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Abstract—In multi-hop wireless networks, designing dis-
tributed scheduling algorithms to achieve the maximal through-
put is a challenging problem because of the complex interference
constraints among different links. Traditional maximal-weight
scheduling (MWS), although throughput-optimal, is difficult
to implement in distributed networks. On the other hand, a
distributed greedy protocol similar to IEEE 802.11 does not
guarantee the maximal throughput. In this paper, we introduce
an adaptive CSMA scheduling algorithm that can achieve the
maximal throughput distributively. Some of the major advantages
of the algorithm are that it applies to a very general interference
model and that it is simple, distributed and asynchronous. Fur-
thermore, the algorithm is combined with end-to-end congestion
control to achieve the optimal utility and fairness of competing
flows. Simulations verify the effectiveness of the algorithm.
Also, the adaptive CSMA scheduling is a modular MAC-layer
algorithm that can be combined with various protocols in the
transport layer and network layer. Finally, the paper explores
some implementation issues in the setting of 802.11 networks.

Index Terms—Cross-layer optimization, joint scheduling and
congestion control, maximal throughput, CSMA.

I. INTRODUCTION

I
N multi-hop wireless networks, it is important to efficiently

utilize the network resources and provide fairness to com-

peting data flows. These objectives require the cooperation

of different network layers. The transport layer needs to

inject the right amount of traffic into the network based on

the congestion level and the MAC layer needs to serve the

traffic efficiently to achieve high throughput. Through a utility

optimization framework [1], this problem can be naturally

decomposed into congestion control at the transport layer and

scheduling at the MAC layer.

It turns out that MAC-layer scheduling is the bottleneck of

the problem [1]. In particular, it is not easy to achieve the

maximal throughput through distributed scheduling, which in

turn prevents full utilization of the wireless network. Schedul-

ing is challenging since the conflicting relationships between

different links can be complicated.

It is well known that maximal-weight scheduling (MWS)

[22] is throughput-optimal. That is, that scheduling can support

any incoming rates within the capacity region. In MWS, time

is assumed to be slotted. In each slot, a set of non-conflicting
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links (called an “Independent Set”, or “IS”) that have the

maximal weight are scheduled, where the “weight” of a set of

links is the summation of their queue lengths. (This algorithm

has also been applied to achieve 100% throughput in input-

queued switches [23].) However, finding such a maximal-

weighted IS is NP-complete in general and is hard even for

centralized algorithms. So its distributed implementation is not

trivial in wireless networks.

A few recent works proposed throughput-optimal algorithms

for certain interference models. For example, Eryilmaz et al.

[3] proposed a polynomial-complexity algorithm for the “two-

hop interference model”1. Modiano et al. [4] introduced a gos-

sip algorithm for the “node-exclusive model”2. The extensions

to more general interference models, as discussed in [3] and

[4], involves extra challenges. Sanghavi et al. [5] introduced

an algorithm that can approach the throughput capacity (with

increasing overhead) for the node-exclusive model.

On the other hand, a number of low-complexity, but sub-

optimal scheduling algorithms have been proposed in the

literature. By using a distributed greedy protocol similar to

IEEE 802.11, reference [8] shows that only a fraction of the

throughput region can be achieved (after ignoring collisions).

The fraction depends on the network topology and interference

relationships. The algorithm is related to Maximal Scheduling

[9] which chooses a maximal schedule among the non-empty

queues in each slot. Different from Maximal Scheduling, the

Longest-Queue-First algorithm (LQF) [10], [11], [12], [13]

takes into account the queue lengths of the non-empty queues.

It shows good throughput performance in simulations. In

fact, LQF is proven to be throughput-optimal if the network

topology satisfies a “local pooling” condition [10], [12], or

if the network is small [13]. In general topologies, however,

LQF is not throughput-optimal, and the achievable fraction of

the capacity region can be characterized as in [11]. Reference

[14] studied the impact of such imperfect scheduling on

utility maximization in wireless networks. In [16], Proutiere et

al. developed asynchronous random-access-based scheduling

algorithms that can achieve throughput performance similar

to that of the Maximum Size scheduling algorithm.

Our first contribution in this paper is to introduce a dis-

tributed adaptive CSMA (Carrier Sense Multiple Access) algo-

rithm for a general interference model. It is inspired by CSMA

but may be applied to more general resource sharing problems

1In this model, a transmission over a link from node m to node n is
successful iff none of the one-hop neighbors of m and n is in any conversation
at the time.

2In this model, a transmission over a link from node m to node n is
successful iff neither m nor n is in another conversation at the time.



(i.e., not limited to wireless networks). We show that if packet

collisions are ignored (as in some of the above references), the

algorithm can achieve maximal throughput. The optimality in

the presence of collisions is studied in [30], [31] (and also

in [35] with a different algorithm). The algorithm may not

be directly comparable to the throughput-optimal algorithms

mentioned above since it utilizes the carrier-sensing capability.

But it does have a few distinct features:

• Each node only uses its local information (e.g., its back-

log). No explicit control messages are required among

the nodes.

• It is based on CSMA random access, which is similar to

the IEEE 802.11 protocol and is easy to implement.

• Time is not divided into synchronous slots. Thus no

synchronization of transmissions is needed.

In a related work, Marbach et al. [15] studied a model of

CSMA with collisions. It was shown that under the “node-

exclusive” interference model, CSMA can be made asymp-

totically throughput-optimal in the limiting regime of large

networks with a small sensing delay. In [17], Rajagopalan and

Shah independently proposed a randomized algorithm similar

to ours in the context of optical networks. However, there

are some notable differences (e.g., the use of Theorem 1

here). Also, utility maximization (discussed below) was not

considered in [17].

Our second contribution is to combine the proposed

scheduling algorithm with end-to-end congestion control us-

ing a novel technique, to achieve fairness among competing

flows as well as maximal throughput (sections III, IV). The

performance is evaluated by simulations (section VI). We

show that the proposed CSMA scheduling is a modular MAC-

layer algorithm and demonstrate its combination with optimal

routing, anycast and multicast [40]. Finally, we considered

some practical issues (e.g., packet collisions) in the setting

of 802.11 networks (section VII).

There is extensive research in joint MAC and transport-

layer optimization, for example [6] and [7]. Their studies

have assumed the slotted-Aloha random access protocol in the

MAC layer, instead of the CSMA-like protocol we consider

here. Slotted-Aloha does not need to consume power in carrier

sensing. On the other hand, CSMA is known to have a larger

capacity region. (In this paper, we are primarily interested

in the throughput performance.) Other related works assume

physical-layer models which are quite different from ours. For

example, [18] considered the CDMA interference model; and

[19] focused on time-varying wireless channels.

II. ADAPTIVE CSMA FOR MAXIMAL THROUGHPUT

A. Interference model

First we describe the general interference model we will

consider in this paper. Assume there are K links in the

network, where each link is an (ordered) transmitter-receiver

pair. The network is associated with a conflict graph (or “CG”)

G = {V, E}, where V is the set of vertices (each of them

represents a link) and E is the set of edges. Two links cannot

transmit at the same time (i.e., “conflict”) iff there is an edge

between them. Note that this framework includes the “node-

exclusive model” and “two-hop interference model” mentioned

above as two special cases.

Assume that G has N Independent Sets (“IS”, not confined

to “Maximal Independent Sets”). Denote the i’th IS by a vector

xi ∈ {0, 1}K . The k’th element of xi, xi
k = 1 if link k is

transmitting in the IS, and xi
k = 0 otherwise. We also refer to

xi as a transmission state, and xi
k as the transmission state of

link k.

