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Abstract— This article presents an end-to-end reservation pro-
tocol for Quality of Service (QoS) support in the MAC layer
of wireless multihop mesh networks. It reserves periodically
repeating time slots for QoS-demanding applications, while
retaining the Distributed Coordination Function (DCF) for best-
effort applications. The key features of the new protocol, called
’Distributed end-to-end Allocation of time slots for REal-time
traffic’ (DARE), are distributed setup, interference protection,
and scheduling of real-time data packets, as well as the repair
of broken reservations and the release of unused reservations.

A simulation-based performance study compares the delay and
throughput of DARE with those of DCF and the priority-based
Enhanced Distributed Channel Access (EDCA) used in IEEE
802.11e. In contrast to DCF and EDCA, DARE has a low, non-
varying delay and a constant throughput for each reserved flow.

Index Terms— Medium access control, QoS, reservation mech-
anism, CSMA, IEEE 802.11e, mesh networks.

I. INTRODUCTION

W IRELESS local area networks (WLANs) based on the
IEEE standard 802.11 have become extremely popular.

More than ever, people use WLANs for wireless Internet
access, Voice over IP, file sharing, and other applications. As
a reaction to this success, there is an increasing interest in
enhancing the WLAN standard. The 802.11 working group has
thus defined several new functionalities on both the physical
and data link layers. Besides standardization of higher-rate
transmission schemes [1] and better security functions [2],
one of the most recent activities aims at extending the single-
hop paradigm of current 802.11 technologies to a multihop
paradigm. As illustrated in Fig. 1, the idea is to enable each
network node to route traffic coming from other nodes. A
packet sent by a device is relayed from one node to another,
hop by hop, until it reaches an Internet access point or the
intended receiver. This concept results in a mesh-like topology,
as opposed to the star-like topology of conventional WLANs.

The major goal of such mesh networks is to improve the
radio coverage, while assuring simple configuration and high
reliability. Besides implementing automatic topology learning
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and dynamic path configuration, revision of the medium access
control (MAC) layer is essential, since the basic random access
protocol of 802.11— the Distributed Coordination Function
(DCF) [3] — is not well suited for mesh networks [4].
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Fig. 1. Illustration of a mesh network.

Mesh networks are expected to handle various real-time ap-
plications (e.g., Voice over IP) in addition to the classical best-
effort applications (e.g., email, web browsing). These real-
time applications require low, stable packet delay and constant
throughput. Such Quality of Service (QoS) support, however,
is not included in the original DCF. This is true for single-hop
communication and even more for multihop communication,
where the negative effects accumulate if we cascade multiple
non-synchronized, autonomously operating hops.

A possible improvement is to give packets originating
from real-time applications a higher priority when accessing
the shared channel. This concept has been standardized in
IEEE 802.11e, introducing the Enhanced Distributed Channel
Access (EDCA) [5] protocol. It defines four different traffic
categories: voice, video, best effort, and background.

The alternative QoS approach, motivated in principle by
circuit switching, is to perform an end-to-end reservation for
each real-time flow. While this approach potentially assures
end-to-end QoS, its drawback is the need for resource manage-
ment in each node and inter-node signaling. Neither is widely
available in IEEE 802.11 networks. This lack has been our
motivation to develop a protocol in this domain, which is well
suited for multihop mesh networks. Its design and performance
analysis is presented in this article. The protocol operates in
the MAC layer, where it reserves periodically occurring time
slots in the nodes in a completely distributed manner; hence,
it is called Distributed end-to-end Allocation of time slots for
REal-time traffic (DARE). To be more specific, before a real-
time transmission can begin, DARE reserves time slots in all



2 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 24, NO. ?, 2006

nodes along the route between the source node of a real-time
flow and its final destination node. It then schedules the real-
time data packets between the nodes, transmitting them in
the reserved time slots. The protocol protects the allocated
time slots from interference by informing nodes located near
the real-time path. The adjacent nodes will thus abstain from
transmitting during the reserved time slots. Finally, DARE also
handles the repair of broken reservation paths and the release
of invalidated reservations. In essence, the protocol extends
the spatial reservation concept of 802.11— achieved by the
exchange of Request-to-Send (RTS) and Clear-to-Send (CTS)
messages — to a multihop, end-to-end perspective.

