
A Distributed File Service Based on Optimistic
Concurrency Control

Sape J. Mullender

Centre for Mathematics and Computer Science
Amsterdam

Andrew S. Tanenbaum

Vrije Universiteit
Amsterdam

Abstract

The design of a layered file service for the Amoeba Distri-
buted System is discussed, on top of which various applica-
tions can easily be intplemented. The bottom layer is
formed by the Amoeba Block Services, responsible for
implementing stable storage and repficated, highly avail-
able disk blocks. The next layer is formed by the Amoeba
File Service which provides version management and con-
cur~ncy control for tree-structured files. On top of this
layer, the appficafions, ranging from databases to source
code control systems, determine the structure of the file
trees and provide an interface to the users.

1. Introduction

File systems play an important role in allowing information
to be widely accessible, since most information is in one way
or another stored in files. Many different kinds of file sys-
tems for distributed systems exist, ranging from private file
systems for each host to special purpose file servers for the
whole network. Each kind of file system has its own charac-
teristics concerning accessibility, complexity, protection of
information against unautho/'ised access, speed and distribu-
tiveness.

The ideal distributed file system would be fast, files would
always be near the hosts needing them, there would be pro-
tection, if necessary, to guard against access from unauthor-
ised hosts or users, files could be shared among different
hosts at the same time, and the system would be totally
immune agains individual file server crashes or disk crashes.
Unfortunately, such distributed file systems do not yet exist,
and improving one aspect of a file system is nearly always
detrimental to another. The consequence, for instance, of
replicating files at several sites to improve their availability
is that updating these files will become more costly, since all

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

© 1985 ACM-0-89791-174-1-12/85-0051 $00.75

copies have to be updated, and if, additionally, the changes
made by different users must be synchronised, such that the
changes made by one user do not interfere with the data
read by another, then the cost of file operations could be
increased by several orders of magnitude.

This paper goes into the design of the Amoeba File Ser-
vice, one of the three file services for the Amoeba Distri-
buted System [MuUender85a]. Section 2 describes the con-
siderations that led to the design of this file server and gives
an overview of related work. The underlying Block Service
is briefly discussed in Section 3. A detailed description of
the Amoeba File Service follows in Section 4.

2. Design Principles

The Amoeba Distributed System was designed by Mullender
and Tanenbaum at the Vrije Universiteit in Amsterdam
[Mullender85b]. Amoeba is an open system, designed to
accommodate heterogeneous hardware and software. The
Amoeba Kernel, the replicated operating system running in
most of the machines on the network, supports process
management and interprocess communication. All other
services are provided by server programs that execute in
user space. A capability mechanism provides protected
communication between clients and services and protected
access to objects [Mullender84].

The advantages of open systems over the traditional
approach are obvious: operating system kernels become
smaller and more maintainable, operating system services
are no longer in the kernel, making them portable, and
allowing multiple, equivalent, but different services to co-
exist side by side.

Data base management systems often have their own
operating systems, tailored to this particular application,
because traditional operating systems provided the wrong
fimctionality [Stonebraker81, Tanenbaum82]. An open
operating system, with the right kind of file service, can sup-
port data base management efficiently, while integration
with other system services is possible. A hierarchy of ser-
vices, as illustrated by FtouR~ 1, allows a logical layering of
facilities while the development effort can be shared.

The design of the Amoeba File Server was an experiment.
We wanted to try to design a layered file system, where
replication, concurrency control, and database management
would be in different layers. The bottom layer, the physical

51

source code
control
system

s e r v e r

stable
block storage
s e r v e r

s e r v e r

/ \

distributed
data base

s e r v e r

Amoeba
File

Server

<
optical

disk
s e r v e r

FIOURE 1. An example of a storage services hierarchy in a n open system.

/ayer, consists of the storage devices: electronic disks, mag-
netic disks and write-once optical disks. The next layer is the
Block Seroice, providing virtual disk blocks of various kinds: fast
but crash-volatile storage in memory, stable-storage disk
blocks, replicated disk blocks with atomic write on all copies
simultaneously, etc. The next layer up is the file system,
with concurrency control mechanisms for file access, and the
top layer, providing the interface to various applications,
provides database management services. This paper
concentrates on the middle layer: the file system.

The Amoeba File Service is a distributed file service: a
request for an operation on a file can go to any one of a
number of file server processes where it will be executed.
The layered structure is an advantage here; the Block Ser-
vice already forms an abstraction away from physical
storage locations.

But the layered structure of the file system is also a poten-
tial bottleneck for performance of great magnitude: A simple
query on a tiny database from a client process invokes the
database service, which invokes the file service, which
invokes the block service, which finds the block on disk.
Caching strategies are essential at all levels of the hierarchy
to avoid having to descend to the bottom level of the service
hierarchy on each client request. However, caches and con-
currency control mechanisms are likely to become enemies:

the administration of the caches in a rapidly changing
envLonment can cause more inefficiency than not keeping
caches at all. Obviously, thinking about caching possibili-
ties and strategies have to be an essential part of the design
process.

File services naust provide the tools for the efficient imple-
mentation of as wide a set of applications as possible. This
can be realised, in part, by providing a large set of different
file services, each tailored for a particular application, but,
naturally, it is best to have as few as possible different file
services that cover the needs of every conceivable applica-
tion.

Currently, Amoeba has three file servers: a simple one,
written as a student programming project, which imple-
ments simple flat files, without concurrency control; a
UNix-like t file server, which is used in combination with a
Umx emulation package for running Umx software on
Amoeba; and the Amoeba File Server, described in this
paper.

An important design principle was also: 'You should not
have to pay for those features you do not need'. A file
server, for instance, that implements atomic update on repli-
cated files is a very nice thing to have, but a user who wants

t U m x is a T r a d e m a r k of A T & T Bell Laboratories.

