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Abstract 

The design of a layered file service for the Amoeba Distri- 
buted System is discussed, on top of which various applica- 
tions can easily be intplemented. The bottom layer is 
formed by the Amoeba Block Services, responsible for 
implementing stable storage and repficated, highly avail- 
able disk blocks. The next layer is formed by the Amoeba 
File Service which provides version management and con- 
cur~ncy control for tree-structured files. On top of this 
layer, the appficafions, ranging from databases to source 
code control systems, determine the structure of the file 
trees and provide an interface to the users. 

1. Introduction 

File systems play an important role in allowing information 
to be widely accessible, since most information is in one way 
or another stored in files. Many different kinds of file sys- 
tems for distributed systems exist, ranging from private file 
systems for each host to special purpose file servers for the 
whole network. Each kind of file system has its own charac- 
teristics concerning accessibility, complexity, protection of 
information against unautho/'ised access, speed and distribu- 
tiveness. 

The ideal distributed file system would be fast, files would 
always be near the hosts needing them, there would be pro- 
tection, if necessary, to guard against access from unauthor- 
ised hosts or users, files could be shared among different 
hosts at the same time, and the system would be totally 
immune agains individual file server crashes or disk crashes. 
Unfortunately, such distributed file systems do not yet exist, 
and improving one aspect of a file system is nearly always 
detrimental to another. The consequence, for instance, of 
replicating files at several sites to improve their availability 
is that updating these files will become more costly, since all 
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copies have to be updated, and if, additionally, the changes 
made by different users must be synchronised, such that the 
changes made by one user do not interfere with the data 
read by another, then the cost of file operations could be 
increased by several orders of magnitude. 

This paper goes into the design of the Amoeba File Ser- 
vice, one of the three file services for the Amoeba Distri- 
buted System [MuUender85a]. Section 2 describes the con- 
siderations that led to the design of this file server and gives 
an overview of related work. The underlying Block Service 
is briefly discussed in Section 3. A detailed description of 
the Amoeba File Service follows in Section 4. 

2. Design Principles 

The Amoeba Distributed System was designed by Mullender 
and Tanenbaum at the Vrije Universiteit in Amsterdam 
[Mullender85b]. Amoeba is an open system, designed to 
accommodate heterogeneous hardware and software. The 
Amoeba Kernel, the replicated operating system running in 
most of the machines on the network, supports process 
management and interprocess communication. All other 
services are provided by server programs that execute in 
user space. A capability mechanism provides protected 
communication between clients and services and protected 
access to objects [Mullender84]. 

The advantages of open systems over the traditional 
approach are obvious: operating system kernels become 
smaller and more maintainable, operating system services 
are no longer in the kernel, making them portable, and 
allowing multiple, equivalent, but different services to co- 
exist side by side. 

Data base management systems often have their own 
operating systems, tailored to this particular application, 
because traditional operating systems provided the wrong 
fimctionality [Stonebraker81, Tanenbaum82]. An open 
operating system, with the right kind of file service, can sup- 
port data base management efficiently, while integration 
with other system services is possible. A hierarchy of ser- 
vices, as illustrated by FtouR~ 1, allows a logical layering of 
facilities while the development effort can be shared. 

The design of the Amoeba File Server was an experiment. 
We wanted to try to design a layered file system, where 
replication, concurrency control, and database management 
would be in different layers. The bottom layer, the physical 

51 



source code 
control 
system 

s e r v e r  

stable 
block storage 
s e r v e r  

s e r v e r  

/ \  

distributed 
data base 

s e r v e r  

Amoeba 
File 

Server 

< 
optical 

disk 
s e r v e r  

FIOURE 1. An example of a storage services hierarchy in a n  open system. 

/ayer, consists of the storage devices: electronic disks, mag- 
netic disks and write-once optical disks. The next layer is the 
Block Seroice, providing virtual disk blocks of various kinds: fast 
but  crash-volatile storage in memory, stable-storage disk 
blocks, replicated disk blocks with atomic write on all copies 
simultaneously, etc. The next layer up is the file system, 
with concurrency control mechanisms for file access, and the 
top layer, providing the interface to various applications, 
provides database management services. This paper 
concentrates on the middle layer: the file system. 

The Amoeba File Service is a distributed file service: a 
request for an operation on a file can go to any one of a 
number  of file server processes where it will be executed. 
The layered structure is an advantage here; the Block Ser- 
vice already forms an abstraction away from physical 
storage locations. 

But the layered structure of the file system is also a poten- 
tial bottleneck for performance of great magnitude: A simple 
query on a tiny database from a client process invokes the 
database service, which invokes the file service, which 
invokes the block service, which finds the block on disk. 
Caching strategies are essential at all levels of the hierarchy 
to avoid having to descend to the bottom level of the service 
hierarchy on each client request. However, caches and con- 
currency control mechanisms are likely to become enemies: 

the administration of the caches in a rapidly changing 
envLonment can cause more inefficiency than not keeping 
caches at all. Obviously, thinking about caching possibili- 
ties and strategies have to be an  essential part of the design 
process. 

File services naust provide the tools for the efficient imple- 
mentation of as wide a set of applications as possible. This 
can be realised, in part, by providing a large set of different 
file services, each tailored for a particular application, but, 
naturally, it is best to have as few as possible different file 
services that cover the needs of every conceivable applica- 
tion. 

Currently, Amoeba has three file servers: a simple one, 
written as a student programming project, which imple- 
ments simple flat files, without concurrency control; a 
UNix-like t file server, which is used in combination with a 
Umx emulation package for running Umx software on 
Amoeba; and the Amoeba File Server, described in this 
paper. 

An important design principle was also: 'You should not 
have to pay for those features you do not need'. A file 
server, for instance, that implements atomic update on repli- 
cated files is a very nice thing to have, but a user who wants 

t U m x  is a T r a d e m a r k  of  A T & T  Bell Laboratories.  
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to store the output of a compiler, prior to calling a linking 
loader doesn't share that output with any other user; he is 
not interested in having his file replicated across five 
different network nodes for increased availability, nor is he 
interested in having his file atomicly updated. All such a 
user wants is a temporary file that can be quickly accessed 
and changed, and just reliable enough that usually he 
doesn't need to compile his program all over because the file 
was lost. On  the one hand, our file server should cater for 
users who just want a reasonably reliable repository for their 
files, cheap and fast, while on the other hand, other users 
should be taken into account who need ultra-reliable storage 
for their files, fancy synchronisation of access by many 
simultaneous users, and guaranteed availability, who will be 
prepared to accept that it must be more expensive and 
slower. 