B. An idealized CSMA protocol and the average throughput

We use an idealized model of CSMA as in [25], [26],

[27]. This model makes two simplifying assumptions. First, it

assumes that if two links conflict – because their simultaneous

transmissions would result in incorrectly received packets –

then each of the two links hears when the other one transmits.

Second, the model assumes that this sensing is instantaneous.

Consequently, collisions can be avoided, as we will further

explain later. The first assumptions implies that there are no

hidden nodes (HN). This is possible if the range of carrier-

sensing is large enough [29].3 The second assumption is

violated in actual systems because of the finite speed of light

and of the time needed to detect a received power.

There are two reasons for using this model in our context,

although it makes the above simplifying assumptions about

collisions and the HN problem: (1) The model is simple,

tractable, and captures the essence of CSMA/CA. It is also an

easier starting point before analyzing the case with collisions.

Indeed, in [30], [31], we have developed a more general model

that explicitly considers collisions in wireless network, and

extended the distributed algorithms in this paper to that case to

achieve throughput-optimality. This will be further discussed

in section VII. (2) The algorithms we propose here were

inspired by CSMA, but they can be applied to more general

resource sharing problems4 which do not have the issues of

collisions and HN (i.e., not limited to wireless networks).

In this subsection, assume that the links are always back-

logged. If the transmitter of link k senses the transmission of

any conflicting link (i.e., any link m such that (k,m) ∈ E),

then it keeps silent. If none of its conflicting links is trans-

mitting, then the transmitter of link k waits (or backs-off)

for a random period of time that is exponentially distributed

with mean 1/Rk and then starts its transmission5. If some

3A related problem that affects the performance of wireless networks is
the exposed-node (EN) problem. EN occurs when two links could transmit
together without interference, but they can sense the transmission of each
other. As a result, their simultaneous transmissions are unnecessarily forbidden
by CSMA. [29] proposed a protocol to address HN and EN problems in a
systematic way. We assume in this paper that HN and EN are negligible with
the use of such a protocol. Note that however, although EN problem may
reduce the capacity region, it does not affect the applicability of our model
here, since we can define an edge between two links in the CG as long as
they can sense the transmission of each other, even if this results in EN.

4An example is the “task processing” problem described as follows. There
are K different types of tasks and a finite set of resources B. To perform a
type-k task, one needs a subset Bk ⊆ B of resources and these resources are
then monopolized by the task while it is being performed. Note that two tasks
can be performed simultaneously iff they use disjoint subsets of resources.
Clearly this can be accommodated in our model in section II-A by associating
each type of tasks to a “link”.

5If more than one backlogged links share the same transmitter, the trans-
mitter maintains independent backoff timers for these links.
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Fig. 1: Example: a conflict graph and the corresponding

CSMA Markov Chain.

conflicting link starts transmitting during the backoff, then link

k suspends its backoff and resumes it after the conflicting

transmission is over. The transmission time of link k is

exponentially distributed with mean 1. (The assumption on the

exponential distribution can be relaxed [27].) Assuming that

the sensing time is negligible, given the continuous distribution

of the backoff times, the probability for two conflicting links

to start transmission at the same time is zero. So in the model

of [25], [26], [27], collisions do not occur. (In section VII, we

will address the case with collisions.)

It is not difficult to see that the transitions of the transmis-

sion states form a Continuous Time Markov Chain, which is

called the CSMA Markov Chain. Denote link k’s neighboring

set by N (k) := {m : (k,m) ∈ E}. If in state xi, link k is

not active (xi
k = 0) and all of its conflicting links are not

active (i.e., xi
m = 0,∀m ∈ N (k)), then state xi transits to

state xi + ek with rate Rk, where ek is the K-dimension

vector whose k’th element is 1 and all other elements are 0’s.

Similarly, state xi+ek transits to state xi with rate 1. However,

if in state xi, any link in its neighboring set N (k) is active,

then state xi + ek does not exist.

Fig. 1 gives an example network whose CG is shown in

(a). There are two links, with an edge between them, which

means that they cannot transmit together. Fig. 1 (b) shows the

corresponding CSMA Markov Chain. State (0,0) means that

no link is transmitting, state (1,0) means that only link 1 is

transmitting, and (0,1) means that only link 2 is transmitting.

The state (1,1) is not feasible.

Let rk = log(Rk). We call rk the “transmission aggressive-

ness” (TA) of link k. For a given positive vector r = {rk, k =
1, . . . ,K}, the CSMA Markov chain is irreducible. Designate

the stationary distribution of its feasible states xi by p(xi; r).
We have the following result.

Lemma 1: ([25], [26], [27]) The stationary distribution of

the CSMA Markov chain has the following product-form:

p(xi; r) =
exp(

∑K
k=1 xi

krk)

C(r)
(1)

where

C(r) =
∑

j exp(
∑K

k=1 xj
krk) . (2)

Note that the summation
∑

j is over all feasible states xj .

Proof: We verify that the distribution (1) satisfies the

detailed balance equations [24]. Consider states xi and xi+ek

where xi
k = 0 and xi

m = 0,∀m ∈ N (k). From (1), we have

p(xi + ek; r)

p(xi; r)
= exp(rk) = Rk

which is exactly the detailed balance equation between state xi

and xi + ek. Such relations hold for any two states that differ

in only one element, which are the only pairs that correspond

to nonzero transition rates. So the distribution is invariant.

Since the detailed balance equations hold, the CSMA Markov

chain is time-reversible. In fact, the Markov chain is a re-

versible “spatial process” and its stationary distribution (1) is

a Markov Random Field ([24], page 189; [28]). (That is, the

state of every link k is conditionally independent of all other

links, given the transmission states of its conflicting links.)

Later, we also write p(xi; r) as pi(r). These notations are

interchangeable. And let p(r) ∈ RN
+ be the vector of all

pi(r)’s. In Fig. 1, for example, the probabilities of state (0,0),

(1,0) and (0,1) are 1/(1 + R1 + R2), R1/(1 + R1 + R2) and

R2/(1 + R1 + R2) in the stationary distribution.

It follows from Lemma 1 that sk(r), the probability that

link k transmits, is given by

sk(r) =
∑

i[x
i
k · p(xi; r)] . (3)

Without loss of generality, assume that each link k has a

capacity of 1. That is, if link k transmits data all the time

(without contention from other links), then its service rate is 1

(unit of data per unit time). Then, sk(r) is also the normalized

throughput (or service rate) with respect to the link capacity.

Even if the waiting time and transmission time are not

exponential distributed but have the same means 1/Rk and 1

(in fact, as long as the ratio of their means is 1/Rk), reference

[27] shows that the stationary distribution (1) still holds. That

is, the stationary distribution is insensitive.

C. Adaptive CSMA for maximal throughput

Assume i.i.d. traffic arrival at each link k with arrival rate

λk. λk ≤ 1 is also normalized with respect to the link capacity

1, and thus can be viewed as the fraction of time when link

k needs to be active to serve the arrival traffic. Denote the

vector of arrival rates by λ ∈ RK
+ . Further assume that λk >

0,∀k without loss of generality, since the link(s) with zero

arrival rate can be removed from the problem. We say that λ
is feasible if and only if λ =

∑
i p̄ix

i for some probability

distribution p̄ ∈ RN
+ satisfying p̄i ≥ 0 and

∑
i p̄i = 1. That is,

λ is a convex combination of the IS’s, such that it is possible

to serve the arriving traffic with some transmission schedule.

