which retrieves and digests all rel-
evant data found. This approach has two disadvantages: (a) it is
data intensive, and (b) search engines cover only contents which
are freely available for download. One might argue that transfer
volume is not an issue because ample bandwidth is available on the
Internet backbones. However, edge networks generally pay consid-
erable penalties if they exceed their transfer volume quotas. They
have an interest not to exceed their quota and to keep it as low as
possible. Search engines should be designed to honor this desire.
The second disadvantage results from the fact that commercial con-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

SAC' 04 March 14-17, 2004, Nicosia, Cyprus

Copyright 2004 ACM 1-58113-812-1/03/04 ...$5.00.

ulrich.pinsdorf@igd.fhg.de

jan.peters@igd.fhg.de

tent providers loose control over the distribution of their intellec-
tual property, once the search engine downloads it. Consequently,
providers offer local searches and the number of algorithms they
provide is likely limited.

In this paper we report on our distributed search engine proto-
type, which pushes content-based feature extraction (and optionally
feature comparison) to the edge networks, and which can allevi-
ate the aforementioned intellectual property concerns. The search
engine is based on mobile software agents (see e.g. [1] for an in-
troduction to mobile agents). The benefits of mobile agent based
feature extraction are:

e Multiple image sources can be processed in parallel. Each
image source contributes to the processing power required to
extract salient image features of its images.

e Multiple (e.g., composable) feature extraction and compari-
son algorithms can be deployed concurrently and easily.

e Feature vectors are generally more compact than images,
therefore less data must be transported from image sources
to the gatherer.

e Feature extraction takes place at the image source. The im-
ages must not be exported from it, and original images gen-
erally cannot be reproduced from the feature vectors.

The achievable amount of parallelization and the reduced data
transfer volumes have a significant positive impact on completion
time of the feature extraction process. Disadvantages of the mobile
agent based search engine are:

e Image sources have to set aside computing resources for fea-
ture extracting agents.

e Running mobile code on a server poses a considerable se-
curity risk. Therefore, security of the mobile agent middle-
ware is an essential requirement for the practicality of the
approach.

We built our search engine prototype on the experimental mobile
agent server SeMoA? [2]. Although SeMoA supports a rich set of
security features, we do not claim that its security is perfect — the
fact that it is programmed in Java alone renders it vulnerable to a
variety of Denial of Service (DoS) attacks [3]. However, SeMoA
provides a rich set of cryptographic features to protect the data
of agents (e.g., collected images) against disclosure on untrusted
hosts, and an architecture that emphasizes separation of agents.
The basic concepts of mobile agent based image search engines
have been mentioned by several authors before [4, 5, 6, 7] but have

'Seee.g., http:// ww. serpa. or g

not yet been addressed in sufficient detail and in the context of a
practical system. In this paper, we contribute a more nuanced dis-
cussion of operation modes, a quantitative analysis of the benefits
of our search engine, and a summary of a legal field study that was
conducted with it.

2. CONCEPTS AND ARCHITECTURE

There does not seem to be a universal understanding when a pro-
gram crosses the border to agent-hood. Software agents are often
defined as being reactive, autonomous, goal-oriented, and contin-
uous [8] though further attributes exist. Mobile agents have the
ability to relocate — at some point of their execution they can halt
and initiate a migration to some distant host where they resume
execution. During migration, an agent’s program as well as its cur-
rent execution state and accompanying data is transported to its new
host. When and where an agent migrates is part of the agent’s pro-
gram. In general, mobile agents rely on an infrastructure of mobile
agent servers which handle agent transport, setup and deinstalla-
tion. What mobile agent technology brings to bear on the problem
of image indexing and retrieval is easy means of software distribu-
tion. Briefly, mobile agents provide a flexible and easy mechanism
to transport content-based feature extraction and matching algo-
rithms to the source of the images rather than vice versa. The im-
pact on network utilization and scalability if profound — instead of
putting the burden of gathering contents completely onto the shoul-
ders of a centralized gatherer and its connected network interface
the load is shared among the gatherer and the image servers and all
image servers can be indexed in parallel.

Below, we illustrate two slightly varying models of image search
engines based on mobile agent and content-based retrieval tech-
nology. The first model resembles an optimized gatherer which
still has a central repository of feature vectors (though feature ex-
traction is done remotely). We refer to this model as the gatherer
model. The second model keeps a distributed index and no data
needs to be shipped over the network during indexing. We refer to
this model as the incubator model.?

2.1 The Gatherer Model

The gatherer model consists of a central image broker, several
image servers, index agents, search agents, and fetch agents. The
image broker dispatches index agents which transport feature ex-
traction algorithms to one or more image servers. On these servers,
the index agents extract relevant feature vectors from local images
and send or take image entries back to the image broker. At the im-
age broker, all image entries are inserted into the central index (see
Fig. 1 for illustration). Each image entry consists of a feature vec-
tor, the URL pointing to the host where the image was retrieved, an
image ID that uniquely identifies the image at the image server, an
optional thumbnail, and optional further information on the image
such as its size.