Another important issue in file service design is that the 
semantics of file service be easy to understand. The inter- 
face to the file server must not only be simple, with as few 
commands as possible, clients must also have a simple con- 
cepdon of the structure of a file, and how to use the 
mechanisms provided. Even if clients want highly sophisti- 
cated things done, like changing a heavily shared file atomi- 
cally, they should not be burdened with the details of a five 
step locking protocol, or have to know just how many times 
the file is replicated. 

It is a design goal that the distributed file server should be 
suitable for an Amoeba environment, using the protection 
provided by Amoeba's ports and capabilities [Mullender84]. 

2.1. Related Work 

Since the beginning of distributed computing, many file 
servers have been built. In this section we shall look at 
some that arc closely related to our work: XDFS [Sturgis80] 
FELIX [Fridrich81], SWALLOW [Reed81], and ALpL~E 
[Brown85]. They all have mechanisms for concurrency con- 
trol. Most file servers, including the Cambridge File Server 
[Dion80], XDFS, FELIX and ALPINE use locking 
[Eswaran76], while some, among them SWALLOW, use times- 
tamps [Reed78]. 

XDFS is a distributed file server that uses the notion of 
transactions. Open transaction and close transaction commands 
bracket a series of read write commands to one or more files, 
and the system guarantees the atomic property for these tran- 
sactions; that is, either all of the changes will be done, and 
the transaction succeeds, or none, and the transaction fails. 
XDFS realises the atomic property via so-called intentions 
l/sts, a list of changes to the file and a two-phase commit 
protocol. 

XDFS uses an interesting locking mechanism to guarantee 
serialisability: there are three kinds of locks, read locks, 
intention-write locks, and commit locks. When a client has 
locked a datum on a server for some time, a timer expires 
and the lock becomes vulnerable. Another client, waiting on 
that lock, can then prod the server, requesting it to release 
its lock. If  it is in a state to do so, it releases its lock, 
otherwise it ignores the prod. 

The FELIX file server also uses locking, although here it is 
at the file level. The  FELIX locking mechanism is combined 
with a version mechanism: when a file is examined or 
modified, a new version of the file is created. A new version 

is created by making a (virtual) copy of the current version; 
this new version can then be read and modified, and, when 
all changes have been made, the new version may become 
the new current version. Sharing is controlled using locks, 
providing six access modes. Files are tree-structured. A new 
version is created by copying a pointer to the root of the 
current version. When it is modified, a copy-on-write 
mechanism is used which leaves the current version intact. 
With this mechanism, only the changes between versions are 
stored. 

ALPINE offers the user a choice between locking at the file 
level or at the page level. File locking is the default, but 
sophisticated applications are provided with mechanisms for 
setting and releasing various types of locks on individual 
pages of a file. A transaction log is kept to enable recovery 
from failures and deadlocks caused by conflicting locking 
operations. Brown et. al. claim that transaction logs can be 
implemented more efficiently than a shadow-page mechan- 
ism [Brown85]. A transaction log mechanism, however, 
makes it more difficult to implement an efficient and simple 
caching mechanism, as shown in § 4.5. 

Like FELIX, SWALLOW also uses a version mechanism, but 
the synchronisation of concurrent access is quite different. 
SWALLOW USes a timestamp mechanism, based on Reed's 
notion of pseudo t/me. This mechanism is used to ensure the 
atomic property of updates to collections of arbitrary objects 
(e.g., files). Additionally, versions do not overlap; that is, 
they do not share the unmodified portions of the file. 

2.2. The  Amoeba File Service Compared  With Other  File 
Servers 

The Amoeba File Server is a file server, with a version 
mechanism similar to that of FELIX, but in contrast to other 
file servers, it uses a combination of locking [Eswaran76] 
with an optimistic concurrency control mechanism 
[Kung81, Robinson82, Schlageter81]. Optimistic con- 
currency control mechanisms have been used in data base 
management systems, but we have never seen them used in 
a file server. Yet, an optimistic concurrency control 
mechanism, combined with a version mechanism provide a 
number of advantages, not present in other file systems. 

The  most important characteristic of a version mechanism 
is that the file system is always in a consistent state. Most 
file systems update files in place and need a mechanism for 

bringing back the file system to a consistent state after a 
crash of a server and possibly also after a crash of a client. 
A client crash can cause parts of the file system to be inac- 
cessible for some time, for instance, because a rollback 
operation must be done first to bring the file system back to 
a consistent state. In the Amoeba File Service, the file sys- 
tem is always in a consistent state (assuming the updates 
themselves are internally consistent). Server crashes have no 
serious consequences: there is no rollback, clients need only 
redo the update that remained unfinished because of the 
crash. Clients do not have to wait until the server is 
restored, because they can use another server to do their 
updates. 

In a way, optimistic concurrency control and locking are 
complementary mechanisms: Optimistic concurrency control 
maximises concurrency and works best when updates are 
small and the likelyhood that an item is the subject of two 
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simultaneous updates is small. Locking, in contrast, does 
not allow as much concurrency, and is more suitable when 
updates are large and unwieldy and when the probability of 
an item being subject to more than one update is significant. 
The  Amoeba File Service combines locking and optimistic 
concurrency control in such a way that updates of large 
bodies of data (several files) use locking to prevent having to 
redo them if they clash with another update. Updates of 
small bodies of data (one file) are less likely to clash with 
other updates, so an optimistic approach is used here. 
When necessary, a soft-locking scheme can be used in addi- 
tion to optimistic concurrency control to ward off potential 
conflicting updates. In all cases, the mechanisms for carry- 
ing out updates guarantee consistency of the file system at 
all times. 