Denote the set of feasible λ by C̄. We say that λ is strictly

feasible iff it can be written as λ =
∑

i p̄ix
i where p̄i > 0

and
∑

i p̄i = 1. Denote the set of strictly feasible λ by C. It

can be shown that C is exactly the interior of C̄ [40].

Define the following function (the “log-likelihood function”

if we estimate the parameter r from the observation p̄i).

F (r;λ) :=
∑

i p̄i log(pi(r))

=
∑

i p̄i[
∑K

k=1 xi
krk − log(C(r))]

=
∑

k λkrk − log(
∑

j exp(
∑K

k=1 xj
krk))

where λk =
∑

i p̄ix
i
k is the arrival rate at link k.



Consider the following optimization problem

supr≥0 F (r;λ) . (4)

Since log(pi(r)) ≤ 0, we have F (r;λ) ≤ 0. Therefore

supr≥0 F (r;λ) exists. Also, F (r;λ) is concave in r [32]. We

show that the following proposition holds.

Proposition 1: If supr≥0 F (r;λ) is attainable (i.e., there

exists finite r∗ ≥ 0 such that F (r∗;λ) = supr≥0 F (r;λ)),
then sk(r∗) ≥ λk,∀k. That is, the service rate is not less than

the arrival rate when r = r∗.

Proof: Let d ≥ 0 be a vector of dual variables associated

with the constraints r ≥ 0 in problem (4), then the Lagrangian

is L(r;d) = F (r;λ) + dT r. At the optimal solution r∗,

∂L(r∗;d∗)

∂rk
= λk −

∑
j xj

k exp(
∑K

k=1 xj
kr∗k)

C(r∗)
+ d∗k

= λk − sk(r∗) + d∗k = 0 (5)

where sk(r), according to (3), is the service rate (at stationary

distribution) given r. Since d∗k ≥ 0, one has sk(r∗) ≥ λk.

Equivalently, problem (4) is the same as minimizing the

Kullback–Leibler divergence (KL divergence) between the two

distributions p̄ and p(r):

inf
r≥0

DKL(p̄||p(r)) (6)

where the KL divergence is defined as follows:

DKL(p̄||p(r)) : =
∑

i[p̄i log(p̄i/pi(r))]
=

∑
i[p̄i log(p̄i)]− F (r;λ).

That is, we choose r ≥ 0 such that p(r) is the “closest” to

p̄ in terms of the KL divergence.

The above result is related to the theory of Markov Random

Fields [33] in that, when we minimize the KL divergence

between a given joint distribution pI and a product-form

joint distribution pII , then depending on the structure of

pII , certain marginal distributions induced by the two joint

distributions are equal. In our case, the time-reversible CSMA

Markov chain gives the product-form distribution. Also, the

arrival rate and service rate on link k are viewed as two

marginal probabilities. They are not always equal, but satisfy

the desired inequality in Proposition 1, due to the constraint

r ≥ 0 which is important in our design.

The following condition, proved in Appendix A, ensures

that supr≥0 F (r;λ) is attainable.

Proposition 2: If the arrival rate λ is strictly feasible (i.e.,

λ ∈ C), then supr≥0 F (r;λ) is attainable.

Combining Propositions 1 and 2, we have the following.

Theorem 1: For any λ ∈ C, there exists a finite r∗ such that

sk(r∗) ≥ λk,∀k.

Remark: To see why strict feasibility is necessary, consider the

network in Fig. 1. If λ1 = λ2 = 0.5 (not strictly feasible), then

the service rates s1(r) = s2(r) → 0.5 when r1 = r2 → ∞,

but they cannot reach 0.5 for finite values of r.

Since ∂F (r;λ)/∂rk = λk − sk(r), a simple gradient

algorithm to solve (4) is

rk(j + 1) = [rk(j) + α(j) · (λk − sk(r(j)))]+,∀k (7)

where j = 0, 1, 2, . . . , and α(j) is some (small) step size. The

algorithm is easy for distributed implementation in wireless

networks, because link k can adjust rk based on its local

information: arrival rate λk and service rate sk(r(j)). (If the

arrival rate is larger than the service rate, then rk should

be increased, and vice versa.) Note that however, the arrival

and service rates are generally random variables in actual

networks, unlike in (7).

Let link k adjust rk at time tj , j = 1, 2, . . . . Let t0 = 0
and the update interval T (j) := tj − tj−1, j = 1, 2, . . . .

Define “period j” as the time between tj−1 and tj , and

r(j) as the value of r set at time tj . Let λ′
k(j) and s′k(j)

be, respectively, the empirical average arrival rate and ser-

vice rate at link k between time tj and tj+1. That is,

s′k(j) :=
∫ tj+1

tj
xk(τ)dτ/T (j + 1), where xk(τ) ∈ {0, 1} is

the transmission state of link k at time instance τ . Note that

λ′
k(j) and s′k(j) are generally random variables. We design

the following distributed algorithm.

Algorithm 1: Adjusting the TA (transmission aggressive-

ness) in CSMA

At time tj+1 where j = 0, 1, 2, . . . , let

rk(j + 1) = [rk(j) + α(j) · (λ′
k(j)− s′k(j))]D,∀k (8)

where α(j) > 0 is the step size, and [·]D means the projection

to the set D := [0, rmax] where rmax > 0. We allow rmax =
+∞, in which case the projection is the same as [·]+.6 In the

next section and Appendix B, we will discuss the convergence

and stability properties of Algorithm 1 under different settings

of α(j), T (j) and rmax.

D. Convergence and stability

Reference [38] provides some stability results of the follow-

ing algorithm extended from Algorithm 1. The intuition is that

one can make r change slowly (i.e., “quasi-static”) to allow the

CSMA Markov chain to approach its stationary distribution

(and thus obtaining good estimation of sk(r)). This allows

the separation of time scales of the dynamics of r(j) and the

CSMA Markov chain. The extended algorithm is

rk(j +1) = [rk(j)+α(j) · (λ′
k(j)+h(rk(j))− s′k(j))]D (9)

where D := [0, rmax] and the function h(·) ≥ 0. If h(·) = 0,

then algorithm (9) reduces to Algorithm 1. If h(·) > 0, then

algorithm (9) “pretends” to serve some arrival rates higher

than the actual ones. In Appendix B, we state some results in

[38] (which includes the detailed proofs). In summary, (i) with

properly-chosen decreasing step sizes and increasing update

intervals (e.g., α(j) = 1/[(j + 2) log(j + 2)], T (j) = j + 2)

and function h(·), and with rmax = +∞, the vector r(j)
converges and the algorithm is throughput-optimal; (ii) with

properly-chosen constant step sizes α(j) = α,∀j and update

intervals T (j) = T,∀j, one can arbitrarily approximate the

maximal throughput.

6A subtle point: If during period j+1, the queue of link k′ becomes empty,
then link k′ still transmits dummy packets with TA rk′ (j) until tj+1. This
ensures that the (ideal) average service rate is still sk(r(j)) for all k. (The
dummy packets are counted in the computation of s′

k′ (j).)



In a related work [21], Liu et al. carried out a convergence

analysis, using a differential-equation method, of a utility

maximization algorithm extended from [2] (see also section

IV for the algorithm), although queueing stability was not

considered in [21].