Based on the index data, image brokers can either serve requests
in a client/server fashion, or they can support mobile agent queries
as follows. A client sends a search agent to the broker which
queries for similar images by means of an example image, a sketch,
a prototypical image, or a feature vector which is extracted from ei-
ther of these query images. The query result consists of extended
image entries which contain the normalized distance between the
query and the entry’s feature vector in addition to the entry itself.
The search agent transports the result set back to the client who

2Incubator: “A place or situation that permits or encourages the for-
mation and development, as of new ideas.” The American Heritage
Dictionary of the English Language, Fourth Edition

selects images for retrieval based on the included thumbnails, or
refines the query (e.g., by means of relevance feedback). Once an
image is selected for retrieval, the client sends a fetch agent that
migrates to the server on which the image is stored (directed by
the URL which is stored in the image entry) and retrieves the im-
age based on the image ID also contained in the entry (see Fig. 2).
This can be accompanied by a negotiation phase in which agent and
image provider agree e.g., on licensing terms and the payment of
license fees.

The transfer volume savings of this model are proportional to the
compression factor of the feature extraction algorithm. A constant
overhead incurs because the feature extraction algorithm must be
transported to each image server. On the other hand, only one net-
work connection request is required for transporting the agent com-
pared to one connection per image in the case of ordinary gatherers
(unless the gatherer and the image server support sessions). Con-
tent providers retain control over their intellectual property because
only feature vectors are exported, from which the original image
generally cannot be reproduced in high quality.

2.2 The Incubator Model

The incubator model can do even better than the optimized gath-
erer model. In the incubator model, one index agent per image
server is dispatched and takes residence at the image server. There,
it extracts features as previously described but sets up an index di-
rectly at the image server (see Fig. 3). The index agent may also
monitor the local image repository for changes, and it can update
its index accordingly and incrementally. Based on its index the
index agent serves queries of search agents which visit the image
server. On each image server, the search agent merges previously
collected results with the results of its local search, and prunes the
overall number of results e.g., to a user-defined maximum number,
unless security considerations take precedence (see also §5). The
distance metric must be normalized so that the pruning is accurate.

The only communication between the broker and the index agent
is a short notice that the computation of the index is completed and
the index agent is ready to provide service to search agents. The
image broker is still a central point of access but it resembles more
a yellow page server. It refers search agents to the image servers
where index agents reside (see Fig. 4) Once the client selects an
image for retrieval, the process continues as in the gatherer model.

Additionally, brokers may launch search agents on behalf of a
client e.g., if clients do not use mobile agents but access the broker
e.g., through a Web interface).

2.3 Comparison of Concepts and Benefits

The advantage of the gatherer and the incubator model over tradi-
tional centralized image repositories is that processor and memory
consumption is shared between the image providers whose contents
are processed, and the broker. Network utilization is considerably
lower in both mobile agent based models than it is in the traditional
approach, and the feature extraction process completes consider-
ably faster as a consequence of parallelization. None of the two
models export image contents to third parties.

The gatherer model is still somewhat centralized. Queries are an-
swered by the broker. If the number of images is huge then the fea-
ture collection is likewise huge. Hence, while the gatherer model
improves the process of index compilation it does not significantly
improve the query process. Finally, if the broker fails then the en-
tire service becomes unavailable.

Searching is less efficient in the incubator model than it is in
the gatherer model because all image servers must be visited by
the search agent in turn before the query results are shown to the

Figure 1: (Gatherer model) The broker (B) dispatches feature
extraction agents (denoted as triangles) to the image sources (I).
Once the agents completed extracting the features of all images,
they carry the feature vectors back to the broker.

Figure 2: (Gatherer model) The client (C) sends a search agent
to the broker (B), which retrieves image entries of similar im-
ages, and transports the entries back to the client. The client
selects images for retrieval, which are subsequently collected
from the image sources (1) by the fetch agent.

Figure 3: (Incubator model) The broker (B) dispatches feature
extraction agents (denoted as triangles) to the image sources (1).
Once the agents completed extracting the features of all images,
they register a feature comparison service at the image sources.