52

to store the output of a compiler, prior to calling a linking
loader doesn't share that output with any other user; he is
not interested in having his file replicated across five
different network nodes for increased availability, nor is he
interested in having his file atomicly updated. All such a
user wants is a temporary file that can be quickly accessed
and changed, and just reliable enough that usually he
doesn't need to compile his program all over because the file
was lost. On the one hand, our file server should cater for
users who just want a reasonably reliable repository for their
files, cheap and fast, while on the other hand, other users
should be taken into account who need ultra-reliable storage
for their files, fancy synchronisation of access by many
simultaneous users, and guaranteed availability, who will be
prepared to accept that it must be more expensive and
slower.

Another important issue in file service design is that the
semantics of file service be easy to understand. The inter-
face to the file server must not only be simple, with as few
commands as possible, clients must also have a simple con-
cepdon of the structure of a file, and how to use the
mechanisms provided. Even if clients want highly sophisti-
cated things done, like changing a heavily shared file atomi-
cally, they should not be burdened with the details of a five
step locking protocol, or have to know just how many times
the file is replicated.

It is a design goal that the distributed file server should be
suitable for an Amoeba environment, using the protection
provided by Amoeba's ports and capabilities [Mullender84].

2.1. Related Work

Since the beginning of distributed computing, many file
servers have been built. In this section we shall look at
some that arc closely related to our work: XDFS [Sturgis80]
FELIX [Fridrich81], SWALLOW [Reed81], and ALpL~E
[Brown85]. They all have mechanisms for concurrency con-
trol. Most file servers, including the Cambridge File Server
[Dion80], XDFS, FELIX and ALPINE use locking
[Eswaran76], while some, among them SWALLOW, use times-
tamps [Reed78].

XDFS is a distributed file server that uses the notion of
transactions. Open transaction and close transaction commands
bracket a series of read write commands to one or more files,
and the system guarantees the atomic property for these tran-
sactions; that is, either all of the changes will be done, and
the transaction succeeds, or none, and the transaction fails.
XDFS realises the atomic property via so-called intentions
l/sts, a list of changes to the file and a two-phase commit
protocol.

XDFS uses an interesting locking mechanism to guarantee
serialisability: there are three kinds of locks, read locks,
intention-write locks, and commit locks. When a client has
locked a datum on a server for some time, a timer expires
and the lock becomes vulnerable. Another client, waiting on
that lock, can then prod the server, requesting it to release
its lock. If it is in a state to do so, it releases its lock,
otherwise it ignores the prod.

The FELIX file server also uses locking, although here it is
at the file level. The FELIX locking mechanism is combined
with a version mechanism: when a file is examined or
modified, a new version of the file is created. A new version

is created by making a (virtual) copy of the current version;
this new version can then be read and modified, and, when
all changes have been made, the new version may become
the new current version. Sharing is controlled using locks,
providing six access modes. Files are tree-structured. A new
version is created by copying a pointer to the root of the
current version. When it is modified, a copy-on-write
mechanism is used which leaves the current version intact.
With this mechanism, only the changes between versions are
stored.

ALPINE offers the user a choice between locking at the file
level or at the page level. File locking is the default, but
sophisticated applications are provided with mechanisms for
setting and releasing various types of locks on individual
pages of a file. A transaction log is kept to enable recovery
from failures and deadlocks caused by conflicting locking
operations. Brown et. al. claim that transaction logs can be
implemented more efficiently than a shadow-page mechan-
ism [Brown85]. A transaction log mechanism, however,
makes it more difficult to implement an efficient and simple
caching mechanism, as shown in § 4.5.

Like FELIX, SWALLOW also uses a version mechanism, but
the synchronisation of concurrent access is quite different.
SWALLOW USes a timestamp mechanism, based on Reed's
notion of pseudo t/me. This mechanism is used to ensure the
atomic property of updates to collections of arbitrary objects
(e.g., files). Additionally, versions do not overlap; that is,
they do not share the unmodified portions of the file.

2.2. The Amoeba File Service Compared With Other File
Servers

The Amoeba File Server is a file server, with a version
mechanism similar to that of FELIX, but in contrast to other
file servers, it uses a combination of locking [Eswaran76]
with an optimistic concurrency control mechanism
[Kung81, Robinson82, Schlageter81]. Optimistic con-
currency control mechanisms have been used in data base
management systems, but we have never seen them used in
a file server. Yet, an optimistic concurrency control
mechanism, combined with a version mechanism provide a
number of advantages, not present in other file systems.

The most important characteristic of a version mechanism
is that the file system is always in a consistent state. Most
file systems update files in place and need a mechanism for

bringing back the file system to a consistent state after a
crash of a server and possibly also after a crash of a client.
A client crash can cause parts of the file system to be inac-
cessible for some time, for instance, because a rollback
operation must be done first to bring the file system back to
a consistent state. In the Amoeba File Service, the file sys-
tem is always in a consistent state (assuming the updates
themselves are internally consistent). Server crashes have no
serious consequences: there is no rollback, clients need only
redo the update that remained unfinished because of the
crash. Clients do not have to wait until the server is
restored, because they can use another server to do their
updates.

In a way, optimistic concurrency control and locking are
complementary mechanisms: Optimistic concurrency control
maximises concurrency and works best when updates are
small and the likelyhood that an item is the subject of two

53

simultaneous updates is small. Locking, in contrast, does
not allow as much concurrency, and is more suitable when
updates are large and unwieldy and when the probability of
an item being subject to more than one update is significant.
The Amoeba File Service combines locking and optimistic
concurrency control in such a way that updates of large
bodies of data (several files) use locking to prevent having to
redo them if they clash with another update. Updates of
small bodies of data (one file) are less likely to clash with
other updates, so an optimistic approach is used here.
When necessary, a soft-locking scheme can be used in addi-
tion to optimistic concurrency control to ward off potential
conflicting updates. In all cases, the mechanisms for carry-
ing out updates guarantee consistency of the file system at
all times.