E. Discussion

(1) It has been believed that optimal scheduling is NP

complete in general. This complexity is reflected in the mixing

time of the CSMA Markov chain (i.e., the time for the Markov

chain to approach its stationary distribution). In [38], the

upper-bound used to quantify the mixing time is exponential

in K. However, the bound may not be tight in typical wireless

networks. For example, in a network where all links conflict,

the CSMA Markov chain mixes much faster than the bound.

(2) There is some resemblance between the above algo-

rithm (in particular the CSMA Markov chain) and simulated

annealing (SA) [20]. SA is an optimization technique that

utilizes time-reversible Markov chains to find a maximum of

a function. SA can be used, for example, to find the Maximal-

Weighted IS (MWIS) which is needed in Maximal-Weight

Scheduling. However, note that our algorithm does not try

to find the MWIS via SA. Instead, the stationary distribution

of the CSMA Markov chain with a properly-chosen r∗ is

sufficient to support any λ ∈ C (Theorem 1).

III. THE PRIMAL-DUAL RELATIONSHIP

In the previous section we have described the adaptive

CSMA algorithm to support any strictly-feasible arrival rates.

For joint scheduling and congestion control, however, directly

using the above expression of service rate (3) will lead to a

non-convex problem. This section takes another look at the

problem and also helps to avoid the difficulty.

Rewrite (4) as

maxr,h {
∑

k λkrk − log(
∑

j exp(hj))}

s.t. hj =
∑K

k=1 xj
krk,∀j

rk ≥ 0,∀k.

(10)

For each j = 1, 2, . . . , N , associate a dual variable uj to the

constraint hj =
∑K

k=1 xj
krk. Write the vector of dual variables

as u ∈ RN
+ . Then it is not difficult to find the dual problem

of (10) as follows. (The computation was given in [41], but is

omitted here due to the limit of space.)

maxu −
∑

i ui log(ui)
s.t.

∑
i(ui · xi

k) ≥ λk,∀k
ui ≥ 0,

∑
i ui = 1.

(11)

where the objective function is the entropy of the distribution

u, H(u) := −
∑

i ui log(ui).
7

Also, if for each k, we associate a dual variable rk to the

constraint
∑

i(ui · x
i
k) ≥ λk in problem (11), then one can

compute that the dual problem of (11) is the original problem

maxr≥0 F (r;λ) (This is shown in Appendix A as a by-product

7In fact, there is a more general relationship between ML estimation
problem such as (4) and Maximal-Entropy problem such as (11) [33] [34].
In [41], on the other hand, problem (11) was motivated by the “statistical
entropy” of the CSMA Markov chain.

of the proof of Proposition 2). This is not surprising, since in

convex optimization, the dual problem of dual problem is often

the original problem.

What is interesting is that both r and u have concrete

physical meanings. We have seen that rk is the TA of link

k. Also, ui can be regarded as the probability of state xi. This

observation will be useful in later sections. A convenient way

to guess this is by observing the constraint
∑

i(ui ·x
i
k) ≥ λk.

If ui is the probability of state xi, then the constraint simply

means that the service rate of link k,
∑

i(ui · xi
k), is larger

than the arrival rate.

Proposition 3: Given some (finite) TA’s of the links (that

is, given the dual variable r of problem (11)), the stationary

distribution of the CSMA Markov chain maximizes the partial

Lagrangian L(u; r) = −
∑

i ui log(ui) +
∑

k rk(
∑

i ui · x
i
k −

λk) over all possible distributions u. Also, Algorithm (7)

can be viewed as a subgradient algorithm to update the dual

variable r in order to solve problem (11).

Proof: Given some finite dual variables r, a partial

Lagrangian of problem (11) is

L(u; r) = −
∑

i

ui log(ui) +
∑

k

rk(
∑

i

ui · x
i
k − λk). (12)

Denote u∗(r) = arg maxu L(u; r), where u is a distribu-

tion. Since
∑

i ui = 1, if we can find some w, and u∗(r) > 0
(i.e., in the interior of the feasible region) such that

∂L(u∗(r); r)

∂ui
= − log(u∗

i (r))− 1 +
∑

k

rkxi
k = w,∀i,

then u∗(r) is the desired distribution. The above conditions

are

u∗
i (r) = exp(

∑

k

rkxi
k − w − 1),∀i. and

∑

i

u∗
i (r) = 1.

By solving the two equations, we find that w =
log[

∑
j exp(

∑
k rkxj

k)]− 1 and

u∗
i (r) =

exp(
∑

k rkxi
k)

∑
j exp(

∑
k rkxj

k)
,∀i (13)

satisfy the conditions.

Note that in (13), u∗
i (r) is exactly the stationary probability

of state xi in the CSMA Markov chain given the TA r of

all links. That is, u∗
i (r) = p(xi; r),∀i (cf. (1)). So Algorithm

(7) is a subgradient algorithm to search for the optimal dual

variable. Indeed, given r, u∗
i (r) maximizes L(u; r); then, r

can be updated by the subgradient algorithm (7), which is the

deterministic version of Algorithm 1. The whole system is

trying to solve problem (11) or (4).

Let r∗ be the optimal vector of dual variables of problem (11).

From the above computation, we see that u∗(r∗) = p(r∗), the

optimal solution of (11), is a product-form distribution. Also,

p(r∗) can support the arrival rates λ because it is feasible to

(11). This is another way to look at Theorem 1.

IV. JOINT SCHEDULING AND CONGESTION CONTROL

Now, we combine congestion control with the CSMA

scheduling algorithm to achieve fairness among competing

flows as well as the maximal throughput. Here, the input rates

are distributedly adjusted by the source of each flow.



A. Formulation and algorithm

Assume there are M flows, and let m be their index (m =
1, 2, . . . ,M ). Define amk = 1 if flow m uses link k, and

amk = 0 otherwise. Let fm be the rate of flow m, and vm(fm)
be the “utility function” of this flow, which is assumed to be

increasing and strictly concave. Assume all links have the same

PHY data rates (it is easy to extend the algorithm to different

PHY rates).

Assume that each link k maintains a separate queue for each

flow that traverses it. Then, the service rate of flow m by link

k, denoted by skm, should be no less than the incoming rate

of flow m to link k. For flow m, if link k is its first link (i.e.,

the source link), we say δ(m) = k. In this case, the constraint

is skm ≥ fm. If k 6= δ(m), denote flow m’s upstream link of

link k by up(k,m), then the constraint is skm ≥ sup(k,m),m,

where sup(k,m),m is equal to the incoming rate of flow m to

link k. We also have
∑

i uix
i
k ≥

∑
m:amk=1 skm,∀k, i.e., the

total service rate of link k is not less than the sum of all flow

rates on the link.

Then, consider the following optimization problem:

maxu,s,f −
∑

i ui log(ui) + β
∑M

m=1 vm(fm)
s.t. skm ≥ 0,∀k,m : amk = 1

skm ≥ sup(k,m),m,∀m, k : amk = 1, k 6= δ(m)
skm ≥ fm,∀m, k : k = δ(m)∑

i uix
i
k ≥

∑
m:amk=1 skm,∀k

ui ≥ 0,
∑

i ui = 1.
(14)

where β > 0 is a constant weighting factor.