Figure 4: (Incubator model) The client (C) sends a search agent
to the broker (B), which retrieves a list of image sources, and
searches them in turn (dashed lines). The client selects images
for retrieval, which are subsequently collected from the image
sources (1) by the fetch agent.

incoming | runtime/
listen pipeline sandbox
ry A

.| outgoing
" | pipeline | send
A

Y Y Y

filters services filters

Figure 5: The middleware runs a daemon which listens for in-
coming agents. Each agent is piped through several filters be-
fore it is admitted to the runtime system where it can access
services by name. Agents can register and retrieve services by
name (subject to access control). Before migration, each agent
is piped through outgoing filters again.

user. Although this can be alleviated by sending multiple search
agents in parallel. However, the yellow pages maintained by the
broker are much smaller than a full index of feature vectors, and
they change less often then an index.® Therefore, replication (e.g.,
by caching or by fail-over servers) can be implemented easier and
more efficiently than this would be possible in the gatherer model.

The incubator model is particularly useful if image providers
(who offer a broad range of images) team up with image brokers
(who distribute specialized retrieval algorithms). Hence, the image
broker may act as a well-known portal site with a focused market-
ing that addresses a specific target audience. The relationship be-
tween providers and brokers can be many-to-many, and their busi-
ness relationships can be fluent and flexible. The advantage is that
both parties can concentrate on their core competencies. Image
provider specializes on content provisioning, and the image broker
specializes on retrieval technology and retrieval services.

Both models (the gatherer and the incubator model) can support
multiple content-based retrieval mechanisms in parallel (in addi-
tion to queries based on annotated information such as the name
of photographer or painter, the year of production, or the price of
licensing the image for specific uses). Image servers can accept
more than one index agent at the same time and search agents can
compute the intersection of multiple distinct result sets based on
the URL and image ID of each image entry.

2.4 Architecture

Both the gatherer model and the incubator model resemble an
application-level architecture which is built on top of the same mo-
bile code middleware. We illustrate the principal architecture of
this middleware in Fig. 5. Agents are received by suitable net-
work daemons, and they are injected into a pipeline of filters which
perform various security services and security checks on incoming
agents (see also §5). If an agent is admitted to the server then it
may publish or retrieve service interface objects subject to access
control restrictions. Upon termination, the agent is again processed
by a filter pipeline and is subsequently migrated to its next hop.

Services are published in a hierarchical name space, which sim-
plifies the grouping of services and the definition of access control
policies. Agents may publish services dynamically at runtime or a
server may publish services statically at boot time. For instance,
an image broker provides a static index service that his agents (and
only his agents) can access in order to merge collected feature vec-
tors with previously collected ones. The image broker also pub-
lishes a static finder service which, on input of a query, returns
matching image entries. This service is backed by the index service
(as illustrated by the horizontal arrow in Fig. 6) but restricts ac-

3Image providers regularly add content but if a server is added or
removed from the system then content is added or removed as well.

private public

|
| index |<—| finder |

shop
Licenses
- user icq, pic
Watermarking userl Eicl piC2
2 3
broker %

Figure 6: Agents can publish and retrieve services in a hierar-
chical name space. For instance, an image provider publishes
the pics service under the path “/public/pics”. The pics service
iterates image names and thumbnails without restriction, but
retrieves full quality images only if it is invoked by an agent
whose owner has purchased a license. Agents can negotiate and
purchase licenses on behalf of their owners by the shop service.

cess to the index to a limited set of operations and can therefore be
made accessible to search agents (by placing it in the public area of
the name space). In the incubator model, an index agent publishes
the finder service dynamically at the image provider, and it keeps a
private (unpublished) index service to back its finder service.

Image providers publish the static pics and shop services. The
pics service iterates image IDs (e.g., a locally unique image name)
and thumbnails without restriction, but retrieves full quality images
(based on the image ID) only if the owner of the invoking agent al-
ready purchased a license for the image in question. In this case, the
pics service may also embed the client 1D as a digital watermark®
into the retrieved image so that unauthorized usage of copyrighted
material can be traced. Clients (resp. their agents) can negotiate
and purchase licenses by the shop service. (While the shop service
and corresponding license verification is a conceptual component
of our architecture we have not yet implemented nor modeled it.)
Brokers can purchase a license for all images for the purpose of in-
dexing (presumably at a low price and under the legally important
condition that no full quality images are illicitly exported). Alter-
natively, image providers can grant brokers access to their images
based on prior offline agreement.

The pics service provides a simple and sufficient interface so that
feature extraction algorithms can iterate and extract features from
existing images, irrespectable of the heterogeneity of deployed im-
age databases (e.g., the schema of the database or the fact that im-
ages are simply stored in a file system).