A wireless mesh network will use DCF and DARE in
parallel. Data packets coming from non-real-time applications
use the Carrier Sense Multiple Access (CSMA) approach
of DCF, either with or without the exchange of RTS/CTS
messages. Data packets from real-time applications, however,
use DARE and are transmitted during the reserved time slots.
The medium access results in a combination of CSMA and
Time Division Multiple Access. The routes between source
and the destination of the real-time traffic are found by
a wireless routing protocol, e.g., the Ad hoc On-Demand
Distance Vector Routing (AODV) protocol [6].

This article introduces the DARE protocol and analyzes its
performance, compared to standard DCF and priority-based
QoS with EDCA. Section II explains in detail the DARE pro-
tocol with its different functional building blocks. Section III
presents a simulation-based performance analysis of DARE,
mainly evaluating end-to-end delay, jitter, and throughput in
comparison to DCF and EDCA. We show that, in contrast
to DCF and EDCA, DARE has a low, non-varying average
delay and a constant throughput, even at high network load.
Section IV describes related work, and finally, Section V
concludes. Appendix A gives a brief overview of the IEEE
DCF and EDCA standards and their parameters.

II. DARE PROTOCOL

We consider a wireless mesh network with nodes capable
of relaying traffic. Each node has implemented the standard
DCF and the DARE protocol. A real-time flow consists of a
periodic transmission of a fixed-size packet; different flows
can have packets of different size and periodicity. A time slot
is defined as the period of time that a node needs for either
transmitting or receiving a given real-time packet. All nodes
have synchronized, non-drifting clocks.

The DARE protocol [7]–[10] can be described by five
functional building blocks: reservation setup, real-time data
transmission, reservation protection, reservation repair, and
reservation release. The following sections explain these build-
ing blocks in detail. Hereby, we use the scenario shown in
Fig. 1: The source node wants to transmit real-time data
packets to the destination node; nodes A and B serve as relays.

A. Reservation Setup: Basic Scheme

The task of the reservation setup is to reserve time resources
in the nodes along a path between a source and a destination
node. We first describe the reservation setup when there is

only a single path; later in this article we address the case
where multiple reservations exist simultaneously.

The resource reservation is initiated by the source node. As
shown in Fig. 2, it sends a Request-to-Reserve (RTR) message,
which includes the requested duration Δ and periodicity τ of
a time slot as well as the address of the destination node.
The message is sent to the next node on the path toward
the destination node. If this node can fulfill the reservation
request (see Section II-C for details), it makes an entry in a
reservation table. The status of this entry is set to preliminary.
It then forwards the RTR to the next hop. In this way, the
message propagates, hop-by-hop, through the entire path via
all intermediate nodes to the destination node. It indicates to
all these nodes how often and for how long they must be
available for real-time transmissions.
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Fig. 2. Reservation setup. The message sequence chart corresponds to the
mesh network of Fig. 1. Nodes W, X, Y, and Z are not shown for simplicity.

The destination node generates a Clear-to-Reserve (CTR)
message. This message confirms the reservation request and
travels along the same path back to the source indicating to
the intermediate nodes that the reservation request is accepted
by all nodes. The arrival of a CTR changes the status of
the reservation table entries from preliminary to fixed. Upon
receiving the CTR, the source node can start transmission of
real-time traffic in the upcoming reserved time slots.

If a node cannot fulfill a reservation request, it does not
forward the reservation message. This means that preceding
nodes will not receive a CTR, and the reservation status will
never be fixed. Although the preliminary status does not mean
that a time slot is fully reserved, it can block other reservation
requests occurring simultaneously. This preliminary reserva-
tion will be released after some time period if the end-to-end
reservation is unsuccessful. A time-out function is used for this
purpose. When a node sends the RTR to the next node in the
path, it starts an RTR timer. If no CTR is received before
the timer expires, the reservation is released. The duration
of the RTR timer is a design parameter. Ideally, it can be
changed according to traffic requirements or network topology
or adapted after each unsuccessful reservation setup.