Notice that the objective function is not exactly the total

utility, but it has an extra term −
∑

i ui log(ui). As will be

further explained in section IV-B, when β is large, the “im-

portance” of the total utility dominates the objective function

of (14). (This is similar in spirit to the weighting factor used in

[19].) As a result, the solution of (14) approximately achieves

the maximal utility. Associate dual variables qkm ≥ 0 to

the 2nd and 3rd lines of constraints of (14). Then a partial

Lagrangian (subject to skm ≥ 0,
∑

i uix
i
k ≥

∑
m:amk=1 skm

and ui ≥ 0,
∑

i ui = 1) is

L(u, s, f ;q)

= −
∑

i ui log(ui) + β
∑M

m=1 vm(fm)
+

∑
m,k:amk=1,k 6=δ(m) qkm(skm − sup(k,m),m)

+
∑

m,k:,k=δ(m) qkm(skm − fm)

= −
∑

i ui log(ui)

+β
∑M

m=1 vm(fm)−
∑

m,k:k=δ(m) qkmfm

+
∑

k,m:amk=1[skm · (qkm − qdown(k,m),m)]
(15)

where down(k,m) means flow m’s downstream link of link

k (Note that down(up(k,m),m) = k). If k is the last link of

flow m, then define qdown(k,m),m = 0.

First, we fix the vectors u and q, and solve for skm in the

sub-problem

maxs

∑
k,m:amk=1[skm · (qkm − qdown(k,m),m)]

s.t. skm ≥ 0,∀k,m : amk = 1∑
m:amk=1 skm ≤

∑
i(ui · xi

k),∀k.
(16)

The solution is easy to find (similar to [1] and related refer-

ences therein): at link k, denote zk := maxm:amk=1(qkm −

qdown(k,m),m). (i) If zk > 0, then for a m′ ∈
arg maxm:amk=1(qkm − qdown(k,m),m), let skm′ =

∑
i(uix

i
k)

and let skm = 0,∀m 6= m′. In other words, link k serves a

flow with the maximal back-pressure qkm− qdown(k,m),m. (ii)

If zk ≤ 0, then let skm(j) = 0,∀m, i.e., link k does not serve

any flow. Since the transmitter of link k can obtain the value

of qdown(k,m),m from a one-hop neighbor (i.e., the receiver of

link k), this algorithm is distributed. (In practice, the value of

qdown(k,m),m can be piggybacked in the ACK packet in IEEE

802.11.)

Plugging the solution of (16) back into (15), we get

L(u, f ;q) = [−
∑

i ui log(ui) +
∑

k(zk)+(
∑

i uix
i
k)]

+[β
∑M

m=1 vm(fm)−
∑

m,k:k=δ(m) qkmfm]

where zk is the maximal back-pressure at link k. So a dis-

tributed algorithm to solve (14) is as follows. Denote by Qkm

the actual queue length of flow m at link k. For simplicity,

assume that v′
m(0) ≤ V,∀m for some constant V <∞.

Algorithm 2: Joint scheduling and congestion control

Initially, assume that all queues are empty (i.e., Qkm(0) =
0,∀k,m), and let qkm(0) = 0,∀k,m. As before, the update

interval T (j) = tj − tj−1 and t0 = 0. Here we use constant

step sizes and update intervals α(j) = α, T (j) = T,∀j. The

variables q, f , r are iteratively updated at time tj , j = 1, 2, . . . .

Let q(j), f(j), r(j) be their values set at time tj . Denote by

s
′

km(j) the empirical average service rate of flow m at link k
in period j + 1 (i.e., the time between tj and tj+1).

• CSMA scheduling: In period j + 1, link k lets its TA

be rk(j) = [zk(j)]+ in the CSMA operation, where

zk(j) = maxm:amk=1(qkm(j) − qdown(k,m),m(j)). (The

rationale is that, given z(j), the u∗ that maximizes

L(u, f ;q(j)) over u is the stationary distribution of the

CSMA Markov Chain with rk(j) = [zk(j)]+, similar

to the proof of Proposition 3.) Choose a flow m′ ∈
arg maxm:amk=1(qkm(j)− qdown(k,m),m(j)). When link

k gets the opportunity to transmit, (i) if zk(j) > 0, it

serves flow m′; (Similar to Algorithm 1, the dummy

packets transmitted by link k, if any, are counted in

s
′

km′(j).) (ii) if zk(j) ≤ 0, then it transmits dummy

packets. These dummy packets are not counted, i.e., let

s
′

km(j) = 0,∀m. Also, they are not put into any actual

queue at the receiver of link k. (A simpler alternative is

that link k keeps silent if zk(j) ≤ 0. That case can be

similarly analyzed following [40].)

• Congestion control: For each flow m, if link k is its

source link, the transmitter of link k lets the flow rate in

period j + 1 be fm(j) = arg maxf̂m∈[0,1]{β · vm(f̂m)−

qkm(j) · f̂m}. (This maximizes L(u, f ;q(j)) over f .)

• The dual variables qkm (maintained by the transmitter

of each link) are updated (similar to a subgradient al-

gorithm). At time tj+1, let qkm(j + 1) = [qkm(j) −
α · s

′

km(j))]+ + α · s
′

up(k,m),m(j) if k 6= δ(m); and

qkm(j + 1) = [qkm(j) − α · s
′

km(j))]+ + α · fm(j) if

k = δ(m). (By doing this, approximately qkm ∝ Qkm.)

Remark 1: As T →∞ and α→ 0, Algorithm 2 approximates

the “ideal” algorithm that solves (14), due to the convergence

of the CSMA Markov chain in each period. A bound of the



achievable utility of Algorithm 2, compared to the optimal

total utility W̄ defined in (17) is given in [40]. The bound,

however, is not very tight: our simulation below shows good

performance without very large β, T or a very small α. Also,

since v′
m(0) ≤ V < ∞,∀m, it is clear through the proof of

Prop. 5 that qkm(j) is uniformly bounded for all k,m, j given

any β. Then, it is easy to show that the queue lengths Qkm’s

are uniformly bounded at all time.

Remark 2: In [40], we show that by using similar techniques,

the adaptive CSMA algorithm can be combined with optimal

routing, anycast or multicast with network coding. So it is

a modular MAC-layer protocol which can work with other

protocols in the transport layer and the network layer.

B. Approaching the maximal utility

We now show that the solution of (14) approximately

achieves the maximal utility when β is large. Denote the

maximal total utility achievable by W̄ , i.e.,

W̄ := maxu,s,f

∑
m vm(fm) (17)

subject to the same constraints as in (14). Assume that u = ū

when (17) is solved. Also, assume that in the optimal solution

of (14), f = f̂ and u = û. We have the following bound.

Proposition 4: The difference between the total utility

(
∑M

m=1 vm(f̂m)) resulting from solving (14) and the maximal

total utility W̄ is bounded. The bound of difference decreases

with the increase of β. In particular,

W̄ − (K · log 2)/β ≤
∑

m vm(f̂m) ≤ W̄ . (18)

Proof: Notice that H(u) = −
∑

i ui log(ui), the entropy

of the distribution u, is bounded. Indeed, since there are N ≤
2K possible states, one has 0 ≤ H(u) ≤ log N ≤ log 2K =
K log 2.

Since in the optimal solution of problem (14), f = f̂ and

u = û, we have H(û) + β
∑

m vm(f̂m) ≥ H(ū) + βW̄ . So

β[
∑

m vm(f̂m)−W̄ ] ≥ H(ū)−H(û) ≥ −H(û) ≥ −K ·log 2.

Also, clearly W̄ ≥
∑M

m=1 vm(f̂m), so (18) follows.