3. PROTOTYPE IMPLEMENTATION

The prototype implementation is based on on the Secure Mobile
Agents (SeMoA) middleware [2] and uses Color Coherence Vec-
tors [10] as feature extraction and comparison algorithm. Feature
vectors consist of 128 float values; each vector is computed as fol-
lows: the image is blurred using a simple 3 x 3 convolution filter
which averages the color values of all horizontal and vertical neigh-
bors of the filtered pixel. The blurred image is then quantized to a
color space of 64 colors. In the last step, the pixels of the image

4put simply, the term “digital watermarking” refers to stegano-
graphic means of embedding copyright markers in multimedia data
so that the marking is imperceptible, undetachable, as well as ro-
bust against a variety of adverse and inadvertent manipulations of
the media such as lossy compression, format conversion, et cetera.
See e.g., [9] for an overview over digital watermarking.

are classified into coherent and incoherent pixels. Coherent pixels
are pixels which are part of a horizontally and vertically connected
pixel area of the same color whose size exceeds a certain threshold
7 (a fixed percentage of the total image area). Incoherent pixels
are pixels which are not coherent pixels. For each of the 64 col-
ors, the coherent and incoherent pixel counts are summed up sep-
arately and normalized with regard to the total image area. This
results in a 128 dimensional vector. The L, distance is taken as
a measure of similarity between two color coherence vectors. Let
((h1,h1), ..., (hn, hy)) be a color coherence vector where h; is
the percentage of coherent pixels of color ¢ and h; is the percent-
age of incoherent pixels of color 7 then the L, distance is defined
as: |h— R =37 ,(] hi —hj | + | hi — A} |). The Color
Coherence Vector algorithm has the advantage that it is easy to im-
plement, reasonably fast, and achieves a high compression rate.

Images are reduced to a vector whose encoding is less than 600
bytes. For feature extraction algorithms whose output has a length
comparable to the size of the images no volume transfer savings are
achieved. Although in this case the processor utilization is still dis-
tributed among the image servers (this results in a speedup linear
in the number of image servers, given a uniform distribution of im-
ages). Here, we assume that number of search engines < number
of image servers.

The graphical user interface of the demonstrator is shown in
Fig. 7. The left view shows the panel which is used to launch index
agents. From a list of known servers, a subset can be chosen. On
pressing the button titled start indexing, index agents are created
and dispatched to each selected server. On the target server, each
index agent looks up the pics service which must be registered in
the target server, and starts the feature extraction process. Upon
completion, it publishes an instance of the finder service in the tar-
get server, which search agents can look up and query.

The middle view shows the panel which is used to dispatch
search agents. Again, a number of servers can be chosen from a
given list. The search agent takes a user-provided example image
(which can as well be a sketch or prototypical image), hops in turn
to all selected image servers, and collects image entries with a dis-
tance less than a given threshold and up to a given maximum num-
ber. The overall best matches (thumbnails but not full images) are
reported back and presented in the results panel.

The results panel shows the retrieved thumbnails and each en-
try’s distance to the query image. If the user clicks on a thumbnail
then a fetch agent is created and dispatched to the host where the
image was retrieved, and returns the corresponding full image. The
check box in the lower left corner of the results panel enables se-
cure retrieval. If it is checked then retrieved images are transported
in encrypted form as explained in [11], see also §5.2.

Although we implemented only one feature extracting and
matching method so far, the interfaces are designed to support
multiple and alternative implementations transparently. All imple-
mentations have been developed in the Java programming language
(Java Version 2).

4. EVALUATION

In the incubator model, no feature vectors must ever be trans-
ported over the network. Therefore, a quantitative evaluation of
this model is superfluous. We evaluated the gatherer model of our
prototype for small sets of images in order to get a general idea of
the potential savings that can be achieved by mobile agents com-
pared to conventional client/server approaches. The setup of the
experiments favored the conventional approach so that our results
remain conservative. In practice, we expect that the relative per-
formance of mobile agents is better. We used the hardware and

= CBR | - |l

Select image 1o search for:

Shomeiqrothilibrangimagesichrisanjuanalmage0s jpg

Display image

= CBR | -]

resuns|

Image0s.jpg

Distance: 0.0

Chivose image ||

L=

Select serversto index:

raw/feentaurys 39999
rawfiphoenix: 399949
raveffaltair 39666

|

4|

Salact servers to search:

Tn:c\:c\:c\.:cx. R

p- | Image35.jpy
| Distance: 0.2759905

Ramove Serveris) ||

Options

Start indexing rawcifcentaurs:39999
rawefiphoenix: 39899

ravifaltair 39666

| *

= Image34.jpgy

4

Adlid a new server to list:

| Start searching |

‘Distance: 0.32694265

| Add server

1 new url(s) added

| »

1 new url(s) added
1 new url{s) added

GEREZ

I

Imaged7.jpg

<]

il s
|

7] enable secure retrieval

Nistance: (34031454

Figure 7: Three shots of the prototype GUI. The panel used to launch index agents is left, in the middle is the panel used to start
search agents for a given example query image, and the panel which shows the query results after the search agent returned is right.

software given below in our evaluation:

e 1 x Pentium Il mobile, 1.2 GHz, 512 MB, FreeBSD 4.7,
running Java Version 1.4.1 under the Linux emulation.

e 9 x Sun Ultra 5/10, 500 Mhz (UltraSPARC-lle),
SunOS 5.8/5.9, 256 MB-512MB, running Java Version 1.4.1,
Apache Server Version 1.3.

e Switched Fast Ethernet (100 Mbit/s)

The nine computers we used were connected by our institute’s
LAN, which consists of several hundred workstations and PCs, and
which is accessed by more than 150 research assistants and count-
less students (although we did our tests a weekend to reduce distor-
tion of measurements due to regular use of the network).