Nodes adjacent to the reservation path also receive the RTR
and CTR messages, being thus informed about the reserved
time slots. In essence, we extend the spatial reservation con-
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cept of DCF to cover the whole multihop path. The structure of
the two setup messages RTR and CTR is very similar to that of
RTS and CTS messages, as is the need for these messages to be
observed by adjacent nodes. The major extension is that RTR
and CTR contain Δ and τ . These values are given to the MAC
layer from the application layer. Both signaling messages also
contain information about slots reserved for the same flow at
other nodes of the same path. For medium access control of
the RTR and CTR messages themselves, we use the standard
DCF, where the messages are transmitted within the waiting
time of a short inter-frame space (SIFS).

The routes between source and destination are found by
some wireless routing protocol (e.g., AODV [6]). DARE
requires the routing protocol to provide symmetric routes
between source and destination. Mechanisms like symmetric
route pinning [11] can be used to assure this. In principle,
asymmetric routes for data flows can be supported; only the
CTR has to travel back along the RTR’s route.

B. Real-Time Data Transmission

Once the reservation is set up, the source node can transmit
its real-time packets during the reserved time slots. Fig. 3
shows a message sequence chart of a real-time data transmis-
sion. Evidently, for one real-time flow, each relay node must
reserve one time slot for receiving (“receive slot”) and one
slot for transmitting (“transmit slot”), both of duration Δ.

Due to the spatial reservation concept, nodes near a reserved
path abstain from transmission during the reserved time slots.
Hence, the possibility of interference is minimized.

DARE does not retransmit lost packets, since the delay
constraints of real-time applications are typically much stricter
than the packet loss constraints. Furthermore, we expect col-
lisions to be in any case rare due to minimized interference.
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Fig. 3. Real-time data transmission.

C. Reservation Setup: Multiple Reservations

The reservation setup is straightforward if no node in the
path already holds a reservation. If some nodes, however, are

already committed to other DARE reservations, an overlap-
ping of time slots might occur. In case of such conflicting
reservations, a relay node can re-schedule (shift in time) its
own, newly to be reserved time slot to reject as few reservation
requests as possible, hence increasing the number of supported
real-time flows.

Upon the arrival of an RTR, a node first checks whether
the requested receive slot is conflicting (overlapping) with
already existing reservations of the node. If the receive slot
is conflicting, it transmits an Update-Transmit-Reservation
(UTR) message back to the node that proposes the receive
slot. It suggests at least one time slot suitable for reception.
If the new slot can be fulfilled, preliminary reservations are
released and a new RTR is generated.

If the receive slot is not conflicting, the node checks whether
the transmit time slot is appropriate. If the transmit slot
conflicts with existing slot reservations the node performs
a re-scheduling taking different periodicities into account.
Using the greatest common divider for all periodicities already
accepted and the requested one, the node can find a suitable
shift. Periodicities that do not have any common divider (e.g.
prime numbers) are not allowed.

If a receive or a transmit slot cannot be scheduled, the
reservation request is rejected and the flow is blocked.

D. Reservation Protection

Transmissions in the real-time path must be protected
against interference. For this purpose, we apply a spatial
reservation concept: nodes located close to the real-time path
are informed about the reservation; they then abstain from
transmitting during the reserved slots.

A basic level of protection is already achieved in the
reservation setup phase, where nodes located in the trans-
mission range of the real-time path overhear and obey RTR
and CTR messages. In addition, reservation information is
also contained in the header of real-time data packets and
acknowledgments. This information consists again of the time
slot duration Δ and periodicity τ . This informs nodes that did
not overhear the reservation setup phase, for example, because
they have switched on after the setup took place.

To achieve a higher level of spatial reservation, a node does
not only avoid slots of its direct neighbors but also slots of
nodes further backward and upward in the reservation path. To
do so, the reservations of nodes up to two hops backward in
the reservation path are piggy-backed. A node that overhears
this information avoids three slots: The actual receive slot, the
preceding receive slot of the node transmitting the message,
and the receive slot of the node preceding the transmitting
node. For instance, a node adjacent to the destination node in
Fig. 3 avoids the receive slots of the destination, node B, and
node A. If a conflict of a receive slot is discovered, the node
sends an UTR to the respective node. If possible, a node also
avoids time slots of nodes upward in the reservation path. It
learns these time slots by overhearing the forwarded real-time
packets (see Section II-E).