V. REDUCING THE QUEUEING DELAY

Consider a λ ∈ C in the scheduling problem in section

II. With Algorithm 1, the long-term average service rates are

in general not strictly higher than the arrival rates, so traffic

suffers from queueing delay when traversing the links. To

reduce the delay, consider a modified version of problem (11):

maxu,w −
∑

i ui log(ui) + c
∑

k log(wk)
s.t.

∑
i(uix

i
k) ≥ λk + wk,∀k

ui ≥ 0,
∑

i ui = 1
0 ≤ wk ≤ w̄,∀k

(19)

where 0 < c < 1 is a small constant. Note that we have added

the new variables wk ∈ [0, w̄] (where w̄ is a constant upper

bound), and require
∑

i uix
i
k ≥ λk + wk. In the objective

function, the term c · log(wk) is a penalty function to avoid

wk being too close to 0.

Since λ is in the interior of the capacity region, there is a

vector λ′ also in the interior and satisfying λ′ > λ component-

wise. So there exist w′ > 0 and u′ (such that
∑

i u′
ix

i
k =

λ′
k := λk+w′

k,∀k) satisfying the constraints. Therefore, in the

optimal solution, we have w∗
k > 0,∀k (otherwise the objective

function is −∞, smaller than the objective value that can be

achieved by u′ and w′). Thus
∑

i u∗
i x

i
k ≥ λk +w∗

k > λk. This

means that the service rate is strictly larger than the arrival

rate, bringing the extra benefit that the queue lengths tend to

decrease to 0.

Similar to section III, we form a partial Lagrangian (with

y ≥ 0 as dual variables)

L(u,w;y) = −
∑

i ui log(ui) + c
∑

k log(wk)+∑
k[yk(

∑
i uix

i
k − λk − wk)]

= [−
∑

i ui log(ui) +
∑

k(yk

∑
i uix

i
k)]+∑

k[c · log(wk)− ykwk]−
∑

k(ykλk).
(20)

Note that the only difference from (12) is the extra term∑
k[c · log(wk) − ykwk]. Given y, the optimal w is wk =

min{c/yk, w̄},∀k, and the optimal u is the stationary distri-

bution of the CSMA Markov Chain with r = y. Therefore the

subgradient algorithm to update y is yk ← yk +α(λk +wk−
sk(y)).

Since r = y, we have the following localized algorithm at

link k to update rk. Notice its similarity to Algorithm 1.

Algorithm 3: Enhanced Algorithm 1 to reduce queueing

delays

At time tj+1 where j = 0, 1, 2, . . . , let

rk(j+1) = [rk(j)+α(j)·(λ′
k(j)+min{c/rk(j), w̄}−s′k(j))]D

(21)

for all k, where α(j) is the step size, and D = [0, rmax]
where rmax can be +∞. As in Algorithm 1, even when

link k′ has no backlog, we let it send dummy packets with

its current aggressiveness rk′ . This ensures that the (ideal)

average service rate of link k is sk(r(j)) for all k.

Since Algorithm 3 “pretends” to serve some arrival rates

higher than the actual arrival rates (due to the positive term

min{c/rk(j), w̄}), Qk is not only stable, but also tends to be

small. The convergence and stability properties of Algorithm 3

when rmax =∞ are discussed in (i) of Appendix B. If rmax <
∞, the properties are similar to those in (ii) of Appendix B.

For joint CSMA scheduling and congestion control, a simple

way to reduce the delay, similar to [42], is as follows. In item 2

(“congestion control”) of Algorithm 2, let the actual flow rate

be ρ ·fm(j) where ρ is slightly smaller than 1, and keep other

parts of the algorithm unchanged. Then, each link provides a

service rate higher than the actual arrival rate. So the delay is

reduced with a small cost in the flow rates.

VI. SIMULATIONS

A. CSMA scheduling: i.i.d. input traffic with fixed average

rates

In our C++ simulations, the transmission time of all links is

exponentially distributed with mean 1ms, and the backoff time

of link k is exponentially distributed with mean 1/ exp(rk)
ms. The capacity of each link is 1(data unit)/ms. There are 6

links in “Network 1”, whose CG is shown in Fig. 2 (a). Define

0 ≤ ρ < 1 as the “load factor”, and let ρ = 0.98 in this simu-

lation. The arrival rate vector is set to λ=ρ*[0.2*(1,0,1,0,0,0)
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(b) Queue lengths, with constant step size. The vector r is not
shown since it is proportional to the queue lengths.
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(c) Queue lengths (with Algorithm 3)

Fig. 2: Adaptive CSMA Scheduling (Network 1)

+ 0.3*(1,0,0,1,0,1) + 0.2*(0,1,0,0,1,0) + 0.3*(0,0,1,0,1,0)] =

ρ*(0.5,0.2,0.5,0.3,0.5,0.3) (data units/ms). We have multiplied

by ρ < 1 a convex combination of some maximal ISs to ensure

that λ ∈ C.

Initially, all queues are empty, and the initial value of rk

is 0 for all k. rk is then adjusted using Algorithm 1 once

every T = 5ms (i.e., T (j) = T,∀j), with a constant step

size α(j) = α = 0.23,∀j. Fig. 2 (b) shows the evolution

of the queue lengths with rmax = 8. They are stable despite

some oscillations. The vector r is not shown since in this

simulation, it is roughly α/T times the queue lengths. Fig. 2

(c) shows the evolution of queue lengths using Algorithm 3

with c = 0.01, w̄ = 0.02 and all other parameters unchanged.

The algorithm drives the queue lengths to around zero, thus

significantly reducing the queueing delays.

Fig. 3 shows the results of Algorithm 3 with α(j) =
0.46/[(2+j/1000) log(2+j/1000)] and T (j) = (2+j/1000)
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Fig. 3: Decreasing step sizes

ms, which satisfy the conditions for convergence in [38]. The

constants c = 0.01, w̄ = 0.02, and rmax = ∞. To show

the negative drift of queues, assume that initially, all queue

lengths are 300 data units in Fig. 3. We see that the TA vector

r converges (Fig. 3 (a)), and the queues tend to decrease and

are stable (Fig. 3 (b)). However, there are more oscillations in

the queue lengths than the case with constant step size. This

is because when α(j) becomes smaller when j is large, r(j)
becomes less responsive to the variations of queue lengths.

B. Joint CSMA scheduling and congestion control

In Fig. 4, we simulate a more complex network (“Network

2”). We also go one step further than Network 1 by giving

the actual locations of the nodes, not only the CG. Fig. 4

(a) shows the network topology, where each circle represents

a node. The nodes are arranged in a grid for convenience,

and the distance between two adjacent nodes (horizontally or

vertically) is 1. Assume that the transmission range is 1, so

that a link can only be formed by two adjacent nodes. Assume

that two links cannot transmit simultaneously if there are two

nodes, one in each link, being within a distance of 1.1 (In IEEE

802.11, for example, DATA and ACK packets are transmitted

in opposite directions. This model considers the interference

among the two links in both directions). The paths of 3 multi-

hop flows are plotted. The utility function of each flow is

vm(fm) = log(fm + 0.01). The weighting factor is β = 3.
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Fig. 4: Flow rates in Network 2 (Grid Topology) with Joint

scheduling and congestion control

(Note that the input rates are adjusted by the congestion control

algorithm instead of being specified as in the last subsection.)

Fig. 4 (b) shows the evolution of the flow rates, using

Algorithm 2 with T = 5ms and α = 0.23. We see that

they become relatively constant after an initial convergence.