We first measured the performance of the conventional approach.
A simple client program loaded and extracted the features of all im-
ages, with a varying number of image sources. The client was pro-
grammed in the Java programming language; it ran on the 1.2 GHz
Pentium I11 laptop, it used three threads per image source in paral-
lel to optimize 1/O utilization (we found by experimenting that this
gave the best results), and it was based on the same code that was
used by the mobile agents in subsequent testing.

The image sources consisted of 8 Apache servers, each of which
ran an Apache server with 48 images. All images were in JPEG
format with a resolution of 756 x 504 pixels, and were loaded by
the Apache server from the built-in hard drive. The size of images
varied from approximately 280000 to 456000 bytes, depending on
the JPEG compression rate. Each experiment was done three times
to observe variances.

In the measurement of the mobile agent performance each Sun
hosted a mobile agent server. The ninth Sun (without images)
played the role of the broker. The other Suns were configured with
a simple service that allows to iterate picture names and to retrieve
image data for an image with a given name. Again, all images were
loaded from the built-in hard drive.

In experiment one, we launched a mobile agent on the broker.
This agent migrated to image server one, extracted the features of
all images, transported the image entries back (excluding thumb-
nails), and merged the image entries with the broker’s central in-
dex. In the second through eighth experiment, we launched two
to eight agents in parallel which performed the same operations on
the additional image servers. In each experiment, we measured the
time from starting the first agent until the last agent returned and
completed its task. Again, we repeated all experiments three times.

We also measured the sums of sizes of all image entries (includ-
ing overheads for the agents) transported per experiment. Compar-
ison of all collected results shows significant savings in favor of the
mobile agent approach, as could be expected (see Fig. 8 and 9, min
and max values deviate so little from the median and mean values
of the client/server and mobile agent measurements that the error
bars are hardly noticeable in the graphs).

5. SECURITY CONSIDERATIONS

It has been argued that mobile agents achieve a greater level of
control over the media being searched on [4]. This is only part of
the truth, though. In practice, various covert channels [12] as well
as direct means of cheating can be used e.g., by malicious index

240 T T T
220 | client/server - |

200 L mobile agents ------- 1

180 |
160 |
140 |
120 |
100 |
80 -
60 -
PTo N Raiy gl bl LEEEE SELLET CEERIT SISt L ol

20

Seconds

1 2 3 4 5 6 7 8
Number of servers

Figure 8: The time that the client/server based gather needs to
complete the feature vector collection task vs the time required
by the mobile agent approach (measured from starting the first
agent until completion of the last agent). The point of intersec-
tion is the break-even point at which the additional overhead
of shipping and setting up mobile code is amortized by the re-
duced network utilization of the mobile code approach.

agents and colluding search agents to subvert image export restric-
tions. The billing schemes proposed by Belmon and Yee (which
account for projected losses due to covert channels) punish thieves
and ordinary clients likewise and will hardly be accepted. Still, us-
ing e.g., the incubator model can improve confidence that image
contents are not exported illicitly from image servers. Evidence of
pilfering images on the part of index agents can be established by
reverse engineering the agents’ code, if it comes to the worst. Se-
MOoA requires that each sender of an agent digitally signs the static
parts of his agent (including the code), which establishes a non--
repudiable proof of ownership. This signature yields a unique and
unforgeable agent kernel. Furthermore, each server must sign the
entire agent before transport. This signature binds the new state of
the agent to its kernel and protects the agent against tampering dur-
ing transport. Thereby each server documents its responsibility for
any state changes that the agent may have undergone while being
hosted by it (see Fig. 10 for an illustration of signatures).

5.1 Host Security

For practical purposes it is essential that agent servers are pro-
tected against attacks by malicious agents. Agents must not be able
to disrupt or otherwise negatively effect the operation of an image
server or other agents hosted by it. For mobile agent servers based
on Java this is currently an elusive goal — the Java runtime system
is vulnerable to a variety of denial of service attacks [3].