For a node to overhear messages not addressed to itself but
to another node, it must operate in promiscuous mode; this
comes at the price of higher energy consumption [12].
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Another question with respect to reservation protection is
how far the reservation information should be propagated.
Nodes that are not located in the transmission range of
the reservation path but one hop further away could cause
interference as well, but might not be able to decode messages
sent in the path and are thus not informed about reserved slots.
The authors’ publication [9] examined a protection technique
in which all nodes that are two hops away from a reserved
path are informed. We found that these reservations are hard
to maintain and come at the cost of much explicit signaling.
As most real-time traffic is robust to some packet losses and
since additional signaling and the resulting lower spatial reuse
factor can drain the capacity of a network, we do not use
such two-hop protection in the DARE protocol. However, if
the consequence is that two reservations are set up such that
the slots overlap, both are released after a certain number of
unsuccessful transmissions (see Section II-F) and the source
re-initiates the setup.

E. Reservation Repair

An established reservation path might break during the
real-time transmission if the network topology changes. Such
changes might occur if nodes switch off or fail or if the channel
conditions change. Clearly, such path breaks must be repaired
for the real-time transmission to continue. To initiate a path
repair, the node preceding the “hole” in the path must notice
the broken link. In the following, we discuss how nodes detect
and how they repair a broken reservation path.

For a node to detect a broken link, the transmission of
real-time packets must be acknowledged.1 In DARE, such
acknowledgments are achieved implicitly: if a node sends a
real-time packet to the next node of the path, this transmission
is acknowledged in such a way that the node overhears
the next node’s transmission of this packet onward (Fig. 4).
Such implicit acknowledgments do not cause any signaling
overhead. Only at the very last hop, where the destination node
does not forward any data, does it acknowledge the reception
of real-time packets in an explicit manner (see Fig. 4: ACK).
The acknowledgment causes a small signaling overhead but
has the advantage of informing nodes in the neighborhood of
the destination node about the reservation, hence contributing
to the protection of the reservation against interference. In both
cases, if a node can no longer reach its subsequent node in
the path, i.e., it does not receive acknowledgments, it assumes
a broken link. Fig. 5 gives an example: node B switches off,
and node A detects its link failure to node B.

The subsequent path repair is done in two steps: route repair
and reservation repair. First, the MAC layer indicates the link
break to the network layer. As in standard DCF, this event
triggers the routing protocol to update the route. After the
routing protocol has repaired the route between source and
destination, the DARE protocol repairs the reservation at the
MAC layer. Depending on the routing protocol, there are two
options for reservation repair in the MAC layer (Fig. 5):

1We emphasize that these ACKs only serve in path maintenance; they are
not used for retransmissions and are thus less critical in time or dependability.
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Fig. 4. Real-time data transmission and acknowledgment.
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Fig. 5. Reservation repair scenario. Node B switches off. The routing protocol
finds a new route, either using local or global repair. The new route is then
reserved by the DARE protocol.

• Local repair. If the network route was repaired locally,
DARE does so as well, which is effective and low in
signaling. All nodes up to the node that detects the link
break can keep their reservations as neither the period nor
the time slot size has changed. Each node that is within
range of the detecting node already has a reservation entry
for this slot. Such nodes are potential candidates to act
as new relay nodes. In the example, the link between the
source and node A is maintained; the path between A and
the destination is repaired locally via nodes Y and Z.

• Global repair. If the route repair was initiated by the
source, the new route could be totally different from the
old route. DARE releases all old reservations between
source and destination (e.g., node A) and requests a new
reservation via node V, W, and X to the Internet.

Finally, note that any node can force a reservation to be
broken so that a route update procedure is initiated.

F. Reservation Release

Once a real-time flow has finished, all nodes belonging to
this flow’s reserved path should release their corresponding
reservations. Similarly, if a reservation path breaks and a new
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one is established, the nodes of the old path should release
their reservations, since they are no longer needed.