The  Amoeba File Service provides the necessary mechan- 
isms to maintain caches of data. Caching is an important 
concept in distributed systems [Lampson83], ITC 
[Satyanarayanan85] and CFS [Schroeder85] mention cach- 
ing mechanisms as important parts of the system. Both 
Amoeba File Servers and their clients can hold data in a 
cache. In many file systems, it is difficult or impossible to 
maintain caches, because the integrity of the data in the 
cache cannot be assured. ITC was not designed for data- 
base applications and does not provide complicated 
machinery for concurrency control; maintaining a cache is 
relatively simple there. XDFS uses 'unsolicited messages' to 
tell clients to unlock cached data when it is going to be 
modified. This makes their caching strategy efficient only 
for data that is rarely modified. In CFS, shared files do not 
change after creation which makes caching trivial; a version 
mechanism embedded in the naming mechanism is used to 

reflect change. 
On  the Amoeba File Service, the integrity of the cache 

need only be checked at the start of a transaction. The cost 
of checking whether the cache is up-to-date is small, even 
for files that are frequently modified. Furthermore, the 
Amoeba File Service needs no unexpected 'unsolicited mes- 
sages.' 

3. T h e  B l o c k  S e r v e r  

The principle of separating the issues of file service and 
block service makes it easy to combine different methods of 
storage (e.g., stable storage [Lampson79]), and storage 
media (e.g., small fast 'electronic disks,' large slow magnetic 
disks, very large optical disks) in one system. Carefully 
designed, disk service can combine high speed with high 
reliability, using techniques, such as caching and dual 
storage, both on fast, but not so reliable storage, and slow, 
but very reliable storage. 

We assume the block service implements as a minimum 
commands to allocate, deallocate, read and write fixed size 
blocks of data. Protection must be provided, so that a 
block, allocated by user A cannot be accessed by user B 
without A's  permission. Writing a block must be an atomic 
action, with an acknowledgement that is returned after the 
block has been stored on disk. This property is vital for the 
implementation of atomic update on files. 

The  block server can implement a simple locking facility 
on individual blocks. Based on this, file services can realise 

concurrency control policies. The  Amoeba File Service, to 
commit a version of a file, for instance, will exclusively lock 
and read a block, examine and mq:x.lify it, then write and 
unlock the block again. 

Magnetic disks and optical disks do not usually lose their 
information in a crash, but it does happen occasionally. In  
any case, they are at least temporarily inaccessible. In order 
to achieve high availability in the face of disk crashes, it is 
necessary to store every block at least twice, on different 
disks, managed by different servers. Lampson and Sturgis 
[Lampson79] have suggested a method to use dual disk 
drives to implement stable storage. With minor modifications 
their method can be used to provide disk service which con- 
tinues to be available when single-site crashes occur. 

4. A m o e b a  F i l e  S e r v i c e  

The Amoeba File Service was developed for, but is not res- 
tricted to, the Amoeba Distributed Operating System. It  
implements the file system as a tree of pages, whose subtrees 
are files, and uses a combination of an optimistic con- 
currency control mechanism and a locking mechanism to 
prevent conflicts in simultaneous updates. 

The  Amoeba File Service implements optimistic con- 
currency control by a version mechanism: When a client 
opens a file for modification, a new version of the file is 
created, which initially behaves like a copy of the file. Then 
the modifications are made, and finally a commit operation 
makes the modifications permanent by replacing the previ- 
ous current version with the new one. After commit, a ver- 
sion becomes immutable. Several uncommitted versions of 
the same file can exist at a time. The  Amoeba File Service 
checks on commit whether the modifications to the file con- 
stitute a sefialisability conflict (see [Kung81]). 

The  current state of a file is contained in the current ver- 
sion. Committed versions represent past states of a file; 
uncommitted versions represent possible future states of the 
file. Files are accessed by their file capability, versions by 
their version capability. Atomic updates on files are brack- 
eted :by creating a version and committing a version. The  
current state of a file is always represented by the contents 
of the current version. Committing a version makes that 
version the current one. 

The  Amoeba File Service is a distributed service. Several 
server processes can be established on one or several physi- 
cal machines, and each server is capable of handling 
updates on any file. Each version has a manager,  the server 
process which created the version. Different versions of a 
file can have different managers. A client will typically 
direct all requests to the Amoeba File Service to a server 
process that is close to it. New versions will thus tend to be 
close to the clients that ordered their creation. 

A version is represented as a tree of pages. Clients can 
read or write a page at a time. The maximum length of a 
page is determined by the maximum length of an Amoeba 
message transaction: 32K bytes. This ensures that pages 
can be read and written in one (atomic) action.* A page 

* Arbitrarily long pages can be written atomically by writing them 
back-to-front as a linked list, whereby the head block is (over)written 
last, and the other blocks in the list are allocated from the pool of flee 
disk blocks. After wridng, the blocks making up the previous linked list 
can be freed. 
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may contain both data  and references to pages fiarther down 
in the tree. A reference consists of a block number and 
some flag bits that Amoeba File Service uses for concurrency 
control. The  number of data bytes in a page is variable 
(per page) up to the maximum size of a page. 

Clients have explicit control over the shape of the page 
tree. Pages within a file are referred to by a pathname which 
is constructed as follows: The root page has an empty path- 
name. The  pathnarne of a page that is not the root is the 
concatenation of the pathname of its parent page with the 
/ndex of its reference in the array of references in the parent 
page. 

This file representation has been chosen with the express 
intention of giving clients (file systems, data base systems, 
source code control systems, etc.) as much control over the 
shape of files as possible. Using the file structure provided 
by the Amoeba File Service, objects ranging from linear files 
to B-trees can easily be represented. 

The  Amoeba File Service provides a set of commands for 
the management of files and versions. There are commands 
to read and write the pages of a version and commands to 
manipulate the shape of a version's page tree (split pages 
into two, move subtrees to another part of the tree, etc.). 

Files can be grouped together in "superfiles," and superfiles 
can be grouped in other superfiles. Such a superfile struc- 
ture is a thus also a tree structure. A superfile is, in fact, 
almost exactly like an ordinary file: All pages of a superfile 

file C 

may contain data, exactly like an ordinary file; the root 
page of a superfile, however, contains references to the root 
pages of other files, superfiles, or both. The Amoeba File 
Server provides atomic update on files, or superfiles. Files 
or superfiles without a common root cannot be updated 
atomically. 