However, SeMoA makes a best effort to protect the runtime sys-
tem against malicious code, and provides pluggable bytecode filter-
ing and arbitration modules. Before a class is loaded into the name
space of an agent each module may inspect, reject, or instrument
the bytecode of that class. Currently, SeMoA includes a module
that rejects classes which e.g., override the f i nal i ze method, a
well-known and simple way to attack the garbage collector thread
of the virtual machine (a more subtle variant of this attack may be
directed at the cl ose method of some 1/O classes). The same ex-
tension mechanism can be used to add resource control by bytecode
arbitration [13] as well as additional security checks.

160
140
120
100
80
60
40
20

L T
mobile agents ==-X---
client/server

Megabytes

1 2 3 4 5 6 7 8
Number of servers

Figure 9: The amount of data transported of the network in
the client/server based gatherer vs the mobile agent approach.
The client/server graph is plotted based on the size of all down-
loaded images times number of servers. The graph of the mo-
bile agent approach has a slope which is too small to be notice-
able compared to the upper graph.

Each agent is run in a separate name space with a separate class
loader and in a separate thread group. A special security manager
filters and sorts newly created threads so that for instance threads
of the Abstract Window Toolkit are not accidentally placed in the
thread group of an agent. Marshalling and unmarshalling is done by
the initial agent thread from within the agent’s sandbox so that an
agent cannot exploit callbacks in the Java Serialization Framework
to take over server threads. The server transports an agent only
after all threads of that agent have terminated, which prevents the
adverse or inadvertent creation of clones or zombies.

Once running, an agent may publish and retrieve service objects
(such as the finder service) by name in the server’s object reg-
istry if the agent has appropriate permissions. Published objects
are automatically wrapped in a proxy object which is created dy-
namically. The proxy prevents uncontrolled aliasing of the service
object and automatically invalidates references to it if the agent ter-
minates. This makes the service object available for garbage col-
lection. Agents cannot share classes (by virtue of separate name
spaces the classes would not be type-compatible) but they may
share interfaces for the purpose of method invocation and commu-
nication. However, two interfaces are shared across name spaces
only if their implementations are mapped to the same image by a
cryptographic hash function. In such a case, a superordinate class
loader assures type-compatibility.

Before an agent is loaded and run, it must pass a configurable
pipeline of pluggable filter modules (see also Fig. 5). Each fil-
ter may reject the agent in the case of errors. SeMoA provides a
variety of security related filters some of which transparently han-
dle digital signatures, certificate chain validation, and encryption
of subsections of an agent. Agent transport is possible both in the
clear and over a mutually authenticated Secure Sockets Layer (SSL)
connection. A schematic illustration of SeMoA’s security architec-
ture is given in Fig. 11.

5.2 Protection of Mobile Code

An agent must likewise have means of protecting itself against a
malicious host as soon as for-profit services are involved. If search

kernel, signed by owner
signed by sender

mobile agent @

Figure 10: A mobile agent consists of static data (which does
not change during the agent’s lifetime e.g., code and a random
agent ID) and mutable state. The owner assumes responsibil-
ity for her agent by signing its static part (the kernel), and the
most recent host of an agent signs the entire agent to assume
responsibility for the agent’s most recent state.

Dynamic proxy
generation, agen
encapsulation

Transport layer security— .

Content inspection &
filtering, digital signatures

Dynamic bytecode
filtering & arbitration

Figure 11: The security architecture resembles an onion.
Agents have to pass all layers successfully to be admitted to the
system. The outer layers keep threats out of the system. The
innermost layer encapsulates and confines agents.

agents pass by multiple competing image providers there is a cer-
tain chance that a provider does not play by the rules. One possible
attack that a dishonest provider may launch on an agent is to ma-
nipulate the accumulated search results or to replace or degrade the
quality of images retrieved from a competitor. Thereby the perpe-
trator increases the likelihood that images are purchased from him
the next time. Other attacks involve tampering with the agent’s
code in order to alter its negotiation strategy, decision making, or
simply to cause harm at the servers of competitors.

SeMoA prevents tampering with the code by requiring that code
must be digitally signed. Any such tampering invalidates the kernel
of the agent and hence the agent subsequently fails to “speak on
behalf of its original owner.” Tampering with accumulated images
is prevented by establishing encrypted subsections in the agent so
that each subsection can be accessed only by the agent’s owner and
by hosts that he authorizes [11]. For instance, the fetch agent is
programmed so that it stores each retrieved image in the section
that is dedicated to its current host. This section is automatically
encrypted by the encrypt filter when the agent departs.

This setup has a drawback, though. Agents cannot access results
that they collected prior to reaching the current host (these results
are encrypted and by assumption the current host does not have
a matching private key). This prevents an agent from pruning its
accumulated results e.g., to a fixed upper number of overall best
results (we referred to this problem in §2.2). One workaround is
to program agents so that they regularly migrate to a trusted and
authorized host where the agent can access and prune all results
that have been accumulated up to this point.