The Amoeba File Service provides the necessary mechan-
isms to maintain caches of data. Caching is an important
concept in distributed systems [Lampson83], ITC
[Satyanarayanan85] and CFS [Schroeder85] mention cach-
ing mechanisms as important parts of the system. Both
Amoeba File Servers and their clients can hold data in a
cache. In many file systems, it is difficult or impossible to
maintain caches, because the integrity of the data in the
cache cannot be assured. ITC was not designed for data-
base applications and does not provide complicated
machinery for concurrency control; maintaining a cache is
relatively simple there. XDFS uses 'unsolicited messages' to
tell clients to unlock cached data when it is going to be
modified. This makes their caching strategy efficient only
for data that is rarely modified. In CFS, shared files do not
change after creation which makes caching trivial; a version
mechanism embedded in the naming mechanism is used to

reflect change.
On the Amoeba File Service, the integrity of the cache

need only be checked at the start of a transaction. The cost
of checking whether the cache is up-to-date is small, even
for files that are frequently modified. Furthermore, the
Amoeba File Service needs no unexpected 'unsolicited mes-
sages.'

3. T h e B l o c k S e r v e r

The principle of separating the issues of file service and
block service makes it easy to combine different methods of
storage (e.g., stable storage [Lampson79]), and storage
media (e.g., small fast 'electronic disks,' large slow magnetic
disks, very large optical disks) in one system. Carefully
designed, disk service can combine high speed with high
reliability, using techniques, such as caching and dual
storage, both on fast, but not so reliable storage, and slow,
but very reliable storage.

We assume the block service implements as a minimum
commands to allocate, deallocate, read and write fixed size
blocks of data. Protection must be provided, so that a
block, allocated by user A cannot be accessed by user B
without A's permission. Writing a block must be an atomic
action, with an acknowledgement that is returned after the
block has been stored on disk. This property is vital for the
implementation of atomic update on files.

The block server can implement a simple locking facility
on individual blocks. Based on this, file services can realise

concurrency control policies. The Amoeba File Service, to
commit a version of a file, for instance, will exclusively lock
and read a block, examine and mq:x.lify it, then write and
unlock the block again.

Magnetic disks and optical disks do not usually lose their
information in a crash, but it does happen occasionally. In
any case, they are at least temporarily inaccessible. In order
to achieve high availability in the face of disk crashes, it is
necessary to store every block at least twice, on different
disks, managed by different servers. Lampson and Sturgis
[Lampson79] have suggested a method to use dual disk
drives to implement stable storage. With minor modifications
their method can be used to provide disk service which con-
tinues to be available when single-site crashes occur.

4. A m o e b a F i l e S e r v i c e

The Amoeba File Service was developed for, but is not res-
tricted to, the Amoeba Distributed Operating System. It
implements the file system as a tree of pages, whose subtrees
are files, and uses a combination of an optimistic con-
currency control mechanism and a locking mechanism to
prevent conflicts in simultaneous updates.

The Amoeba File Service implements optimistic con-
currency control by a version mechanism: When a client
opens a file for modification, a new version of the file is
created, which initially behaves like a copy of the file. Then
the modifications are made, and finally a commit operation
makes the modifications permanent by replacing the previ-
ous current version with the new one. After commit, a ver-
sion becomes immutable. Several uncommitted versions of
the same file can exist at a time. The Amoeba File Service
checks on commit whether the modifications to the file con-
stitute a sefialisability conflict (see [Kung81]).

The current state of a file is contained in the current ver-
sion. Committed versions represent past states of a file;
uncommitted versions represent possible future states of the
file. Files are accessed by their file capability, versions by
their version capability. Atomic updates on files are brack-
eted :by creating a version and committing a version. The
current state of a file is always represented by the contents
of the current version. Committing a version makes that
version the current one.

The Amoeba File Service is a distributed service. Several
server processes can be established on one or several physi-
cal machines, and each server is capable of handling
updates on any file. Each version has a manager, the server
process which created the version. Different versions of a
file can have different managers. A client will typically
direct all requests to the Amoeba File Service to a server
process that is close to it. New versions will thus tend to be
close to the clients that ordered their creation.

A version is represented as a tree of pages. Clients can
read or write a page at a time. The maximum length of a
page is determined by the maximum length of an Amoeba
message transaction: 32K bytes. This ensures that pages
can be read and written in one (atomic) action.* A page

* Arbitrarily long pages can be written atomically by writing them
back-to-front as a linked list, whereby the head block is (over)written
last, and the other blocks in the list are allocated from the pool of flee
disk blocks. After wridng, the blocks making up the previous linked list
can be freed.

54

may contain both data and references to pages fiarther down
in the tree. A reference consists of a block number and
some flag bits that Amoeba File Service uses for concurrency
control. The number of data bytes in a page is variable
(per page) up to the maximum size of a page.

Clients have explicit control over the shape of the page
tree. Pages within a file are referred to by a pathname which
is constructed as follows: The root page has an empty path-
name. The pathnarne of a page that is not the root is the
concatenation of the pathname of its parent page with the
/ndex of its reference in the array of references in the parent
page.

This file representation has been chosen with the express
intention of giving clients (file systems, data base systems,
source code control systems, etc.) as much control over the
shape of files as possible. Using the file structure provided
by the Amoeba File Service, objects ranging from linear files
to B-trees can easily be represented.

The Amoeba File Service provides a set of commands for
the management of files and versions. There are commands
to read and write the pages of a version and commands to
manipulate the shape of a version's page tree (split pages
into two, move subtrees to another part of the tree, etc.).

Files can be grouped together in "superfiles," and superfiles
can be grouped in other superfiles. Such a superfile struc-
ture is a thus also a tree structure. A superfile is, in fact,
almost exactly like an ordinary file: All pages of a superfile

file C

may contain data, exactly like an ordinary file; the root
page of a superfile, however, contains references to the root
pages of other files, superfiles, or both. The Amoeba File
Server provides atomic update on files, or superfiles. Files
or superfiles without a common root cannot be updated
atomically.

