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Abstract
 

We describe our work in implementing a wide-area distributed file system for the NSF TeraGrid.  The system, called XUFS, 
allows private distributed name spaces to be created for transparent access to personal files across over 9000 computer nodes. 
XUFS builds on many principles from prior distributed file systems research, but extends key design goals to support the 
workflow of computational science researchers.   Specifically, XUFS supports file access from the desktop to the wide-area 
network seamlessly, survives transient disconnected operations robustly, and demonstrates comparable or better throughput 
than some current high performance file systems on the wide-area network.   

1. Introduction 
How do computational scientists access files in a widely-

distributed computing environment?  And what needs to be 
provided to enable them to access files easily and be 
productive in these environments?  We provide one data point 
from the NSF TeraGrid towards answering the first question 
and we propose a system that we believe provides a simple 
answer to the second question.   

The TeraGrid is a multi-year, multi-million dollar, 
National Science Foundation (NSF) project to deploy the 
world’s largest distributed infrastructure for open scientific 
research [1].  The project currently links over 9000 compute 
nodes, contributed from 19 systems, located at nine 
geographically distributed sites, through a dedicated 30 Gbps 
wide-area network (WAN).  In aggregate, the project provides 
over 100 TFLOP of compute power and four PB of disk 
capacity for computational science research.  Future system 
acquisitions for the project are expected to expand the 
compute capability of the infrastructure into the PFLOP 
range. 

In 2005, TeraGrid conducted a survey amongst 412 of its 
users.  One of the results from the survey highlighted the 
secure copy command, SCP, as the most important data 
management tool currently being used [2].   To address this 
issue, the GPFS-WAN distributed parallel file system [3] 
went into production that same year at three sites on the 
TeraGrid: the San Diego Supercomputing Center (SDSC), the 
National Center for Supercomputing Applications (NCSA) 
and Argonne National Laboratory (ANL).  Users and jobs 
running on any compute node on systems at these three sites 
could now access their files from a common /gpfs-wan/ 
directory cross-mounted at all three sites.   GPFS-WAN was 
selected over other wide-area distributed file systems, like 
OpenAFS [4] and NFSv4 [5], because of the high speed 
parallel file access capabilities provided by the underlying 
GPFS technology [6][7].  Some of the largest supercomputers 
in the world currently use GPFS as their primary work file 

system.   
However, a number of issues persist with this solution.  

First, files (data and code), residing on the user’s personal 
workstation, still needs to be manually copied to at least one 
of the TeraGrid sites, causing multiple versions of these files 
to be created.  Second, not all sites use GPFS as their primary 
work file system, precluding these sites from participating in 
the GPFS-WAN solution.  Other parallel file system 
technologies in use include Lustre [8] and IBRIX [9].    

In this paper, we describe a distributed file system we have 
implemented to address these concerns, and in the process 
extend some of the traditional design goals assumed by many 
past distributed file systems projects.   Many techniques 
proposed by past projects are valid today, and we have 
therefore incorporated these into our design.  But there is an 
opportunity to reexamine some of these past design goals, 
incorporating the current reality of personal mobility, 
hardware commoditization and infrastructure advancements, 
into a solution that not only builds on prior art, but introduces 
new, more productive, usage patterns.   

Today, the commoditization of disk and personal 
computers has resulted in many scientists owning personal 
systems with disk capacity approaching hundreds of GB.  
These computational scientists have the ability to routinely 
run simulations and store/analyze data on a laptop computer 
or a desktop workstation.  Only the largest compute runs are 
scheduled on high-end systems at the NSF supercomputing 
centers.   

Also, wide-area network bandwidth is no longer as scarce a 
resource as it once was in the computational science 
community.  In addition to the TeraGrid network, other 
national projects like NLR [10] and Abilene-Internet2 [11] 
are providing multi-Gbps wide-area networks, with the goal 
of 100 Mbps access to every desktop.  Furthermore, a lot of 
this available bandwidth is not currently fully utilized [12], so 
there is an opportunity for software systems to better utilize 
this spare capacity, and provide for a richer computing 
experience. 