The  top of the tree, that is, the collection of root pages of 
files, is stored on magnetic random-access media, for 
instance, such as provided by the stable-storage server, men- 
tioned in the previous section. The lower parts of the tree, 
that is, the collection of non-root pages of files, can be stored 
either on magnetic disk, or write-once media, such as optical 
disk. As illustrated in Fmtw.i~ 2, a subtree, whose root is in 
the upper part of the tree, e.g., file A ,  can be viewed as a 
file; it can be modified atomically using the methods 
described below. Amoeba files, unlike files in most file sys- 
terns, thus form a nested structure: A subtree whose root 
page is inside another subtree may be viewed as a file within 
another file. File A and file B ,  for instance, are both 
subfiles of file C. 

4.1. File Representation 

A file is a collection of versions, ordered in time. When a 
new version is created, it behaves as if it were a copy of the 
current version. In fact, when it is created, a new version 
shares its page tree with the current version, and only when 
a page is changed is the page duplicated. The  Amoeba File 

. ~  "''"'"",, 
'i",... . . . . .  

file A file B 

I 

magnetic media 
optical media 

Fmtmz 2. A file has the structure of a tree of pages. A superfile can be viewed as a tree of files or 
also as a tree of pages. 
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Service file representation is therefore a differential file 
representation, similar to that of FELIX. 

Pages are stored by the block server in such a way that 
they can be read and written as atomic actions. Associated 
with each page is a small header area that the Amoeba File 
Service uses for administrative purposes. 

The root of a page tree is referred to as the version page. 
The client data in a page has no predefined structure. 
Clients are free to write them as they see fit. The references 
in a page to pages further down the tree are for internal use 
by the Amoeba File Service and can only be read and writ- 
ten by servers. 

file capability (version page only) 
version capability (version page only) 
commit reference (version page only) 

top lock (version page only) 

inner lock (version page only) 
base reference 

nrefs (number of page references) 
dsize (number of data bytes) 

client 
data 

page number eIRIWlSlM 

page number I C I I R I W I  S IM 

FIOURE 3. The Amoeba File Service page layout 

The layout of a version page is shown in FmtmE 3. The 
layout of internal pages is the same, with the exception of 
the first five fields, which are not used. Each page is 
divided in two areas, a header area and the page itself; the 
separation is indicated by the double line. The first field in 
the header area of a version page is the file capabili~. This 
field gives the capability of the file whose root the version 
page is. The next field is the version capabili~, the version of 
the file whose root the version page is. The commit reference 
field is also used in version pages only; its use will be 
explained presently. The top lock and inner lock are used to 
tell whether a page is currently involved in an  update of a 
superfile whose root is higher in the page tree; their function 
will be explained in a later section. The fields mentioned 
just now are only present in a version page. They are absent 
(or ignored) in other pages. The remaining fields, to be 
mentioned below arc present and used in all pages, root 
pages and internal pages alike. 

The  base reference field, present in all pages of a version, is 
the block number of the page that this page was based on 
(copied from). The nrefs field holds the number of page 
references this page contains. If this field is zero, the page is 
a leaf page. The ds/ze field gives the number  of data bytes. 
The page itself contains the reference table, with an entry for 

each child, page, and the data area where the client data is 
kept. 

The reference table is an array of page references, which 
contain a block number, and five flags, C, R,  W, S, and M.  
The page reference points to a page in 'the next level of the 
page tree, the C flag, when s~, indicates that the page was 
copied and is no longer shared with the version it was based 
on. The R flag indicates whether the data of that page has 
been read (it is needed to decide if an uncommitted version 
may be committed as explained in § 4.3),. the W flag 
indicates whether the data in the page was written 
(changed), the S flag tells if the references have been used 
(searched), and the M flag indicates whether the references 
were modified. As we shall see, it is not possible to access a 
page without copying it, nor is it possible to modify the 
references without looking at them. This reduces the number  
of flag combinations to 13, which allows encoding the flags 
in four bits. Amoeba uses 28 bits for a block number  and 
four bits for the flags. 

Pages are accessed from their parent page by the index in 
the reference table. An arbitrary page in a version can thus 
be accessed from the root by indexing into the reference 
tables of several pages starting at the root (version page) of 
the page tree. Pages thus have path names consisting of a 
string of n-bit  numbers. 

A file is made up of a sequence of committed versions and 
possibly a collection of uncommitted versions. The version 
pages of the committed versions form a doubly linked list. 
Each committed version's base reference points to the ver- 
sion it was based on (its predecessor) and its commit refer- 
ence points to the next committed version. The current 
version's commit reference and the oldest version's base 
reference are nil. The uncommitted versions are attached to 
the list through their base references, which point to the ver- 
sion they were based on; note that this is always a commit- 
ted version. A typical file could look like the one in Fie,- 
tree 4, where we have just shown the version pages and their 
base and commit references. 

4.2. The Copy-on-write Mechanism 

In this section we shall discuss the mechanisms that are 
used to implement atomic update and guarantee serialisabil- 
ity, but  before we go into that subject, a proper understand- 
ing of the copy-on-write mechanism and the R,  W, S and 
M flags in the page table is needed. 

The R,  W, S and M flags are needed primarily for decid- 
ing about committing versions. In  order to be able to 
serialise two simultaneous updates to a file, the Amoeba File 
Service must know which parts of the file were read and 
which parts were changed (written). When set, the R flag 
indicates that the data in the referred-to page was read. The 
IV flag indicates its data was written. The two flags operate 
independently of one another. The S flag tells that the 
references have been searched, the M flag tells that the 
references have been changed. These flags are not indepen- 
dent. When the M flag is on, the S flag must also be on; it 
is not possible to modify the references without consulting 
them. 

When a page is read, the pages on the path to it must be 
searched. This implies that, if a page has not been searched, 
the subtree of which it is the root cannot have been searched 
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FmtmE 4. The J~mily tree" of a typical file. Only the version pages are shown. The page trees des- 
cending from the version pages are not shown. 

or read either. Hence, a cleared S flag indicates that the 
descendants of the referred to page have not yet been 
accessed. 