The top of the tree, that is, the collection of root pages of
files, is stored on magnetic random-access media, for
instance, such as provided by the stable-storage server, men-
tioned in the previous section. The lower parts of the tree,
that is, the collection of non-root pages of files, can be stored
either on magnetic disk, or write-once media, such as optical
disk. As illustrated in Fmtw.i~ 2, a subtree, whose root is in
the upper part of the tree, e.g., file A , can be viewed as a
file; it can be modified atomically using the methods
described below. Amoeba files, unlike files in most file sys-
terns, thus form a nested structure: A subtree whose root
page is inside another subtree may be viewed as a file within
another file. File A and file B , for instance, are both
subfiles of file C.

4.1. File Representation

A file is a collection of versions, ordered in time. When a
new version is created, it behaves as if it were a copy of the
current version. In fact, when it is created, a new version
shares its page tree with the current version, and only when
a page is changed is the page duplicated. The Amoeba File

. ~ "''"'"",,
'i",...

file A file B

I

magnetic media
optical media

Fmtmz 2. A file has the structure of a tree of pages. A superfile can be viewed as a tree of files or
also as a tree of pages.

55

Service file representation is therefore a differential file
representation, similar to that of FELIX.

Pages are stored by the block server in such a way that
they can be read and written as atomic actions. Associated
with each page is a small header area that the Amoeba File
Service uses for administrative purposes.

The root of a page tree is referred to as the version page.
The client data in a page has no predefined structure.
Clients are free to write them as they see fit. The references
in a page to pages further down the tree are for internal use
by the Amoeba File Service and can only be read and writ-
ten by servers.

file capability (version page only)
version capability (version page only)
commit reference (version page only)

top lock (version page only)

inner lock (version page only)
base reference

nrefs (number of page references)
dsize (number of data bytes)

client
data

page number eIRIWlSlM

page number I C I I R I W I S IM

FIOURE 3. The Amoeba File Service page layout

The layout of a version page is shown in FmtmE 3. The
layout of internal pages is the same, with the exception of
the first five fields, which are not used. Each page is
divided in two areas, a header area and the page itself; the
separation is indicated by the double line. The first field in
the header area of a version page is the file capabili~. This
field gives the capability of the file whose root the version
page is. The next field is the version capabili~, the version of
the file whose root the version page is. The commit reference
field is also used in version pages only; its use will be
explained presently. The top lock and inner lock are used to
tell whether a page is currently involved in an update of a
superfile whose root is higher in the page tree; their function
will be explained in a later section. The fields mentioned
just now are only present in a version page. They are absent
(or ignored) in other pages. The remaining fields, to be
mentioned below arc present and used in all pages, root
pages and internal pages alike.

The base reference field, present in all pages of a version, is
the block number of the page that this page was based on
(copied from). The nrefs field holds the number of page
references this page contains. If this field is zero, the page is
a leaf page. The ds/ze field gives the number of data bytes.
The page itself contains the reference table, with an entry for

each child, page, and the data area where the client data is
kept.

The reference table is an array of page references, which
contain a block number, and five flags, C, R, W, S, and M.
The page reference points to a page in 'the next level of the
page tree, the C flag, when s~, indicates that the page was
copied and is no longer shared with the version it was based
on. The R flag indicates whether the data of that page has
been read (it is needed to decide if an uncommitted version
may be committed as explained in § 4.3),. the W flag
indicates whether the data in the page was written
(changed), the S flag tells if the references have been used
(searched), and the M flag indicates whether the references
were modified. As we shall see, it is not possible to access a
page without copying it, nor is it possible to modify the
references without looking at them. This reduces the number
of flag combinations to 13, which allows encoding the flags
in four bits. Amoeba uses 28 bits for a block number and
four bits for the flags.

Pages are accessed from their parent page by the index in
the reference table. An arbitrary page in a version can thus
be accessed from the root by indexing into the reference
tables of several pages starting at the root (version page) of
the page tree. Pages thus have path names consisting of a
string of n-bit numbers.

A file is made up of a sequence of committed versions and
possibly a collection of uncommitted versions. The version
pages of the committed versions form a doubly linked list.
Each committed version's base reference points to the ver-
sion it was based on (its predecessor) and its commit refer-
ence points to the next committed version. The current
version's commit reference and the oldest version's base
reference are nil. The uncommitted versions are attached to
the list through their base references, which point to the ver-
sion they were based on; note that this is always a commit-
ted version. A typical file could look like the one in Fie,-
tree 4, where we have just shown the version pages and their
base and commit references.

4.2. The Copy-on-write Mechanism

In this section we shall discuss the mechanisms that are
used to implement atomic update and guarantee serialisabil-
ity, but before we go into that subject, a proper understand-
ing of the copy-on-write mechanism and the R, W, S and
M flags in the page table is needed.

The R, W, S and M flags are needed primarily for decid-
ing about committing versions. In order to be able to
serialise two simultaneous updates to a file, the Amoeba File
Service must know which parts of the file were read and
which parts were changed (written). When set, the R flag
indicates that the data in the referred-to page was read. The
IV flag indicates its data was written. The two flags operate
independently of one another. The S flag tells that the
references have been searched, the M flag tells that the
references have been changed. These flags are not indepen-
dent. When the M flag is on, the S flag must also be on; it
is not possible to modify the references without consulting
them.

When a page is read, the pages on the path to it must be
searched. This implies that, if a page has not been searched,
the subtree of which it is the root cannot have been searched

56

_(

I
uncommitted

versions

i m

I !

base reference

commit reference

base reference

commit reference

base reference

commit reference

oldest

version

base reference

commit reference

base reference

commit reference

"x_

%
committed

versiom ;f
current

veesion

base reference

_ _ ~ commit reference

FmtmE 4. The J~mily tree" of a typical file. Only the version pages are shown. The page trees des-
cending from the version pages are not shown.

or read either. Hence, a cleared S flag indicates that the
descendants of the referred to page have not yet been
accessed.