To release unused reservations, DARE employs a time-out.
If a node does not receive or overhear any real-time data
packet for a number of successive slots, it will release all
reserved slots for this flow. The same release rule holds for
nodes located adjacently to the reservation path, if they do not
overhear real-time packets during their reserved slots.

Note that for some applications where silent periods occur,
reservations might be falsely released. To avoid this, the source
node is allowed to transmit dummy packets or the release time-
out value could be increased during path setup.

III. PERFORMANCE ANALYSIS

A. Simulation Setup, Parameters, and Metrics

The DARE protocol is simulated by extending the well-
known simulation tool NS-2 [13]. We use 400 mesh nodes,
which are randomly uniformly located in a 2 × 2 km 2 area.
The mesh network is connected to a wired network by four
Internet gateways (“access points”), whose positions are given
in Fig. 6. Ordinary nodes can switch on or off, modeling their
participation in the mesh network. Both the on and off periods
are modeled by exponentially distributed random variables
with the same mean value μ. Nodes originating a flow or
access points never switch off.

0   0.5   1     1.5      2
[km]

[km]

0.5

1

1.5

2

Fig. 6. Simulation setup: 4 gateways (o), 400 randomly located nodes (+).

All wireless communication uses a fixed transmission power
of 100mW; using NS-2’s standard channel model, this results
in a communication range of about 230 m. As MAC protocols,
we consider DCF as provided by NS-2 as well as our own
implementation of EDCA [14] and DARE. As a routing
protocol, we use NS-2’s implementation of AODV.

To model the network traffic, a constant bit rate of 1 Mbps
is assumed. We distinguish between real-time flows and non-
real-time (background) flows. A real-time flow sends fixed-
size packets every 100 ms; in EDCA, real-time flows are given
highest priority. A non-real-time flow uses exponentially dis-
tributed inter-packet times and a fixed packet size (512 bytes).
The number of real-time flows is varied, as is the total amount
of background traffic. For background traffic, a number of
sources is chosen randomly, each with load 20 or 50 kbps that
sums up to the given background load. For either flow type,
the destination node is the closest access point.

To summarize, the varying parameters in this performance
evaluation (and their default values) are as follows: (i) the
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(a) N = 10 real-time flows.
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(b) N = 20 real-time flows.

Fig. 7. CDF of real-time packet delay.

number of real-time flows N (default: N = 10), (ii) the non-
real-time traffic load (default: 0), (iii) the expected mean on/
off periods of nodes μ (default: μ = 600s), (iv) the packet size
of real-time flows (default: 512 bytes), and, obviously, (v) the
MAC protocols.

As metrics, we use (i) the delay of packets from source
to access point, (ii) the throughput for individual real-time
flows, and (iii) the amount of slot shifts and blocked flows.
Only successfully reserved real-time flows are considered in
these metrics (except for blocked flows, of course). We do not
consider the performance of background traffic.

To obtain statistically meaningful results, we ran 200 rep-
etitions for each selected combination of parameters. Each
repetition is run for 2000 s simulated time (except when
varying μ, see below).

B. Delay

As a first performance metric, we look at the end-to-end
delay of packets in a real-time flow.

Fig. 7(a) shows the Cumulative Distribution Function (CDF)
of the delay, comparing DCF, EDCA, and DARE using default
parameters. DARE manages to deliver all packets of reserved
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flows to their destination within less than 0.05 s. DCF and
EDCA, on the other hand, deliver a substantially smaller
fraction of packets within this time; DCF needs up to 3 s to
deliver a packet in this setup. Increasing the number of real-
time flows (e.g., from N = 10 to 20), makes the differences
between these protocols even more pronounced (Fig. 7(b)).