5.3 Legal Evaluation

Our image search engine was the subject of a field study with
the goal to assess the legal aspects of electronic commerce with
mobile agents. Over the period of two days, eleven lawyers used
our retrieval system in the roles of the content provider, customer,

and image broker, with the objective to trade images. Concurrently,
three students familiar with the system attempted to interfere with
the ongoing transactions e.g., by sending malicious agents, replay-
ing agents, or manipulating client systems. The second objective
of the participants was to cause legal cases by claiming e.g., that:
an image was ordered but never delivered; the quality of an image
was lower that expected; a specific image had never been ordered;
an image was ordered for a lower price; or the wrong image was
delivered.

These claims were negotiated in simulated court hearings ac-
cording to German law.® A technical expert had to testify on tech-
nical issues and to present evidence. Overall, more than a thousand
agents were dispatched, about 300 images were actually purchased,
and 20 representative cases were brought to court. A report on the
outcome of the study is under preparation.

On one occasion, the attackers succeeded in breaking into the
operating system of a client system (not the retrieval system). They
replaced code with a manipulated version that leaked purchased im-
ages. In spite of the suspicion that the code had been manipulated
(for which evidence was presented in the court hearing) the client
operator was held responsible.

6. RELATED WORK

Considerable work is done in the general area of CBR, see
e.g., [14] for the proceedings of a recent conference. Well re-
ceived work by several authors reports on CBR systems for the
World Wide Web [15, 16, 17]. All these image search engines are
based on the client/server paradigm of collecting images from the
Web. Mobile agent technology is complementary to this work. It
remains to be investigated how well the algorithms developed by
the authors mentioned above can be adapted to be used within a mo-
bile agent framework. The idea of using mobile agents for content
based image retrieval has been mentioned before [6, 5, 7]. Mobile
agents have also been applied in related applications. For instance,
in [18], Johansen reports on the use of mobile agents in the context
of a weather information system (mobile agents process and deduce
weather information from satellite imagery). It is not our intention
to claim originality of the idea, but to report unique aspects of our
architecture (the incubator and the gatherer model), the results of
our evaluation, and our experiences with respect to the usefulness
of the application.

7. SUMMARY

Digital images are a valuable commodity and we expect that
more and more photo agencies make use of the Internet as the
principal platform for advertising, customer relationship manage-
ment, and — most importantly — content distribution. We presented
two models of deploying mobile agents to gather image informa-
tion from the Internet. Both models take into account that con-
tent providers must retain control over their intellectual property.
Multiple complimentary retrieval methods can operate in parallel.
The models support flexible software distribution, updates, and de-
installation, and they can be extended to account for negotiation
of license terms and automatic fingerprinting of retrieved images
based on digital watermarks.

The models differ in the grade of decentralization. In the gath-
erer model, the amount of data transported over the network de-
pends on the size of the images and the compression factor of the
deployed feature extraction algorithms. In our case, this is less than

5The judges applied the German code of law: the Biirgerliche
Gesetzbuch (BGB), the Teledienstegesetz (TDG), and the Teledi-
enstdatenschutzgesetz (TDDSG).

1% of the image data transported by regular gatherers. In the in-
cubator model, no image data is shipped over the network at all.
Independently of the size of feature vectors, both models achieve
a constant speedup, which is proportional to the number of image
servers indexed in parallel. Image providers must set up and reserve
computing resources for the mobile agent server. They can operate
this server in conjunction with a Web server e.g., by attaching the
agent server to the \Web server by Servlets.

One avenue for improvement is the combination of the incubator
and the gatherer model. The index agent that takes residence at the
image provider may cluster the feature vectors e.g., as described
in [19]. Rather than sending only its finished message to the broker
it may submit a number of centroids of the densest clusters. Search
agents which visit the broker may thus opportunistically prune the
search space by migrating only to servers with centroids most sim-
ilar to the query vector.

Mobile agent infrastructures require a sound security model,
which accounts for the various threats. Some progress has been
achieved in the area of mobile agent security [20, 21], although
a number of hard problems are still unsolved. Yet it is probably
fair to say that in principle the attainable level of security is rea-
sonable enough to justify the application of mobile agents in some
real-world applications. However, before this can happen, runtime
systems must become more robust e.g., Java must become consid-
erably more robust against denial of service attacks [3].

Acknowledgments
We thank Patric Kabus for his help in programming the prototype.

8. REFERENCES

[1] James E. White. Mobile agents. In J. Bradshaw, editor,
Software Agents, chapter 18, pages 437-472. AAAI/MIT
Press, Menlo Park, CA, 1997.