For writing pages in a version, a 'copy-on-write' mechan-
ism is used. When a page is written, a new block is allo-
cated for it, leaving the old page intact. Then the page
reference in its parent page is updated to point to the newly
allocated page and its W flag is set. This changes that page,
however, and, if it is still shared with another version (i.e., it
hasn't been copied-on-write yet), this change must also be
made by allocating a new block for it and writing the new
contents of the page to that new block. Every change thus
bubbles up from the leaves of the page tree to the root page.
The root page - the version page - is the only page that is
always written in place, because it is never shared with
another version. When a non-root page is thus copied, the CC
flag is set in the reference to it (in the parent page). A page
is thus only copied once; after it has been copied for writing,
it can be written in place when it is written again.

It is clear now that, when a page has not been copied, its
descendants can not have been copied either. Hence, a
cleared C flag in a page reference indicates that the referred
to page and all its descendants have not (yet) been copied,

but a set C flag only indicates that the referred to page was
copied. Like the S flag, it does not show whether its descen-
dants have been copied.

A similar mechanism does not exist for the R, W and M
flags. When a page is written, it and the pages between it
and the root of the page tree must be copied, but the parent
page of a written page is not considered written or modified,
although, strictly speaking, it has changed. A parent page is
only considered written if it's client data was written, and
modified if pages were added or deleted.

Page trees are usually partially shared between versiom.
This implies that the flags indicating access to pages are also
shared, even though these pages have been accessed in
different ways in different versions. This presents no prob-
lem, because the serialisability test need not descend shared
parts of the page tree since they have not been accessed.

The flags, indicating whether a page has been read, writ-
ten, modified or copied are stored in its parent page in the
page tree; the root page is therefore the only page that does
not have associated C, R, W, S and M flags in the file tree
to indicate if it was copied, read, written, searched or
modified. The managing server keeps these flags separate.
The root page is always copied, by the way.

57

When a page is first read, the C, R , W, S and M flags it
contains for its child pages must be initialised to zero. This
requires changing that page. The Amoeba File Service
must therefore not only shadow pages that were written, but
also pages whose descendants were read. As we shall see
later, once a version has successfully committed, the infor-
mation contained in the R and S flags is no longer needed.
The Amoeba File Service garbage collector may remove
pages that were copied but not written or modified and
reshare the corresponding page from the version on which it
was based.

4.3. The Optimistic Concurrency Control Mechanism

As long as updates are carried out one after the other, com-
mit always succeeds and requires virtually no processing at
all. When two or more updates proceed concurrently, how-
ever, the server must check whether commit can be allowed
by testing whether those updates can be serialised. If so, the
commit is allowed; if not, failure is reported to the client,
and the client must redo the update.

When there is no concurrency, a new update will not start
until the previous one has been finished; that is, a new ver-
sion will not be created until the previous version has been
committed. The next version is thus always based on the
previous one. Updates are concurrent when a new version
is created while another, uncommitted version still exists.
This implies that concurrent updates are based (sometimes
indirectly) on a common (committed) version.

Kung and Robinson in their paper on optimistic con-
currency control divide file update into three phases: the
read phase, the validation phase, and the write phase
[Kung81]. The validation phase checks serial equivalence of

commit reference

V.a

_ • commit reference

-- [V.b

transactions T/ and Tj by testing whether one of the follow-
ing conditions hold:
(1) T/ completes its write phase before Tj Starts its read

phase.
(2) The write set of Ti does not intersect the read set of Tj,

and Ti completes its write phase before Tj starts its write
phase.

(3) The write set of ~ does not intersect the read set or the
write set of ~ , and Ti completes its read phase before T s.
completes its read phase.

If one of these conditions hold, the effect of updates T/ and
Tj is the same as when Ti had finished before Tj started.

The Amoeba File Service carries out updates in such a
way that the critical section of the validation phase and the
complete write phase are consist of one atomic action. This
implies that the write phases of two transactions can never
overlap and the sefialisability test for two updates in the
Amoeba File Service reduces to
(1) Version V.i is committed before version V.j is created.
(2) The write set of version V.i does not intersect the read

set of version V.j, and V.i is committed before V.j.
The Amoeba File Service carries out its validation test when
a client process requests a version to be committed (i.e.,
when the client process signals the end of a transaction). In
the test, it is only necessary to check if sefialisability conflicts
will occur with versions that have already committed. In
principle, the commit mechanism works as follows.

The check whether condition (1) holds, and if it holds, the
write phase, are carried out as one atomic operation,
described below. If condition (1) does not hold, a test has to
be made whether condition (2) holds.

When a client requests to commit a version, V.b, that is
based on the current version, V.a, condition obviously (1)

base reference

commit reference

V . a

base reference

commit reference ~_

V.b

(a) (b)

FmtmE 5. V.b succeeds V.a as the current version. (a) shows the situation before the commit, (b)
shows the situation after the commit.

58

holds, because V.b was created after V.a was committed.
Therefore, the Amoeba File Service allows all commits of
versions based on the current version. The mechanism for
this is demonstrated in FlotmE 5.

Let us assume client C sends a request to commit version
V.b, which is based on version V.a to Eb ' s managing server,
M.b. Server M.b then proceeds as follows. First it ascer-
tains that all of V.b's pages are safely on disk. Then it sends
a set commit reference request to M.a, the manager of V.a,
the version that V.b was based on. (V.a is specified in the
base reference field of V.b's version page.) M.a must then do
the following without allowing other requests to interfere.
First it must check whether V.a is still the current version.
If so, there is no conflict and the commit is carried out. The
check for currentness is simply performed by examining
V.a's commit reference. If it is nil, V.a is the current ver-
sion, and the commit reference is set to the page number of
V.b's version page. This makes V.b the current version, and
automatically the updates made to V.b are made per-
manent.