These results also give more insight into the delay charac-
teristics of DARE. The step-like behavior of the delay’s CDF
is due to flows traversing different numbers of hops. The fact
that the CDF is not a perfect step function (with one delay
value for each number of hops between source and destination)
is due to slot shifting taking place in the network, resulting
in slightly different delay values for packets traveling along
different paths of the same hop count. Nonetheless, all packets
belonging to an established flow arrive with the same delay
to the destination; the difference only exists between different
flows, not between packets of the same flow. Overall, the delay
is predictable when knowing the number of hops that a packet
has to travel. DCF and EDCA, on the other hand, have a much
more spread out CDF, reflecting the unpredictability of their
random access delay.

Not only is DARE’s packet delay more predictable, it is also
substantially smaller. Fig. 8 compares average packet delays
of the three MAC protocols as a function of the number of
(established) real-time flows N . Averaged over different flows
with different hop count, DARE achieves a practically constant
delay irrespective of N ; DCF and EDCA deteriorate at higher
offered load.
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Fig. 8. Average delay over the number of real-time flows.

Comparing Figs. 7(a) and 7(b) also indicates that with
an increased number of offered flows, the step characteristic
of DARE’s delay CDF is less pronounced. This observation
corresponds to the percentage of flows that experience a slot
shift (Fig. 9). Slot shifting becomes necessary more frequently
if the network fills up with reservations, and new flows
can only be admitted if they “squeeze in” between existing
flows. This explains the somewhat increased (but still good)
variability of DARE’s delay at higher offered load. Still, all
packets belonging to a shifted flow have the same delay with
no variation.
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Fig. 9. Percentage of flows experiencing slot shifts.

C. Throughput and Blocking

As an outcome of another simulation with default parame-
ters, Fig. 10 reports the average throughput for each protocol
as a function of the number of attempted real-time flows.
While DCF shows the lowest throughput, EDCA outperforms
DARE if the number of attempted flows is low (here: 10).
For more real-time flows (here: 20), DARE performs better
than EDCA. This result requires closer inspection. With the
chosen parameters (512 byte packets every 100 ms), a single
real-time flow generates about 40.9 kbps load on the network.
This shows that DARE can actually only support about 7 out
of 10 offered flows (resulting in about 280 kbps offered load).
Since a successfully reserved flow should be able to transport
all its packets, this lack in throughput could be explained by
rejected flow reservations.
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Fig. 10. Average throughput over the number of offered real-time flows.

This interpretation is corroborated by Fig. 11, showing
the ratio of flows that are attempted but not accepted by
DARE. Such an unsuccessful flow could be due to a rejected
reservation request (blocking) or due to a path failure. These
numbers explain the smaller throughput of DARE compared
to EDCA — e.g., about 25 % unsuccessful flows pretty much
explain this gap — and are in accordance with DARE’s design
philosophy only to admit a flow when it can be supported at
high throughput and low delay. Accordingly, the number of
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blocked flows also increases at higher offered load since the
network is less likely to be able to support it.
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Fig. 11. Percentage of blocked flows as function of number of offered flows.

D. Impact of Background Traffic

So far, we have varied the number of active real-time
flows but did not include any non-real-time traffic in the
scenarios. This subsection looks at the consequences of such
background traffic. Again, we fix all parameters to their default
values (N = 10, corresponding to about 400 kbps real-time
load) except background load, which is varied between 0 and
1000 kbps total load generated by all sources. This corresponds
to one third of the total available network capacity (four
access points operating at 1 Mbps each can at maximum drain
4 Mbps from the mesh) and is sufficient to demonstrate crucial
differences between different protocols. Larger values of the
background traffic are analyzed in reference [7] for different
scenarios with similar results.

Figure 12 shows the impact of the background traffic on the
average delay and throughput of the real-time traffic. DARE’s
delay and throughput do not significantly vary with increased
background traffic, confirming the initial design choices and
showing that real-time traffic is protected by means of reser-
vations from interference. DCF and EDCA, on the other hand,
suffer considerably from increased background load. Even at
modest background load, the performance of DCF or EDCA
is unacceptable, e.g., for interactive applications.

E. Impact of Node Outage

In the previous simulations, nodes were always active and
did not switch off. Let us now investigate the impact of nodes
switching on and off, in particular the impact of the average
on/off period μ on delay and throughput. To improve statistical
confidence, the simulated time is now 3600 s.