[2] Volker Roth and Mehrdad Jalali. Concepts and architecture
of a security-centric mobile agent server. In Proc. Fifth
International Symposium on Autonomous Decentralized
Systems (ISADS 2001), pages 435-442, Dallas, Texas,
U.S.A., March 2001. IEEE Computer Society. ISBN
0-7695-1065-5.

[3] Walter Binder and Volker Roth. Secure mobile agent systems
using Java — where are we heading? In Proc. 17th ACM
Symposium on Applied Computing, Special Track on Agents,
Interactions, Mobility, and Systems (SAC/AIMS), Madrid,
Spain, March 2002. ACM.

[4] S. G. Belmon and B. S. Yee. Mobile agents and intellectual
property protection. In Rothermel and Hohl [22], pages
172-182.

[5] C. Arora, P. Nirankari, H. Ghosh, and S. Chaudhury. Content
based image retrieval using mobile agents. In Third
International Conference on Computational Intelligence and
Multimedia Applications (ICCIMA 99), pages 248-252,
1999.

[6] Volker Roth. Distributed image indexing and retrieval with
mobile agents. In IEE European Workshop on Distributed
Imaging, number 1999/109 in IEE Electronics &
Communications, pages 14/1-14/5, Savoy Place, London,
WC2R 0BL, UK, November 1999. IEE. ISSN 0963-3308.

[7] J. You and H. A. Cohen. A new approach to image retrieval
by fast indexing and searching. In Proc. DICTA’97, pages
425-430, Auckland, N.Z., 1997.

[8] Stan Franklin and Art Graesser. Is it an agent, or just a
program? In Intelligent Agents 11, volume 1193 of Lecture

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

Notes in Artificial Intelligence, pages 21-36, Berlin, 1997.
Springer Verlag.

Stephen Wolthusen Michael Arnold, Martin Schmucker.
Techniques and Applications of Digital Watermarking and
Content Protection. Artech House, 2003. ISBN
1-58053-111-3.

Greg Pass, Ramin Zabih, and Justin Miller. Comparing
images using color coherence vectors. In Proc. ACM
Conference on Multimedia, Boston, Massachusetts, U. S. A.,
November 1996.

\Wolker Roth and Vania Conan. Encrypting Java Archives and
its application to mobile agent security. In Frank Dignum
and Carles Sierra, editors, Agent Mediated Electronic
Commerce: A European Perspective, volume 1991 of
Lecture Notes in Artifical Intelligence, pages 232-244.
Springer Verlag, Berlin, 2001.

B. W. Lampson. A note on the confinement problem.
Communications of the ACM, 10:613-615, October 1973.
Walter Binder Jarle G. Hulaas and Alex Villanzon. Portable
resource control in java: Application to mobile agent
security. In 1st Int’l Workshop on Secure Mobile Multi-Agent
Systems at the 5th Int’l Conference on Autonomous Agents,
Montreal, Canada, May 2001.

M. S. Lew, N. Sebe, and J. P. Eakins, editors. Proc, Int’l
Conference on Image and Video Retrieval, volume 2383 of
Lecture Notes in Computer Science. Springer Verlag, July
2002.

J. R. Smith and S.-F. Chang. An image and video search
engine for the world—wide web. In Proc. Storage and
Retrieval for Image and Video Databases V (SPIE), San Jose,
CA, USA, February 1997.

S. Sclaroff, L. Taycher, and M. La Cascia. ImageRover: A
content-based image browser for the world wide web. In
Proc. IEEE Workshop on Content-based Access of Image
and Video Libraries, San Juan, Puerto Rico, June 1997.

M. Beigi, A. B. Benitez, and S.-F. Chang. MetaSEEk: A
content-based meta—search engine for images. In Proc.
Storage and Retrieval for Image and Video Databases VI
(SPIE), San Jose, CA, USA, January 1998.

Dag Johansen. Mobile agent applicability. In Rothermel and
Hohl [22], pages 80-98.

Stephan Volmer. Buoy Indexing of Metric Feature Spaces for
Fast Approximate Image Queries. In Proc. Eurographics
2001 Workshop on Multimedia, pages 121-130, Manchester,
UK, September 2001.

Giovanni Vigna, editor. Mobile Agents and Security, volume
1419 of Lecture Notes in Computer Science. Springer Verlag,
Berlin Heidelberg, 1998.

Jan Vitek and Christian Jensen. Secure Internet
Programming: Security Issues for Mobile and Distributed
Objects, volume 1603 of Lecture Notes in Computer Science.
Springer-Verlag Inc., New York, NY, USA, 1999.

K. Rothermel and F. Hohl, editors. Proceedings of the
Second International Workshop on Mobile Agents (MA ’98),
volume 1477 of Lecture Notes in Computer Science.
Springer Verlag, Berlin Heidelberg, September 1998.