The test and set the commit reference is the only critical
section in version commit. In order to make it an indivisible
action, only one server may be allowed to read the version
block, test the commit reference, set it, and write it back. If
the disk server implements a test-and-set operation, any
server can be allowed to carry out a commit.

Frothy 5(a) shows the situation before commit,
FIGtraE 5(b) atier the commit has successfully been carried
out. M.a returns an acknowledgement to M.b and M.b, in
turn, returns an acknowledgement to C.

Let us now examine the case where V.a is no longer the
current version, which means that another update, con-
current with that of V.b, has taken place and was commit-
ted. Let us assume the situation of Fmtm~ 6; C sends a
request to M.b to commit V.b. However, V.c is now the
current version, also based on V.a. First, M.b proceeds as
before, and sends a set commit request to M.a; only this
time, discovering V.a's commit reference is already set, M.a
does not carry out the commit, but returns V.a's commit
reference instead. This is the block number of V.c's version
page.

base reference

V.a

baae refe~nce

commit reference

V.b

commit reference

M.b must now check if the concurrent updates of Eb and
V.c are serialisable; that is, test whether condition (2) holds.
V.c has already committed, so if the two updates are serialis-
able, V.b must come after V.c. This implies that there must
be no overlap of V.c's write set (the pages written during the
update of V.c) and V.b's read set (the pages read during the
update of V.b). Since M.b received the block number of
Kc's version page, it can descend Ec 's and V.b's page trees
in parallel to examine if there is a serialisability conflict.
This is tested using the R , W, S, M , and C flags in the
page references. Note that unshadowed parts of the tree in
either V.b or V.c need not be visited since they haven't been
accessed.

While descending the two 'page trees, checking the seriali-
sability constraint, M.b also prepares the new current ver-
sion, which must combine the updates made in V.c with
those made in V.b. This is done by replacing unaccessed
parts in V.b's page tree by corresponding written parts in
Ec 's page tree.

Both the serialisability test and the combination of the
changes made by two concurrent updates are made in one
pass over the page tree. Unvisited branches in either page
tree are not descended, which makes the serialisability check
quite fast when at least one of the concurrent updates is
small.

An important property of the serialisability test is that it
can be carried out in parallel with other updates of the file.
While the routine serialise descends V.b's and Ec 's page tree,
other versions are allowed to commit, and other serialisabil-
ity tests can also be carried out.

If serialise returns TRUE, V.b is ready to become Ec's sue-
cessor as the current version, and a set commit reference com-
mand is sent to V.c's manager. If V.c is still current, this
succeeds; if not, the serialisability test is repeated for Ec 's
successor. This repeats until either the set commit reference
command succeeds or serial~e returns FALSE.

In the latter case, when sertalise returns FALSE, the con-
current updates are not serialisable, and V.b is removed,
and its owner notified. The update can be retried on
another version.

2

l
base reference

commit refe~'encc ~ _

V.c

FIOURE 6. V.b wants to cor.~mit, bu t is no longer a
descendant o f the cur ren t version, V.c.

59

4.4. The Locking Mechanism

In the previous section we have described the update
mechanism for a single file. In this section we describe the
mechanisms for updating superrfiles which may contain
several smaller files.

Before continuing, some terms are defined to simplify dis-
cussions. The upper part of the tree, which contains the
version pages for the files in the system, will be called the
system tree. A file whose root is a leaf of the system tree,
i.e., an ordinary file, will be called a small file, although a
'small file' may, of course, be arbitrarily large. In FlotmE 2,
for instance, file A and file B are small files. A file whose
root is not a leaf node of the system tree will be called a
super-file. In FtOURE 2, file C is a super-file. A small file or
super-file whose root is contained in a super-file will be a
sub-file of the super-file. A tree that makes up a small file
or super-file is a page tree.

Updates of small files still use the optimistic method for
update: Two updates on different small files do not interfere
with each other since they affect disjoint page trees. Two
updates of the same small file use optimistic concurrency
control, as described in the previous section, to maintain
integrity.

Updates of super-files, however, must use different rules.
Updates on super-files generally require larger amounts of
processing and affect more pages than updates on small
files. Consequently, the likelyhood of a serialisability
conflict is greater for updates on super-files. Additionally,
the work lost because of a serialisability conflict is usually
more in the case of super-file updates.

For these updates locking provides a better form of con-
currency control, because it warns in advance that two
updates are likely to cause a conflict. Locking has the
drawback, however, that after a crash, locks have to be
cleared before the system can resume operations. We
deemed it a challenge to find a locking mechanism that
requires no special recovery in case of crashes. Our method
is described below.

Each version page contains two lock fields, the top lock
field, which indicates the version page is the root page of an
ongoing update, and the inner lock filed, which indicates an
ongoing update higher in a higher super-file has affected the
locked version page. A file is locked if one of the locks is on.
We assume the lock fields can be tested and set in one
atomic operation. When an update is made to a super-file,
the top lock is set in its version page, and the tuner lock in
visited internal nodes in the file tree that are version pages
of subfiles. When an update is made to a small file, the top
lock is also set in its version page, but since small files have
no internal version pages, no inner locks need be set.

Updates on super-files happen in exactly the same way as
updates on small files, with the exception that locks have to
be checked and set while the update is in progress. As in
the case of small files, a version must also be created for a
super-file before updates can be made. Before a version
may be created, however, the version block for the current
version must be locked.

The algorithm for creating a version is the following: I f
the file is a super-file, check the inner lock and top lock fileds,
and, if they are both zero, set the top/ock. If one of them is
non-zero, wait until it is cleared, then try again. (The wait-

ing process will be described later; locks contain the name of
the locking server, which is used to realise an automatic
warning mechanism for waiting updates.) If the file is a
small file, only the inner lock must be tested, but the top lock
set. Thus, a small file can be subject to more than one
update at the same time, using the optimistic method of con-
currency control. When multiple, concurrent updates are
allowed on a super-file, this rule can be used on super-files
as well.