For writing pages in a version, a 'copy-on-write' mechan- 
ism is used. When a page is written, a new block is allo- 
cated for it, leaving the old page intact. Then the page 
reference in its parent page is updated to point to the newly 
allocated page and its W flag is set. This changes that page, 
however, and, if it is still shared with another version (i.e., it 
hasn't been copied-on-write yet), this change must also be 
made by allocating a new block for it and writing the new 
contents of the page to that new block. Every change thus 
bubbles up from the leaves of the page tree to the root page. 
The root page - the version page - is the only page that is 
always written in place, because it is never shared with 
another version. When a non-root page is thus copied, the CC 
flag is set in the reference to it (in the parent page). A page 
is thus only copied once; after it has been copied for writing, 
it can be written in place when it is written again. 

It is clear now that, when a page has not been copied, its 
descendants can not have been copied either. Hence, a 
cleared C flag in a page reference indicates that the referred 
to page and all its descendants have not (yet) been copied, 

but a set C flag only indicates that the referred to page was 
copied. Like the S flag, it does not show whether its descen- 
dants have been copied. 

A similar mechanism does not exist for the R,  W and M 
flags. When a page is written, it and the pages between it 
and the root of the page tree must be copied, but the parent 
page of a written page is not considered written or modified, 
although, strictly speaking, it has changed. A parent page is 
only considered written if it's client data was written, and 
modified if pages were added or deleted. 

Page trees are usually partially shared between versiom. 
This implies that the flags indicating access to pages are also 
shared, even though these pages have been accessed in 
different ways in different versions. This presents no prob- 
lem, because the serialisability test need not descend shared 
parts of the page tree since they have not been accessed. 

The flags, indicating whether a page has been read, writ- 
ten, modified or copied are stored in its parent page in the 
page tree; the root page is therefore the only page that does 
not have associated C, R,  W, S and M flags in the file tree 
to indicate if it was copied, read, written, searched or 
modified. The  managing server keeps these flags separate. 
The  root page is always copied, by the way. 
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When a page is first read, the C, R ,  W, S and M flags it 
contains for its child pages must be initialised to zero. This 
requires changing that page. The Amoeba File Service 
must therefore not only shadow pages that were written, but  
also pages whose descendants were read. As we shall see 
later, once a version has successfully committed, the infor- 
mation contained in the R and S flags is no longer needed. 
The Amoeba File Service garbage collector may remove 
pages that were copied but  not written or modified and 
reshare the corresponding page from the version on which it 
was based. 

4.3. The Optimistic Concurrency Control Mechanism 

As long as updates are carried out one after the other, com- 
mit always succeeds and requires virtually no processing at 
all. When two or more updates proceed concurrently, how- 
ever, the server must check whether commit can be allowed 
by testing whether those updates can be serialised. If so, the 
commit is allowed; if not, failure is reported to the client, 
and the client must redo the update. 

When there is no concurrency, a new update will not start 
until the previous one has been finished; that is, a new ver- 
sion will not be created until the previous version has been 
committed. The next version is thus always based on the 
previous one. Updates are concurrent when a new version 
is created while another, uncommitted version still exists. 
This implies that concurrent updates are based (sometimes 
indirectly) on a common (committed) version. 

Kung  and Robinson in their paper on optimistic con- 
currency control divide file update into three phases: the 
read phase, the validation phase, and the write phase 
[Kung81]. The validation phase checks serial equivalence of 

commit reference 

V.a 

_ •  commit reference 

-- [ V.b 

transactions T/ and Tj by testing whether one of the follow- 
ing conditions hold: 
(1) T/ completes its write phase before Tj Starts its read 

phase. 
(2) The write set of Ti does not intersect the read set of Tj, 

and Ti completes its write phase before Tj starts its write 
phase. 

(3) The write set of ~ does not intersect the read set or the 
write set of ~ ,  and Ti completes its read phase before T s. 
completes its read phase. 

If one of these conditions hold, the effect of updates T/ and 
Tj is the same as when Ti had finished before Tj started. 

The Amoeba File Service carries out updates in such a 
way that the critical section of the validation phase and the 
complete write phase are consist of one atomic action. This 
implies that the write phases of two transactions can never 
overlap and the sefialisability test for two updates in the 
Amoeba File Service reduces to 
(1) Version V.i is committed before version V.j is created. 
(2) The write set of version V.i does not intersect the read 

set of version V.j, and V.i is committed before V.j. 
The Amoeba File Service carries out its validation test when 
a client process requests a version to be committed (i.e., 
when the client process signals the end of a transaction). In  
the test, it is only necessary to check if sefialisability conflicts 
will occur with versions that have already committed. In  
principle, the commit mechanism works as follows. 

The check whether condition (1) holds, and if it holds, the 
write phase, are carried out as one atomic operation, 
described below. If condition (1) does not hold, a test has to 
be made whether condition (2) holds. 

When a client requests to commit a version, V.b, that is 
based on the current version, V.a, condition obviously (1) 

base reference 

commit reference 

V . a  

base reference 

commit reference ~_ 

V.b 

(a) (b) 

FmtmE 5. V.b succeeds V.a as the current version. (a) shows the situation before the commit, (b) 
shows the situation after the commit. 
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holds, because V.b was created after V.a was committed. 
Therefore, the Amoeba File Service allows all commits of 
versions based on the current version. The  mechanism for 
this is demonstrated in FlotmE 5. 

Let us assume client C sends a request to commit version 
V.b, which is based on version V.a to Eb ' s  managing server, 
M.b. Server M.b then proceeds as follows. First it ascer- 
tains that all of V.b's pages are safely on disk. Then it sends 
a set commit reference request to M.a, the manager of V.a, 
the version that V.b was based on. (V.a is specified in the 
base reference field of V.b's version page.) M.a must then do 
the following without allowing other requests to interfere. 
First it must check whether V.a is still the current version. 
If  so, there is no conflict and the commit is carried out. The  
check for currentness is simply performed by examining 
V.a's commit reference. If  it is nil, V.a is the current ver- 
sion, and the commit reference is set to the page number of 
V.b's version page. This makes V.b the current version, and 
automatically the updates made to V.b are made per- 
manent. 

The test and set the commit reference is the only critical 
section in version commit. In order to make it an indivisible 
action, only one server may be allowed to read the version 
block, test the commit reference, set it, and write it back. If  
the disk server implements a test-and-set operation, any 
server can be allowed to carry out a commit. 