By directly solving (17) centrally, we find that the theoretical

optimal rates for the three flows are 0.11, 0.134 and 0.134 (data

unit/ms), very close to the simulation results. The queues are

also stable but not shown here due to the limit on space.

VII. IMPLEMENTATION CONSIDERATIONS IN 802.11

NETWORKS

A. Packet Collisions

In the idealized CSMA model we used, the sensing time

is zero and there is no collision. This allows us to focus on

the scheduling problem without worrying about the contention

resolution problem. The resulting performance can serve as a

benchmark. However in practice, since the sensing time is not

zero, the backoff time is usually chosen to be a multiple of

mini-slots where each mini-slot cannot be arbitrarily small.

Therefore collisions occur given the discrete distribution of

backoff times. In this section we consider this practical issue

and discuss alternative algorithms (for 802.11 networks) which

are related to the above algorithms with idealized CSMA.

As mentioned earlier, we have recently proposed a model

in [30], [31] that explicitly considered collisions in wireless

network without hidden nodes. Moreover, similar algorithms

(with probe packets RTS/CTS) have been proposed there to

approach the maximal throughput and utility by adjusting the

mean transmission times with fixed mean backoff times.

In [21] [2], etc, it was noted that by using small transmission

probability in each minislot (which increases the backoff

times), and correspondingly increasing the transmission times,

the collision probability becomes small, in which case the

actual CSMA with collisions can be approximated by the

idealized CSMA.

In [35], another protocol was proposed to deal with col-

lisions. The protocol has control phases and data phases.

Collisions only occur in the control phase, but not in the data

phase. The same product-form distribution (1) can be obtained

for the data phase, which is then used to achieve the maximal

throughput.

In the following, we discuss how to use algorithms in this

paper with collisions in mind.

1) Relationship of TA and the contention window in 802.11:

Assume that for link k the average transmission time is T .

Then the average backoff time is T/Rk. Denote by Wk the

contention window (CW) that gives the same average backoff

time. (Recall that the distribution of the backoff time is not

important, as long as it has the correct mean.) Since a random

number is uniformly picked from 0 to Wk − 1, the average

backoff time is tm · (Wk − 1)/2, where tm is the length of

a mini-slot. (For simplicity, we do not consider the Binary

Exponential Backoff, or “BEB”, in this calculation.) Equating

the two quantities gives

Wk =
T

Rk

2

tm
+ 1. (22)

We know that larger CW’s lead to lower collision probabil-

ities. By equation (22), for given Rk’s, small mini-slot tm or

large transmission time T can lead to large CW. (If tm → 0
or T → +∞, then collisions can be ignored and we return

to the idealized CSMA model.) However, tm is limited by

the sensing time. The mean transmission time T can be made

large, but should not be too large in practice since that will

increase access delays. So, here we impose an upper bound,

rmax, to all rk’s where rk = log(Rk). This gives Wk’s a lower

bound: Wk ≥ 2T/(exp(rmax) · tm)+1. For example, assume

T = 1ms. Recall that a mini-slot in 802.11a is tm := 9µs. If

we require that rk ≤ rmax = 2, then Wk ≥ 31. These values

result in reasonably low collision probabilities if the number

of nodes in a collision domain is not too high [36].

Although the upper bound rmax = 2 seems small, it can ac-

tually achieve a large portion of the capacity region. Consider

the simple network in Fig. 1, where the throughput of the two

links are s1(r) = R1/(1+R1+R2) and s2(r) = R2/(1+R1+
R2) (for simplicity, here we temporarily assume that collisions

are negligible due to the large CW’s). The capacity region is

C = {(λ1, λ2)|λ1 + λ2 < 1}. If r1 = r2 = rmax, then the

total throughput is 2 · exp(2)/[1 + exp(2) + exp(2)] ≈ 0.937,

not far from the maximal total throughput 1.

2) A condition that ensures bounded TA: In the following,

we show that by properly choosing the weighting factor β of

the total utility in Algorithm 2, it can be guaranteed that every



rk is smaller than rmax at all time, if certain conditions are

satisfied. (In [37], a similar approach is used to control the

amount of backlog in the network.)

Proposition 5: Assume that the utility function vm(fm)
(strictly concave) satisfies v′

m(0) ≤ V <∞,∀m. Denote by L
as the largest number of hops of a flow in the network. Then

by setting β = [rmax − (2L − 1) · α]/V in Algorithm 2, we

have rk ≤ rmax,∀k at all time.

Proof: According to Algorithm 2, the source of flow m
solves fm(j) = arg maxf̂m∈[0,1]{β · vm(f̂m) − qδ(m),m(j) ·

f̂m}. It is easy to see that if qδ(m),m(j) ≥ β ·V , then fm(j) =
0, i.e., the source stops sending data. Thus qδ(m),m(j + 1) ≤
qδ(m),m(j). If qδ(m),m(j) < β · V , then qδ(m),m(j + 1) ≤
qδ(m),m(j)+α < β ·V +α. Since initially qkm(0) = 0,∀k,m,

by induction, we have

qδ(m),m(j) ≤ β · V + α,∀j,m. (23)

Denote bkm(j) := qkm(j)− qdown(k,m),m(j). In Algorithm

2, no matter whether flow m has the maximal back-pressure

at link k, the actual average service rate s
′

km(j) = 0 if

bkm(j) ≤ 0. That is, s
′

km(j) > 0 only if bkm(j) > 0. Since

s
′

km(j) ≤ 1, by item 3 of Algorithm 2, qdown(k,m),m(j+1) ≤
qdown(k,m),m(j) + α and qkm(j + 1) ≥ qkm(j)− α. Then, if

bkm(j) > 0, we have bkm(j + 1) ≥ bkm(j) − 2α > −2α. If

bkm(j) ≤ 0, then bkm(j + 1) ≥ bkm(j). Since bkm(0) = 0,

by induction, we have

bkm(j) ≥ −2α,∀j, k,m. (24)

Since
∑

k:amk=1 bkm(j) = qδ(m),m(j), combined with (23)

and (24), we have bkm(j) ≤ β · V + α + 2α · (L− 1). Since

β = [rmax − (2L− 1) · α]/V , bkm(j) ≤ rmax,∀j, k,m.

B. Discrete TA and a real-world implementation

Although rk is continuous in our model, one may find it

convenient to quantize rk into a set of discrete values in a real

implementation. Each discrete value corresponds to a different

contention window (a smaller rk corresponds to a larger CW),

and this can be easily mapped to the “service classes” in IEEE

802.11e. Note that here the prioritization is based on the back-

pressure instead of service type originally defined in 802.11e.

Indeed, in an independent work [39], a similar protocol is

implemented with 802.11e hardware and it shows superior

performance compared to normal 802.11. (Different from our

work, however, [39] only focuses on implementation study.

Also, the CW’s there are set in a more heuristic way.)

In the following simulation, we set the discrete TA (denoted

by rD,k(j)) as follows by quantizing the continuous TA, rk(j),
computed by Algorithm 2:

• If rk(j) ≥ rmax, then let rD,k(j) = rmax. This corre-

sponds to the first class. Then, for i = 2, 3, . . . , nc, if

rmax − (i − 1)G ≤ rk(j) < rmax − (i − 2)G, then let

rD,k(j) = rmax − (i − 1)G, where G is the granularity

between adjacent classes, and nc is the number of classes.