 

In light of these conditions, this paper reconsiders the 
following often cited distributed file system design goals 
[14][15][16][17][30]: 

a. Location transparency:  All past distributed file 
systems projects assumed this goal.  Although being able to 
walk down a corridor to physically access the same files from 
a different workstation may still be important, a scientist is 
equally mobile by physically carrying his (or hers) personal 
system in the form of a laptop, or a memory stick, into a 
different network.  Thus, the ability to extend a users personal 
work-space from a laptop, or a foreign desktop with an 
attached memory stick, is equally important.  

b. Centralized file servers:  Many systems, such as AFS 
[14], Decorum [15] and Coda [16], make a strict distinction 
between clients and servers.  Some treat clients primarily as 
memory caches, like Sprite [17].  However, personal systems 
now have large disk capacity, and this is changing the role of 
the “client”.  Files residing on multiple, distributed, personal 
systems need to be exported to a few central systems for 
access by users and their applications.  In other words, these 
large central systems are now the “clients” for files residing 
on the user’s personal workstation.  

c. Minimize network load: Systems like Decorum and 
Sprite strive to minimize network load as one of their 
fundamental design goals.  Although this is still an important 
design goal, it is no longer as critical as it once was.  Cost-
benefit tradeoffs may be made to determine if the increased 
user productivity justifies the cost of the extra network 
bandwidth utilized.  

d. File sharing between users: Previous studies [19][20] 
have shown that file sharing between users on a file system is 
not common.  However, many distributed file systems still 
consider it a major benefit to provide the ability to share files 
between users [21].  Recently, many other non-file system 
mechanisms have been developed to facilitate wide-area data 
sharing: e.g. web portals, peer-to-peer systems, etc.  
Therefore, developing a system to enable private, transparent, 
access to personal files across remote sites not only addresses 
the most common use case, but also simplifies the design 
space considerably. 

For the remainder of this paper, we describe the XUFS 
distributed file system.  XUFS is a distributed file system that 
takes the assumption of personal mobility, with significant 
local disk resource and access to high-bandwidth research 
networks, as important considerations in its design criteria.   
Section 2 further expounds on the system requirements, 
including motivating empirical observations made on the 
TeraGrid.   Section 3 describes the component architecture, 
the cache coherency protocol, the recovery mechanism, an 
example access client, and the security framework used in 
XUFS.  Section 4 looks at some comparison benchmarks 
between XUFS and GPFS-WAN, and section 5 examines 
related work.  Section 6 concludes this paper. 

2. Requirements Overview 

2.1. Computational Science Workflow 
From our interviews with many scientists, the 

computational science workflow shows many commonalities.  
This workflow usually involves 1) developing and testing 
simulation code on a local resource (personal workstation or 
departmental cluster), 2) copying the source code to a 
supercomputing site (where it needs to be ported), 3) copying 
input data into the site’s parallel file system scratch space, 4) 
running the simulation on the supercomputer (where raw 
output data may be generated in the same scratch space), 5) 
analyzing the data in the scratch space, 6) copying the 
analysis results back to the local resource, and 7) moving the 
raw output to an archival facility such as a tape store.   

In this scenario, files move from the local disk to a remote 
disk (where they reside for the duration of the job run, and 
final analysis), with some new files moving back to the local 
disk, and the remainder of the new files moving to some other 
space (like a tape archive). 

In this usage pattern, a traditional distributed file system 
will not suffice.  Some simulations generate very large raw 
output files, and these files are never destined for the user’s 
local resource.  However, users still require transparent access 
to these large data files from their personal work-space in 
order to perform result analysis [24].   

2.2. File-Sharing in Computational Science 
Previous studies have shown that file-sharing between 

users is not common [19][20].  However in computational 
science this appears to be even less prevalent.  We looked at 
the directory permissions for the 1,964 TeraGrid users in the 
parallel file system scratch space on the TeraGrid cluster at 
the Texas Advanced Computing Center (TACC).    

We looked at this cluster because of the site’s policy of 
setting the default umask for every user to “077”.  Thus a 
directory created by the user will only have user read-write 
permission enabled by default.  Group read-write permission 
needs to be explicitly given by the user to permit file sharing.  
Other sites have a more lenient umask policy; hence no 
conclusion can be derived by simply looking at the directory 
permissions at those sites.   However, since the directories we 
examined at TACC belonged to TeraGrid-wide users, with 
many having the same accounts on the other systems on the 
TeraGrid, our conclusion represents a valid data point for the 
entire project as a whole. 

Of the 1,964 directories examined at the time of this paper 
preparation, only one user explicitly enabled group read-write 
permission.  This of course does not preclude file sharing in 
the future through a different work space, web site or central 
database.  However, we conclude that at least for the duration 
covering the period of input data preparation, the simulation 
run and the analysis of the simulation output files, little file-
sharing between users is done. 



 

2.3. Where are the Bytes? 
This time we looked at a snapshot of the size distribution of 

all files in the parallel file system scratch space on the TACC 
TeraGrid cluster.  TACC has a policy of purging any files in 
its scratch file system that has not been accessed for more 
then ten days.  We can therefore assume that the files were 
actively accessed by running jobs or users.  Again, the 
directories where these files were examined belonged to 
TeraGrid-wide users, so our conclusions represent one data 
point for the TeraGrid as well. 