Frothy 5(a) shows the situation before commit, 
FIGtraE 5(b) atier the commit has successfully been carried 
out. M.a returns an acknowledgement to M.b and M.b, in 
turn, returns an acknowledgement to C. 

Let us now examine the case where V.a is no longer the 
current version, which means that another update, con- 
current with that of V.b, has taken place and was commit- 
ted. Let us assume the situation of Fmtm~ 6; C sends a 
request to M.b to commit V.b. However, V.c is now the 
current version, also based on V.a. First, M.b proceeds as 
before, and sends a set commit request to M.a; only this 
time, discovering V.a's commit reference is already set, M.a 
does not carry out the commit, but returns V.a's commit 
reference instead. This is the block number of V.c's version 
page. 

base reference 

V.a 

baae refe~nce 

commit reference 

V.b 

commit reference 

M.b must now check if the concurrent updates of Eb and 
V.c are serialisable; that is, test whether condition (2) holds. 
V.c has already committed, so if the two updates are serialis- 
able, V.b must come after V.c. This implies that there must 
be no overlap of V.c's write set (the pages written during the 
update of V.c) and V.b's read set (the pages read during the 
update of V.b). Since M.b received the block number of 
Kc's version page, it can descend Ec 's  and V.b's page trees 
in parallel to examine if there is a serialisability conflict. 
This is tested using the R ,  W, S, M ,  and C flags in the 
page references. Note that unshadowed parts of the tree in 
either V.b or V.c need not be visited since they haven't  been 
accessed. 

While descending the two 'page trees, checking the seriali- 
sability constraint, M.b also prepares the new current ver- 
sion, which must combine the updates made in V.c with 
those made in V.b. This is done by replacing unaccessed 
parts in V.b's page tree by corresponding written parts in 
Ec 's  page tree. 

Both the serialisability test and the combination of the 
changes made by two concurrent updates are made in one 
pass over the page tree. Unvisited branches in either page 
tree are not descended, which makes the serialisability check 
quite fast when at least one of the concurrent updates is 
small. 

An important property of the serialisability test is that it 
can be carried out in parallel with other updates of the file. 
While the routine serialise descends V.b's and Ec 's  page tree, 
other versions are allowed to commit, and other serialisabil- 
ity tests can also be carried out. 

If  serialise returns TRUE, V.b is ready to become Ec's  sue- 
cessor as the current version, and a set commit reference com- 
mand is sent to V.c's manager. If  V.c is still current, this 
succeeds; if not, the serialisability test is repeated for Ec 's  
successor. This repeats until either the set commit reference 
command succeeds or serial~e returns FALSE. 

In the latter case, when sertalise returns FALSE, the con- 
current updates are not serialisable, and V.b is removed, 
and its owner notified. The update can be retried on 
another version. 

2 

l 
base reference 

commit refe~'encc ~ _  

V.c 

FIOURE 6. V.b wants  to cor.~mit, bu t  is no longer  a 
descendant  o f  the  cur ren t  version,  V.c. 
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4.4. The  Locking Mechanism 

In the previous section we have described the update 
mechanism for a single file. In this section we describe the 
mechanisms for updating superrfiles which may contain 
several smaller files. 

Before continuing, some terms are defined to simplify dis- 
cussions. The upper part of the tree, which contains the 
version pages for the files in the system, will be called the 
system tree. A file whose root is a leaf of the system tree, 
i.e., an ordinary file, will be called a small file, although a 
'small file' may, of course, be arbitrarily large. In FlotmE 2, 
for instance, file A and file B are small files. A file whose 
root is not a leaf node of the system tree will be called a 
super-file. In FtOURE 2, file C is a super-file. A small file or 
super-file whose root is contained in a super-file will be a 
sub-file of the super-file. A tree that makes up a small file 
or super-file is a page tree. 

Updates of small files still use the optimistic method for 
update: Two updates on different small files do not interfere 
with each other since they affect disjoint page trees. Two 
updates of the same small file use optimistic concurrency 
control, as described in the previous section, to maintain 
integrity. 

Updates of super-files, however, must use different rules. 
Updates on super-files generally require larger amounts of 
processing and affect more pages than updates on small 
files. Consequently, the likelyhood of a serialisability 
conflict is greater for updates on super-files. Additionally, 
the work lost because of a serialisability conflict is usually 
more in the case of super-file updates. 

For these updates locking provides a better form of con- 
currency control, because it warns in advance that two 
updates are likely to cause a conflict. Locking has the 
drawback, however, that after a crash, locks have to be 
cleared before the system can resume operations. We 
deemed it a challenge to find a locking mechanism that 
requires no special recovery in case of crashes. Our  method 
is described below. 

Each version page contains two lock fields, the top lock 
field, which indicates the version page is the root page of an 
ongoing update, and the inner lock filed, which indicates an 
ongoing update higher in a higher super-file has affected the 
locked version page. A file is locked if one of the locks is on. 
We assume the lock fields can be tested and set in one 
atomic operation. When an update is made to a super-file, 
the top lock is set in its version page, and the tuner lock in 
visited internal nodes in the file tree that are version pages 
of subfiles. When an update is made to a small file, the top 
lock is also set in its version page, but since small files have 
no internal version pages, no inner locks need be set. 

Updates on super-files happen in exactly the same way as 
updates on small files, with the exception that locks have to 
be checked and set while the update is in progress. As in 
the case of small files, a version must also be created for a 
super-file before updates can be made. Before a version 
may be created, however, the version block for the current 
version must be locked. 

The algorithm for creating a version is the following: I f  
the file is a super-file, check the inner lock and top lock fileds, 
and, if they are both zero, set the top/ock. If  one of them is 
non-zero, wait until it is cleared, then try again. (The wait- 

ing process will be described later; locks contain the name of 
the locking server, which is used to realise an automatic 
warning mechanism for waiting updates.) If  the file is a 
small file, only the inner lock must be tested, but the top lock 
set. Thus, a small file can be subject to more than one 
update at the same time, using the optimistic method of con- 
currency control. When multiple, concurrent updates are 
allowed on a super-file, this rule can be used on super-files 
as well. 

Assume, for instance, that an update of file A in FIotrgE 2 
has to be carried out. It is a small file, so only its top lock 
will be set. Other updates on file A can proceed con- 
currently: the /nner lock, which is not set, is tested, and con- 
current updates can be carried out as described in the previ- 
ous section. 