Assume, for instance, that an update of file A in FIotrgE 2
has to be carried out. It is a small file, so only its top lock
will be set. Other updates on file A can proceed con-
currently: the /nner lock, which is not set, is tested, and con-
current updates can be carried out as described in the previ-
ous section.

If an update, while descending the page tree, discovers a
top lock, it must wait until the lock is cleared before that
subtree can be entered. It is not possible to encounter an
inner lock while descending the page tree.

Suppose again that file A is being updated, so its top lock
is set. An update of file C can proceed, as long as its left
subtree, which is file A, is left untouched. When C's left
subtrree is descended, however, A 's top lock will be encoun-
tered, and C's update must wait until A has been commit-
ted and its lock has been cleared.

The use of the inner locks will become clear when we
assume an update on file C descends A 's page tree. This
update will cause A 's inner lock to be set. When an
attempt is now made to update A, the inner lock will be
encountered, and the update must wait until it is cleared.

The commit operation is somewhat more complicated for
super-files than for small files. Commit on a small file or a
super-file works as described in the previous section. How-
ever, commit on a super-file is not finished when the commit
reference is set. After commit on a super-file, the page tree
must be descended to commit the sub-files of the super-file,
and clear the locks. These commits always succeed, because
the locks prevent access by other clients during the update
to the super-file.

It is not difficult to see that this locking mechanism gives
exclusive access to any subtree of the file system, and there-
fore provides a concurrency control mechanism. It can also
be seen that sub-files, not accessed by an update, are not
locked and therefore accessible to other updates. Full con-
current update remains possible on small files, because
simultaneous updates on the same small file need not wait
for top locks.

However, it is possible to use top locks on small files as
hints which indicate that the file is likely to change soon.
An update, known to affect large parts of a small file, can
thus be postponed until the file is 'idle.' In contrast to this
soft locking scheme, it is also possible to allow more con-
currency on updates of super-files. The rules for creating a
version may be relaxed to allow creating a version when the
version block's top lock is set. The optimistic concurrency
control which still lurks underneath this locking mechanism
will see to it that no harm is done 'concurrencywise.'

When a server process crashes in the middle of an update,
no harm is done to the integrity of the file system; the
optimistic method underneath sees to that. The locks
remain, however, rendering some files inaccessible. For-

60

tunately, the mechanism described above for waiting on
locks also provides a mechanism for crash recovery: When
the server crashes, the outstanding transactions with the
server crash as well, telling all servers waiting on locks that
the process holding the locks has crashed.

A server, waiting on a top lock proceeds as follows: If the
commit reference is off, the lock can be cleared without
further ado, and, when the page tree is descended, inner locks
(containing the same server name, of course) can be cleared
or ignored. If the commit reference is set, the version it
refers to is current. The version with the lock, and the
current version are traversed simultaneously, and the com-
mit references of the sub-files are set, finishing the work of
the crashed server. A server waiting on an inner lock ascends
the ffstan tree to the first page without an inner lock, or a
page wi th a top lock. If the page thus found has no lock at
all, the inr~r lock that the server was waiting on can be
ignored. If the page thus found has a top lock, it is treated
as described above.

4.5. Maintaining a Cache

An important form of optimisation is caching. It is a defect
in most distributed file systems that it is virtually impossible
to keep local copies of remote data around, because of the
difficulties of keeping the local copies up-to-date. The
decreasing cost of primary memory makes caching tech-
niques increasingly useful both for file servers and their
clients.

The Amoeba File S e r v i c e - b y d e s i g n - is especially
suited for caching. A version, from the moment of its crea-
tion, behaves like a private copy of a file that cannot change
without the owners consent. Both Amoeba File Servers and
their clients can therefore maintain a cache which, for the
most recently used versions of a set of files, contains collec-
tions of pages. When a client requests a server to create a
new version of a file, the client, the server, or both, examine
their cache to see if there are any pages of a previous ver-
sion of the file that can still be used. The mechanism for
this is simple, as shown below.

For each file, a client or a server can make a cache entry,
consisting of pages of the most recent version it has had
locally. When a request for a new version of the file is
made, a senalisability test is made between the version used
for the cache entry and the current version in order to find
out which blocks of the cache are still valid. If the serialisa-
bility test succeeds, all blocks are still valid; if not, the
blocks that cause the test to fall must be discarded. Note,
that it is not necessary to transmit pages while making the
serialisability test. If the cache holder is a client, the version
capability must be sent to one of the Amoeba File Servers so
the serialisability test can be made, and the server returns a
list of path names of pages to be discarded. The server
responsible for carrying out the test can make the test itself,
or it can delegate the task to the server holding the most
recent version for efficiency.

If a file is not shared, the cache entry will always be based
on the current version. The serialisability test for finding out
if the cache entry is up-to-date is then a null test which
always succeeds. Even for shared files the page cache can
be quite efficient. As shown previously, the serialisability
test can be made in time proportional to the size of the

intersection of the set of pages of the version in the cache
and the union of the sets of pages in the versions since then.
The server making the serialisability test likely has parts of
the most recent version in its cache, reducing the number of
disk accesses and the amount of network traffic further still.

It is worth noting that, in contrast to other file systems,
the page cache does not have to be a 'write through' cache:
When a page in a version is written, it need not be written
to stable storage immediately. This can be postponed until
just before commit.

The Amoeba File Servers can also conveniently cache the
concurrency control administration, the flag bits.
allows serialisability tests without having to read the page
tree. However, the flags must also be present in the files
themselves to make crash recovery possible.

5. Conclusions

The Amoeba File Service combines a number of concepts
from the operating systems' world, the distributed systems'
world, and the database world in a novel way. To the best
of our knowledge distributed file servers have not been con-
structed using optimistic concurrency control. Yet, it pro-
rides a number of advantages not often encountered in other
file systems.