Table 1. Cumulative file size distribution for the parallel 
file system scratch space on the TACC TeraGrid cluster. 

Size Files Frequency  Total gigabytes Frequency 
> 500M 130 0.09%  302.471 35% 
> 400M 204 0.14%  335.945 38.87% 
> 300M 271 0.19%  359.140 41.55% 
> 200M 1413 0.99%  623.137 70.09% 
> 100M 2523 1.76%  779.611 90.19% 
> 1M 12856 9%  851.347 98.49% 
> 0.5M 16077 11.23%  853.755 98.77% 
> 0.25M 30962 21.62%  859.584 99.45% 
Total 143190 100%  864.385 100% 

Table 1 summarizes our findings.  We note that even 
though only 9% of the files were greater then 1 megabyte in 
size, over 98.49% of the bytes are from files in this range. 
The file bytes represent the used/generated bytes by 
computational simulation runs in the TeraGrid cluster; hence 
they represent the majority of the I/O activity for the parallel 
file system.   Out study validates other studies [23] that have 
also shown this trend towards larger files in scientific 
computing environments.   

2.4. Design Assumptions 
From our empirical observations we make the following 

design assumptions.  First, file access is more important then 
file-sharing between users.  This is additionally borne out in 
an internal 2004 TeraGrid survey [24].  If file sharing 
between users is required, this can be easily achieved by 
copying files from XUFS to some other space if needed. 

Second, file access needs to originate from a user’s 
personal work-space, from a desktop workstation or laptop.  
A consequence of this is that the file server is now the user’s 
personal system, and we assume this to be unreliable, i.e. 
disconnects from the server is the norm. 

Third, some files should never be copied back to the 
personal work-space.  In our case, we allow the user to specify 
hints as to which directory any newly generated files are kept 
local to the client.  We call these localized directories.   

Fourth, client machines can have plenty of disk capacity.  
User files residing on personal workstations need to be 
accessed by TeraGrid “client” sites where over 4 PB of 
combined disk capacity exists.     

Fifth, the interface to the local parallel file system should 
be exposed to the application at the client, enabling the use of 
any available advanced file system features.   

3. Detailed Design 

3.1. Component architecture 
The current implementation of XUFS is provided in a 

shared object, libxufs.so, and a user-space file server.  
XUFS uses the library preloading feature in many UNIX 
variants to load shared objects into a process image.  The 
XUFS shared object implement functions that interpose the 
libc file system calls, allowing applications to transparently 
access files and directories across the WAN by redirecting 
operations to local cached copies.    
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Figure 1.  XUFS component architecture 

The component architecture of XUFS is shown in Figure 1.  
When an application or user first mounts a remote name 
space in XUFS, a private cache space is created on the client 
host.   At TeraGrid sites, this cache space is expected to be on 
the parallel file system work partition.   

When an opendir() is first invoked on a directory that 
resides in the remote home name space, the interposed 
version of the system call contacts a sync manager, 
downloads the directory entries into the cache space, and 
redirects all directory operations to this local cache copy.  
XUFS essentially recreates the entire remote directory in 
cache space, and stores the directory entry attributes in 
hidden files alongside the initial empty file entries.  
Subsequent stat() system calls on entries in this directory 
return the attributes stored in the hidden file associated with 
each entry.  Only when an open() is first invoked on a file 
in this directory will the interposed version of the open 
system call contact the sync manager again to download the 
file into the cache space.    

System calls that modify a file (or directory) in a XUFS 
partition return when the local cache copy is updated, and the 
operation is appended to a persisted meta-operation queue.  
No file (or directory) operation blocks on a remote network 
call.  A write() operations is treated differently from other 
attribute modification operations however, in that the write 
offsets and contents are stored into an internal shadow file 



 

and the shadow file flush is only appended to the meta-
operations queue on a close().  Thus only the aggregated 
change to the content of a file is sent back to the file server on 
a close.   XUFS therefore implements the last-close-wins 
semantics for files modified in XUFS mounted partitions.   

Cache consistency with the home space is maintained by 
the notification callback manager.  This component registers 
with the remote file server, via a TCP connection, for 
notification of any changes in the home name space.  Any 
change at the home space will result in the invalidation of the 
cached copy, requiring it to be re-fetched prior to being 
accessed again.  This guarantees the same semantics the user 
is expected to encounter when the file is similarly 
manipulated locally. 