In the simulation, we let rmax = 2, nc = 6, and

G = log(2) (thus, the CW of class i+1 is roughly twice

the CW of class i).
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Fig. 5: Flow rates in Network 2 (Grid Topology) with dis-

cretized or continuous TA

• Define the minimal TA rmin := rmax − (nc − 1)G. If

rk(j) < rmin, then do not transmit packets at all. This

is a good approximation since the CW would be quite

large with rmin (about 1000). Since transmissions are

suspended, the back-pressure tends to increase. The link

will resume transmission after rk(j) goes above rmin.

The upper figure in Fig. 5 shows that the resulting flow rates

and their fluctuations are similar to those with continuous r

(lower figure). (Collisions and BEB are simulated here.) This

indicates that the algorithm is robust to the discretization of

r. So using a few prioritized “classes” with different CW’s is

enough to provide good performance.

VIII. CONCLUSION

In this paper, we have proposed a distributed CSMA

scheduling algorithm, and showed that, under the idealized

CSMA, it is throughput-optimal in wireless networks with

a general interference model. We have utilized the product-

form stationary distribution of CSMA networks in order to

obtain the distributed algorithm and the maximal throughput.

Furthermore, we have combined that algorithm with conges-

tion control to approach the maximal utility, and showed the

connection with back-pressure scheduling. The algorithm is

easy to implement, and the simulation results are encouraging.

The adaptive CSMA algorithm is a modular MAC-layer

component that can work with other algorithms in the transport

layer and network layer. In [40], for example, it is combined

with optimal routing, anycast and multicast with network

coding.

We also considered some practical issues when implement-

ing the algorithm in an 802.11 setting. Since collisions occur in

actual 802.11 networks, we discussed a few recent algorithms

which explicitly consider collisions and can still approach

throughput-optimality.

Our current performance analysis of Algorithm 1 and 2

is based on a separation of time scales, i.e., the vector

r is adapted slowly to allow the CSMA Markov chain to

closely track the stationary distribution p(r). The simulations,

however, indicate that such slow adaptations are not always



necessary. In the future, we are interested to understand more

about the case without time-scale separation.

APPENDIX A

PROOF THE PROPOSITION 2

Consider the convex optimization problem (11), where λ is

strictly feasible. We now check whether the Slater condition

[32] (pages 226-227) is satisfied. Since all the constraints in

(11) are linear, we only need to check whether there exists a

feasible u which is in the relative interior [32] of the domain

D of the objective function −
∑

i ui log(ui), which is D =
{u|ui ≥ 0,

∑
i ui = 1}. Since λ ∈ C, it can be written as

λ =
∑

i p̄ix
i where p̄i > 0,∀i and

∑
i p̄i = 1. So letting

u = p̄ satisfies the requirement, where p̄ is the vector of p̄i’s.

Therefore the Slater condition is satisfied. As a result, there

exist finite dual variables y∗
k ≥ 0, w∗

i ≥ 0, z∗ such that the

Lagrangian

L(u;y∗,w∗, z∗)
= −

∑
i ui log(ui) +

∑
k y∗

k(
∑

i ui · x
i
k − λk)

+z∗(
∑

i ui − 1) +
∑

i w∗
i ui

(25)

is maximized by the optimal solution u∗, and the maximum

is attained.

We first claim that the optimal solution satisfies u∗
i > 0,∀i.

Suppose u∗
i = 0 for all i’s in a non-empty set I. Since both

u∗ and p̄ are feasible for problem (11), any point on the line

segment between them is also feasible. Then, if we slightly

move u from u∗ along the direction of p̄ − u∗, the change

of the objective function H(u) := −
∑

i ui log(ui) (at u∗) is

proportional to

(p̄− u∗)T∇H(u∗)

=
∑

i

(p̄i − u∗
i )[− log(u∗

i )− 1]

=
∑

i/∈I

(p̄i − u∗
i )[− log(u∗

i )− 1] +
∑

i∈I

p̄i[− log(u∗
i )− 1].

For i 6/∈ I, u∗
i > 0, so

∑
i/∈I(p̄i − u∗

i )[− log(u∗
i ) − 1] is

bounded. But for i ∈ I, u∗
i = 0, so that − log(u∗

i )−1 = +∞.

Also, since p̄i > 0, we have (p̄−u∗)T∇H(u∗) = +∞. This

means that H(u) increases when we slightly move u away

from u∗ towards p̄. Thus, u∗ is not the optimal solution.

Therefore u∗
i > 0,∀i. By complementary slackness, w∗

i =
0. So the term

∑
i w∗

i ui in (25) is 0. Since u∗ maximizes

L(u;y∗,w∗, z∗), it follows that

∂L(u∗;y∗,w∗, z∗)

∂ui
= − log(u∗

i )− 1 +
∑

k

y∗
kxi

k + z = 0,∀i.

Combining these identities and
∑

i u∗
i = 1, we have

u∗
i =

exp(
∑

k y∗
kxi

k)
∑

j exp(
∑

k y∗
kxj

k)
,∀i. (26)

Plugging (26) back into (25), we have

maxu L(u;y∗,w∗, z∗) = −F (y∗;λ). Since u∗ and the

dual variables y∗ solves (11), y∗ is the solution of

miny≥0{−F (y;λ)} (and the optimum is attained). So,

supr≥0 F (r;λ) is attained by r = y∗. The above proof also

shows that (4) is the dual problem of (11).

APPENDIX B

CONVERGENCE AND STABILITY PROPERTIES OF

ALGORITHM (9)

The following are some main results in [38], which includes

the detailed proofs.

(i). Let rmax = +∞, i.e., we impose no upper bound on

rk(j). If {α(j)} and {T (j)} meet certain conditions (which

are satisfied by α(j) = 1/[(j+2) log(j+2)] and T (j) = j+2),

and h(rk(j)) = min{c/rk(j), w̄} where c, w̄ > 0 (see section

V for an explanation of the function), then for any strictly

feasible λ ∈ C, r(j) converges with probability 1 to some

r∗∗ which satisfies sk(r∗∗) > λk,∀k. Also, the queues are

“rate-stable” [38]. (With time-varying α(j), T (j), the system

is not time-homogeneous, in which case the “positive Harris

recurrence” of the queues is not well defined. Therefore we use

the notion of “rate-stable” here. A concern for “rate stability”

is that the queue lengths may become large. However, since

sk(r∗∗) > λk,∀k, it can be shown that the queue lengths

return to 0 infinitely often w. p. 1.)

(ii) Let rmax < +∞ and h(rk(j)) = ǫ > 0. Define the

capacity region

C′(rmax, ǫ) : = {λ|λ + ǫ · 1 ∈ C, and

arg max
r≥0

F (r;λ + ǫ · 1) ∈ [0, rmax]K}

If λ ∈ C′(rmax, ǫ), then there exist constant step size α(j) = α
and update interval T (j) = T such that all queues are stable.

Note that C′(rmax, ǫ) → C as rmax → +∞ and ǫ → 0. So

the maximal throughput can be arbitrarily approximated.

(iii) The case with h(rk(j)) = 0 (i.e., Algorithm 1): Similar

to (i), for any λ ∈ C, with rmax = +∞ and α(j), T (j) in

(i), r(j) converges with probability 1 to r∗, the solution of

(4), which satisfies sk(r∗) ≥ λk,∀k, and the queues are rate-

stable. Similar to (ii), with rmax < +∞ and assume that

λ ∈ C′(rmax, 0), then one can choose constant α(j) = α
and T (j) = T such that the long-term average service rates

are arbitrarily close to the arrival rates. As rmax → ∞,

C′(rmax, 0)→ C.
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