If we increase the average on and off time μ of individual
nodes, nodes change their status less frequently, hence the
overall topology becomes more stable. As a consequence,
fewer link breaks occur in existing reservations, and fewer
disturbances occur due to nodes powering on and possibly
interfering with reservations. All in all, we expect longer
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Fig. 12. Impact of background traffic load on real-time delay and throughput.

on/off times to be beneficial. This intuition is validated by
the simulation results shown in Fig. 13. As expected, the delay
shortens and the throughput increases as the topology becomes
more stable. Nevertheless, DARE still works well even for
small μ, where the topology changes frequently.

F. Impact of Number of Hops

The number of hops of a path has huge impact on the
end-to-end delay. Naturally, increasing a path with another
hop means that one more node must receive and transmit
the packet. For EDCA and DCF, which have contention-based
access, an increased hop number has bigger repercussions on
delay and throughput than for DARE. We demonstrate this by
a simulation of a network with only one real-time flow where
the number of hops is varied. Two background traffic types,
100 kbps and 500 kbps, are transmitted from nodes all within
the direct neighborhood of the reserved path.

Fig. 14 shows the impact of the number of hops on the
delay and the throughput. The delay is shown as average
delay per hop, where DARE has a constant per hop delay of
approximately 0.005 s. EDCA and DCF have a large increase
of the per-hop delay. The average path throughput decreases
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Fig. 13. Impact of node outage on real-time delay and throughput.

drastically for EDCA and DCF as the number of hops increase,
especially when the network load is higher.

G. Impact of Packet Size

We investigate the impact of the packet size using a deter-
ministic scenario; we check how many real-time flows can be
reserved at one AP, without background traffic or path failure.
The sources are located such that no intermediate node is
involved in more than one real-time flow. The number of hops
of a path is fixed for each simulation; all paths have either 2
or 3 hops. We fix the real-time traffic’s period to 100 ms and
look at packet sizes 144, 320, 512, and 1024 bytes. We let
the sources of the real-time flows start at a random time and
perform 400 simulations for each hop number and packet size
and look at the average number of paths that can be accepted.
The results are given in Table I.

TABLE I

NUMBER OF ESTABLISHED RESERVATION PATHS

Packet size Hops per path
2 3

144 8.4 6.2
320 7.7 5.9
512 6.4 4.7
1024 2.3 1.3

The maximum number of paths that could be supported for
packet sizes 144 and 320 bytes is above 12 for both two and
three hop paths. The maximum number of possible paths for
512 bytes is 8 for the three hop scenario. But due to inter-slot
space between accepted reservations that could not be used,
the average number of paths does not differ that much (except
for 1024 bytes).
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Fig. 14. Impact of path length on real-time delay and throughput.

IV. RELATED WORK

Priority-based approaches for QoS support in DCF are
described in references [5], [15]–[17]. Within a node, a packet
is handled according to its priority level. Packets belonging
to different priority classes are separated via different queues
within a node and different waiting/random backoff times
before they are transmitted.

A reservation mechanism allocates resources for transmis-
sion, i.e. time slots at each hop of a multihop path. To min-
imize the probability that a path might not be fully reserved,
these reservations should be performed end-to-end before
transmission of data begins. Existing mechanisms [18]–[22],
however, tend to reserve each hop separately; most common
here is the RTS/CTS handshake. An end-to-end reservation is
still considered to be a challenge in reference [23]. Further,
the reservation should be performed for the whole flow, which
minimizes the signaling load and guarantees a non-varying
quality during the whole application transmission.

End-to-end flow reservation mechanisms have been widely
considered in wired networks, but the situation in wireless
mesh networks is more challenging; nodes not part of a
reserved path might interfere. Sufficient reservation infor-
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mation must be spread to these nodes. To explicitly ex-
change reservation tables as in the MACA/PR protocol [24]
or transmissions of energy bursts as in Blackburst [21] are
some existing methods. Another solution, and our suggestion,
is to use a piggy-back technique. This method minimizes
signaling and information overload; nodes are only informed
about reservations that they could directly interfere with [18].
Moreover, all reservation information should be spread in a
two-hop neighborhood. A node that is too far away to be able
to decode a packet may still be a possible interferer [25]. This
is also true for nodes participating in a path; hence, they must
abstain in reserved slots two hops back.