If  an update, while descending the page tree, discovers a 
top lock, it must wait until the lock is cleared before that 
subtree can be entered. It  is not possible to encounter an 
inner lock while descending the page tree. 

Suppose again that file A is being updated, so its top lock 
is set. An update of file C can proceed, as long as its left 
subtree, which is file A,  is left untouched. When C's left 
subtrree is descended, however, A 's  top lock will be encoun- 
tered, and C's update must wait until A has been commit- 
ted and its lock has been cleared. 

The use of the inner locks will become clear when we 
assume an update on file C descends A 's  page tree. This 
update will cause A 's  inner lock to be set. When an 
attempt is now made to update A,  the inner lock will be 
encountered, and the update must wait until it is cleared. 

The  commit operation is somewhat more complicated for 
super-files than for small files. Commit  on a small file or a 
super-file works as described in the previous section. How- 
ever, commit on a super-file is not finished when the commit 
reference is set. After commit on a super-file, the page tree 
must be descended to commit the sub-files of the super-file, 
and clear the locks. These commits always succeed, because 
the locks prevent access by other clients during the update 
to the super-file. 

It is not difficult to see that this locking mechanism gives 
exclusive access to any subtree of the file system, and there- 
fore provides a concurrency control mechanism. It  can also 
be seen that sub-files, not accessed by an update, are not 
locked and therefore accessible to other updates. Full con- 
current update remains possible on small files, because 
simultaneous updates on the same small file need not wait 
for top locks. 

However, it is possible to use top locks on small files as 
hints which indicate that the file is likely to change soon. 
An update, known to affect large parts of a small file, can 
thus be postponed until the file is 'idle.' In contrast to this 
soft locking scheme, it is also possible to allow more con- 
currency on updates of super-files. The  rules for creating a 
version may be relaxed to allow creating a version when the 
version block's top lock is set. The  optimistic concurrency 
control which still lurks underneath this locking mechanism 
will see to it that no harm is done 'concurrencywise.' 

When a server process crashes in the middle of an update, 
no harm is done to the integrity of the file system; the 
optimistic method underneath sees to that. The  locks 
remain, however, rendering some files inaccessible. For- 
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tunately, the mechanism described above for waiting on 
locks also provides a mechanism for crash recovery: When 
the server crashes, the outstanding transactions with the 
server crash as well, telling all servers waiting on locks that 
the process holding the locks has crashed. 

A server, waiting on a top lock proceeds as follows: If the 
commit reference is off, the lock can be cleared without 
further ado, and, when the page tree is descended, inner locks 
(containing the same server name, of course) can be cleared 
or ignored. If  the commit reference is set, the version it 
refers to is current. The version with the lock, and the 
current version are traversed simultaneously, and the com- 
mit references of the sub-files are set, finishing the work of 
the crashed server. A server waiting on an inner lock ascends 
the ffstan tree to the first page without an inner lock, or a 
page wi th  a top lock. If the page thus found has no lock at 
all, the inr~r lock that the server was waiting on can be 
ignored. If  the page thus found has a top lock, it is treated 
as described above. 

4.5. Maintaining a Cache 

An important form of optimisation is caching. It is a defect 
in most distributed file systems that it is virtually impossible 
to keep local copies of remote data around, because of the 
difficulties of keeping the local copies up-to-date. The 
decreasing cost of primary memory makes caching tech- 
niques increasingly useful both for file servers and their 
clients. 

The Amoeba File S e r v i c e - b y  d e s i g n -  is especially 
suited for caching. A version, from the moment of its crea- 
tion, behaves like a private copy of a file that cannot change 
without the owners consent. Both Amoeba File Servers and 
their clients can therefore maintain a cache which, for the 
most recently used versions of a set of files, contains collec- 
tions of pages. When a client requests a server to create a 
new version of a file, the client, the server, or both, examine 
their cache to see if there are any pages of a previous ver- 
sion of the file that can still be used. The mechanism for 
this is simple, as shown below. 

For each file, a client or a server can make a cache entry, 
consisting of pages of the most recent version it has had 
locally. When a request for a new version of the file is 
made, a senalisability test is made between the version used 
for the cache entry and the current version in order to find 
out which blocks of the cache are still valid. If the serialisa- 
bility test succeeds, all blocks are still valid; if not, the 
blocks that cause the test to fall must be discarded. Note, 
that it is not necessary to transmit pages while making the 
serialisability test. If the cache holder is a client, the version 
capability must be sent to one of the Amoeba File Servers so 
the serialisability test can be made, and the server returns a 
list of path names of pages to be discarded. The server 
responsible for carrying out the test can make the test itself, 
or it can delegate the task to the server holding the most 
recent version for efficiency. 

If a file is not shared, the cache entry will always be based 
on the current version. The serialisability test for finding out 
if the cache entry is up-to-date is then a null test which 
always succeeds. Even for shared files the page cache can 
be quite efficient. As shown previously, the serialisability 
test can be made in time proportional to the size of the 

intersection of the set of pages of the version in the cache 
and the union of the sets of pages in the versions since then. 
The server making the serialisability test likely has parts of 
the most recent version in its cache, reducing the number  of 
disk accesses and the amount of network traffic further still. 

It is worth noting that, in contrast to other file systems, 
the page cache does not have to be a 'write through' cache: 
When a page in a version is written, it need not be written 
to stable storage immediately. This can be postponed until 
just before commit. 

The Amoeba File Servers can also conveniently cache the 
concurrency control administration, the flag bits. 
allows serialisability tests without having to read the page 
tree. However, the flags must also be present in the files 
themselves to make crash recovery possible. 

5. Conclusions 

The Amoeba File Service combines a number  of concepts 
from the operating systems' world, the distributed systems' 
world, and the database world in a novel way. To the best 
of our knowledge distributed file servers have not been con- 
structed using optimistic concurrency control. Yet, it pro- 
rides a number of advantages not often encountered in other 
file systems. 

With a version mechanism, the file system is always in a 
consistent state. After a crash, there is no necessity for 
recovery: no rollback is required, no locks have to be 
cleared, no intentions lists have to be carried out. Optimis- 
tic concurrency control allows a maximum of concurrency 
in accessing files. Some updates will have to be redone 
when concurrent updates are not sefialisable, but with the 
unbounded potential of computing power that distributed 
systems offer, redoing an operation now and then is accept- 
able. 