With a version mechanism, the file system is always in a
consistent state. After a crash, there is no necessity for
recovery: no rollback is required, no locks have to be
cleared, no intentions lists have to be carried out. Optimis-
tic concurrency control allows a maximum of concurrency
in accessing files. Some updates will have to be redone
when concurrent updates are not sefialisable, but with the
unbounded potential of computing power that distributed
systems offer, redoing an operation now and then is accept-
able.

Still, starvation may occur, especially when a large update
must be carried out on a heavily shared file. The locking
mechanism can be used to lock a file when it is known that
the update is large, and the probability of a sefialisability
conflict serious.

The file system should be organised carefully to avoid that
updates on super-files have to occur too frequently. To this
end, each small file should be self-contained as much as pos-
sible, so most updates will be on small files. This allows a
large degree of concurrency. Locking should be the excep-
tion rather than the rule.

Page caches can be maintained, both by end-user
processes and Amoeba File Server processes. We believe our
method is superior to that in XDFS because no unsolicited
messages are necessary. These cause an unneeded addi-
tional complexity for client processes.

The version mechanism and the page tree closely resemble
the mechanisms in FELIX. However, FEux uses locking at
the file level. The idea behind our system of not locking
small files is that many updates, even on the same file, do
not affect the same parts of the file. For example, changes
in an airline reservation system for flights from San Fran-
sisco to Los Angeles do not conflict with changes to reserva-
tions on flights from Amsterdam to London.

The Amoeba File Service provides mechanisms that allow
both sophisticated and simple applications to use its services

61

efficiently. We have discussed the methods for concurrency
control at some length, perhaps creating the impression that
simple-minded applications- such as the example, men-
fioned in the introduction, of a compiler that needs to make
temporary f i l es - must once again pay the price of all that
complicated machinery for guaranteeing serialisability. This
need not be the case at all. Since pages of 32K bytes can
be written, one such page is often large enough to contain a
whole file. Writing these one-page files is efficient; no con-
currency control mechanisms slow it down.

A last advantage of the Amoeba File Service is that it is
eminently suitable for a file system on write-once media,
such as optical disks. Optical disks show great promise for
the future, because of low cost and huge capacity. Tradi-
tional file systems are not suitable for these media, because
files cannot be overwritten on a write-once device. The ver-
sion mechanism, coupled with a cache in which uncommit-
ted files are kept until just before commit seems an ideal file
store for optical disks.

References

[Brown85]
Brown, M. R., Kolling, K., and Taft, E. A., "The
Alpine File System," to appear in ACM TOCS, 1985.

[Dion80]
Dion, J., "The Cambridge File Server," Operating Sys-
tern Review, vol. 14, no. 4, pp.26-35, Oct. 1980.

[Eswaran 76]
Eswaran, K. P.. (;ray, J. N., Lode, R. A., and
Traiger, I. L., "The Notions of Consistency and Predi-
cate Locks in a Database Operating System," Comm.
ACM, vol. 19, no. 11, pp.624-633, November 1976.

[Fridrich 81]
Fridrich, M. and Older, W., "The Felix File Server,"
Proc. Eighth Symp. on Oper. Syst. Prin., vol. 15, no. 5,
pp.37-44, Dec. 1981.

[Kung81
Kung, H. T. and Robinson, J. T., "On Optimistic
Methods for Concurrency Control," ACM Transactions
on Database Systems, vol. 6, no. 2, pp.213-226, June
1981.

[Lampson 79]
Lampson, B. ~N. and Sturgis, H., Crash Recovery in a
Distributed Storage System. Palo Alto, CA.:Xerox PARC,
1979.

[Larnpson83]
Lampson, B. W., "Hints for Computer System
Design," Proc. 9th SOSP, Oktober 1983.

[Mullender84]
Muliender, S. J. and Tanenbaum, A. S., "Protection
and Resource Control in Distributed Operating Sys-
tems," Computer Networks, vol. 8, no. 5,6, pp.421-432,
1984.

[Mullender85a]
MuUender, S. J. and Tanenbaum, A. S., "The Design
of a Capability-Based Distributed Operating System,"
to appear in Computer Journal, 1985.

[Mullender85b]
Mtfllender, S. J., Prinaples of Distributed Operating System
Design. CWI, Amsterdam:PhD. Thesis, October 1985.

[Reed78]
Reed, D., "Naming and Synchronization in a Decen-
tralized Computer System," PhD. Thes/s, 1978, Dept.
of Electrical Engineering and Computer Science, Mas-
sachusetts Institute of Technology.

[Reed81]
Reed, D. and Svobodova, L., "SWALLOW: A Distri-
buted Data Storage System for a Local Network,"
Pro¢. IFIP, pp.355-373, 1981.

[Robimon82]
Robinson, J. T., "Design of Concurrency Controls for
Transaction Processing Systems", Ph.D Thesis (CMU-
C,S-82-114), Carnegie-Mellon University, Pittsburgh
Pa., April 1982.

[Satyanarayanan85]
Satyanarayanan, M., "The ITC Distributed File Sys-
tem: Principles and Design," Pr0¢. lOth SOSP,
December 1985.

[Schlageter 81]
Schlageter, G., "Optimistic Methods for Concurrency
Control in Distributed Database Systems," Proc. VLDB
Conference, 1981.

[Schroeder85]
Schroeder, M. D., Gifford, D. K., and Needham, R.
M., "A Caching File System for a Programmer's
Workstation," Proc. lOth SOSP, December 1985.

[StonebrakerS1]
Stonebraker, M., "Operating System Support for
Database Management," Comm. ACM, vol. 24, no. 7,
pp.412-418, July 1981.

[Sturgis80]
Sturgis, H., Mitchell, J.G., and Israel, J., "Issues in the
Design and Use of a Distributed File System," Operat-
ing System Review, vol. 14, no. 3, July 1980.

[Tanenbaum82]
Tanenbaum, A. S. and Mullender, S. J., "Operating
System Requirements for Distributed Data Base Sys-
tems," pp. 105-114 in Distributed Data Bases, ed. H.
J. Schneider, North-Holland Publishing Co. (1982).

62