What is largely missing in existing reservation mechanisms
is failure handling; reserved paths can break due to nodes leav-
ing the chain and old reservations must be released. Our work
addresses this basic challenge of an end-to-end, interference-
protected, low-overhead, failure-handling protocol.

V. CONCLUSIONS

This article presented DARE — a distributed end-to-end
reservation protocol for IEEE 802.11-based wireless mesh
networks. The approach is to allocate and use periodic time
slots for QoS-demanding applications. DARE reserves these
time slots in a fully distributed way, schedules the real-time
data packets, repairs broken reservations, and disseminates the
reservation information to potential interferers using a piggy-
back technique.

Our simulation-based study shows that DARE offers a
reliable and efficient support for QoS applications. It provides
a constant throughput as well as low and stable end-to-end
delay for a reserved real-time flow. While the performance of
DCF and EDCA strongly degrades with increasing network
load, DARE offers stable throughput and delay even for high
traffic loads. Only if the network load is low, EDCA yields a
higher throughput.

Some extensions could further improve the DARE approach.
One is to piggy-back data on the RTR messages or to send
early data using DCF while the reservation is still being set
up. This shortens the path setup delay but in turn introduces
uncertainties in the early phase of a flow. A further open issue
is to investigate the suitability of DARE in networks with
mobile nodes.
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APPENDIX A: DCF AND EDCA BASICS

This appendix explains the random access control in
IEEE 802.11 networks, following the Distributed Coordina-
tion Function (DCF) and the Enhanced Distributed Channel
Access (EDCA) protocol.

Before a node is allowed to transmit, it must sense the
shared channel. If the channel is idle, the node waits a certain
time period, namely a Distributed Inter Frame Space (DIFS)
in case of DCF, or an Arbitrary Inter Frame Space (AIFS)
in case of EDCA. During this waiting period, it continues to
sense the channel. If the channel is still idle after the waiting
period, the node transmits.

If the channel becomes busy (not idle) during the waiting
period, the node performs a backoff procedure. It has to wait
(“back off”) a certain random time. This random time is
determined as follows. The node sets a backoff counter to a
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random integer number from the interval [0, CW]. This interval
is called the contention window (CW). Whenever the channel
is idle for a period of aSlotTime, the node decreases its backoff
counter by one. If the channel is busy during that period, it
freezes the counter until the channel is idle again. Once the
counter reaches zero, the node transmits.

Optionally, before a node transmits its payload data, it
performs a virtual carrier sensing using a two-way handshake
to the intended receiver. The node sends a Request-to-Send
(RTS) message to the intended receiver. If the latter is not
engaged in another transmission, it answers with a Clear-
to-Send (CTS) message back to the sender. Both control
messages contain the duration of the planned transmission
and inform surrounding nodes that they have to abstain from
sending during this time.

While DCF treats each traffic flow in the same manner
by using the same parameters CW and DIFS for each flow,
the EDCA introduces different priority classes (“access cat-
egories”). Four access categories have been defined (lowest
priority first): background, best effort, video and voice. In each
node, each access category has its own queue and packets of
higher priority queues are handled first. Moreover, an access
category of high priority uses a small CW and a small AIFS
such that it is likely that traffic belonging to this category can
access the channel first. The AIFS for the priority classes are
determined according to:

AIFS = AIFSN · aSlotT ime + aSIFST ime,

where AIFSN is a real number and aSIFSTime is the physical
layer parameter for the Short Inter Frame Space (SIFS) used
between RTS and CTS, and, Data and ACK. For the smallest
possible AIFS, we have AIFSN= 2 [3], [5]. Table V summa-
rizes the minimum and maximum CW values as well as the
AIFSN of the four EDCA categories.

TABLE II

BACKOFF AND AIFSN VALUES FOR EDCA AND DCF

Category Voice Video Best effort Background DCF
CWmin 7 15 31 31 31
CWmax 15 31 1023 1023 1023
AIFSN 2 2 3 7 2
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