Still, starvation may occur, especially when a large update 
must be carried out on a heavily shared file. The locking 
mechanism can be used to lock a file when it is known that 
the update is large, and the probability of a sefialisability 
conflict serious. 

The file system should be organised carefully to avoid that 
updates on super-files have to occur too frequently. To this 
end, each small file should be self-contained as much as pos- 
sible, so most updates will be on small files. This allows a 
large degree of concurrency. Locking should be the excep- 
tion rather than the rule. 

Page caches can be maintained, both by end-user 
processes and Amoeba File Server processes. We believe our 
method is superior to that in XDFS because no unsolicited 
messages are necessary. These cause an unneeded addi- 
tional complexity for client processes. 

The version mechanism and the page tree closely resemble 
the mechanisms in FELIX. However, FEux uses locking at 
the file level. The idea behind our system of not locking 
small files is that many updates, even on the same file, do 
not affect the same parts of the file. For example, changes 
in an  airline reservation system for flights from San Fran- 
sisco to Los Angeles do not conflict with changes to reserva- 
tions on flights from Amsterdam to London. 

The Amoeba File Service provides mechanisms that allow 
both sophisticated and simple applications to use its services 
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efficiently. We have discussed the methods for concurrency 
control at some length, perhaps creating the impression that 
simple-minded applications- such as the example, men- 
fioned in the introduction, of a compiler that needs to make 
temporary f i l es -  must once again pay the price of all that 
complicated machinery for guaranteeing serialisability. This 
need not be the case at all. Since pages of 32K bytes can 
be written, one such page is often large enough to contain a 
whole file. Writing these one-page files is efficient; no con- 
currency control mechanisms slow it down. 

A last advantage of the Amoeba File Service is that it is 
eminently suitable for a file system on write-once media, 
such as optical disks. Optical disks show great promise for 
the future, because of low cost and huge capacity. Tradi- 
tional file systems are not suitable for these media, because 
files cannot be overwritten on a write-once device. The ver- 
sion mechanism, coupled with a cache in which uncommit- 
ted files are kept until just before commit seems an ideal file 
store for optical disks. 

References 

[Brown85] 
Brown, M. R., Kolling, K., and Taft, E. A., "The 
Alpine File System," to appear in ACM TOCS, 1985. 

[Dion80] 
Dion, J., "The Cambridge File Server," Operating Sys- 
tern Review, vol. 14, no. 4, pp.26-35, Oct. 1980. 

[Eswaran 76] 
Eswaran, K. P.. (;ray, J. N., Lode, R. A., and 
Traiger, I. L., "The Notions of Consistency and Predi- 
cate Locks in a Database Operating System," Comm. 
ACM, vol. 19, no. 11, pp.624-633, November 1976. 

[ Fridrich 81 ] 
Fridrich, M. and Older, W., "The Felix File Server," 
Proc. Eighth Symp. on Oper. Syst. Prin., vol. 15, no. 5, 
pp.37-44, Dec. 1981. 

[Kung81 
Kung, H. T. and Robinson, J. T., "On Optimistic 
Methods for Concurrency Control," ACM Transactions 
on Database Systems, vol. 6, no. 2, pp.213-226, June 
1981. 

[Lampson 79] 
Lampson, B. ~N. and Sturgis, H., Crash Recovery in a 
Distributed Storage System. Palo Alto, CA.:Xerox PARC, 
1979. 

[Larnpson83] 
Lampson, B. W., "Hints for Computer System 
Design," Proc. 9th SOSP, Oktober 1983. 

[Mullender84] 
Muliender, S. J. and Tanenbaum, A. S., "Protection 
and Resource Control in Distributed Operating Sys- 
tems," Computer Networks, vol. 8, no. 5,6, pp.421-432, 
1984. 

[Mullender85a] 
MuUender, S. J. and Tanenbaum, A. S., "The Design 
of a Capability-Based Distributed Operating System," 
to appear in Computer Journal, 1985. 

[Mullender85b] 
Mtfllender, S. J., Prinaples of Distributed Operating System 
Design. CWI, Amsterdam:PhD. Thesis, October 1985. 

[Reed78] 
Reed, D., "Naming and Synchronization in a Decen- 
tralized Computer System," PhD. Thes/s, 1978, Dept. 
of Electrical Engineering and Computer Science, Mas- 
sachusetts Institute of Technology. 

[Reed81] 
Reed, D. and Svobodova, L., "SWALLOW: A Distri- 
buted Data Storage System for a Local Network," 
Pro¢. IFIP, pp.355-373, 1981. 

[Robimon82] 
Robinson, J. T., "Design of Concurrency Controls for 
Transaction Processing Systems", Ph.D Thesis (CMU- 
C,S-82-114), Carnegie-Mellon University, Pittsburgh 
Pa., April 1982. 

[Satyanarayanan85] 
Satyanarayanan, M., "The ITC Distributed File Sys- 
tem: Principles and Design," Pr0¢. lOth SOSP, 
December 1985. 

[ Schlageter 81 ] 
Schlageter, G., "Optimistic Methods for Concurrency 
Control in Distributed Database Systems," Proc. VLDB 
Conference, 1981. 

[Schroeder85] 
Schroeder, M. D., Gifford, D. K., and Needham, R. 
M., "A Caching File System for a Programmer's 
Workstation," Proc. lOth SOSP, December 1985. 

[StonebrakerS1 ] 
Stonebraker, M., "Operating System Support for 
Database Management," Comm. ACM, vol. 24, no. 7, 
pp.412-418, July 1981. 

[Sturgis80] 
Sturgis, H., Mitchell, J.G., and Israel, J., "Issues in the 
Design and Use of a Distributed File System," Operat- 
ing System Review, vol. 14, no. 3, July 1980. 

[Tanenbaum82] 
Tanenbaum, A. S. and Mullender, S. J., "Operating 
System Requirements for Distributed Data Base Sys- 
tems," pp. 105-114 in Distributed Data Bases, ed. H. 
J. Schneider, North-Holland Publishing Co. (1982). 

62 