In the case of a client crash, we provide a command-line 
tool for users to sync operations, which were in the meta-
operations queue at the time of the crash, with the file server. 
In the case of a server crash, the file server is restarted with a 
crontab job on recovery, with the client periodically 
attempting to re-establish the notification callback channel 
when it notices its termination. 

File locking operations, except for files in localized 
directories, are forwarded to the file server through the lease 
manager.  The lease manager is responsible for periodically 
renewing the lease on a remote lock to prevent orphaned 
locks.  Files in a localized directory can use the locking 
mechanisms provided by the cache space file system.     

3.2. Security 
XUFS provides multiple means to access its distributed file 

system functionality.  However, we provide an OpenSSH 
client, USSH, as one default mechanism.  With USSH, users 
can login from their personal system into a site on the 
TeraGrid and access personal files from within this login 
session by mounting entire directory trees from their personal 
work-space.  USSH provides XUFS with a framework for 
authenticating all connections between client and server.   

When USSH is used to log into a remote site, the command 
generates a short-lived secret <key,phrase> pair, starts a 
personal XUFS file server, authenticates with the remote site 
using standard SSH mechanisms, and starts a remote login 
shell.   USSH then preloads the XUFS shared object in the 
remote login shell, and sets the <key, phrase> pair in the 
environment for use by the preloaded shared object.  
Subsequent TCP connections between the client and file 
server is then authenticated with the <key, phrase> pair 
using an encrypted challenge string.  Communication 
encryption can be further configured by enabling the use of 
port-forwarding through a SSH tunnel.  This option can also 
be used for tunneling through local firewalls if needed.  

3.3. Striped Transfers and Parallel Pre-Fetches 
For large latency wide-area networks, the caching of entire 

files can take a non-negligible amount of time.  The situation 
is further exacerbated by the fact that there are a significant 
number of very large files in use in our environment.   In 
order to alleviate this potential usability issue, we take 

advantage of the large network bandwidth available on the 
TeraGrid.   

All data transfers in XUFS over 64 Kbytes are striped 
across multiple TCP connections.  XUFS uses up to 12 stripes 
with a minimum 64 kilobytes block size each when 
performing file caching transfers.  XUFS also tries to 
maximize the use of the network bandwidth for caching 
smaller files by spawning multiple (12 by default) parallel 
threads for pre-fetching files smaller then 64 kilobytes in size.  
It does this every time the user or application first changes 
into a XUFS mounted directory.   

4. Performance 
We perform three experiments to examine the micro and 

macro behavior of XUFS, compared to GPFS-WAN, on the 
TeraGrid WAN.  The experiments measure the comparative 
performance of the two file systems using 1) the IOzone 
micro-benchmarks [29], 2) the build time of a moderate size 
source code tree, and 3) the turnaround times for accessing a 
large file located across the WAN. 

For the GPFS-WAN scenarios, the benchmarks were all 
run at NCSA.  For the XUFS scenarios, configured with no 
encryption, we import a directory from the SDSC GPFS 
scratch space into the NCSA GPFS scratch space, and we ran 
the benchmarks in the imported directory. Thus in both 
scenarios, the authoritative versions of the files were always 
at SDSC (the GPFS-WAN file servers are at SDSC).   The 
network bandwidth between SDSC and NCSA is 30 Gbps. 

4.1. Micro-Benchmark 
The IOzone benchmark measures the throughput of a 

variety of file operations on a file system.  In this experiment 
we use the benchmark to measure the read and write 
performance.    
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Figure 2. Write performance of the WAN file systems 
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Figure 3. Read performance of the WAN file systems 

We ran the benchmark for a range of file sizes from 1 MB 
to 1 GB, and we also included the time of the close 



 

operation in all our measurements to include the cost of cache 
flushes.  The throughput for the write and read performance 
is shown in Figure 2 and Figure 3.   

XUFS demonstrates better performance then GPFS-WAN 
in the read case for files larger then 1 MB.  As we have seen, 
the majority of bytes on the TeraGrid are in files greater then 
1 MB, so this is an important benefit.  XUFS does well 
because it directly accesses files from the local cache file 
system.   

Also, XUFS performance is generally comparable to GPFS-
WAN for the write case.  However, GPFS-WAN demonstrate 
far better write performance than XUFS for the 1 MB file.  
This is probably demonstrates the benefit of memory caching 
in GPFS. 

4.2. Source Code Build Times  
In this experiment we built a source code tree, containing 

24 files of approximately 12000 lines of C source code 
distributed over 5 sub-directories.  A majority of the files in 
this scenario were less then 64 KB in size.  In our 
measurements we include the time to change to the source 
code tree directory and perform a clean “make”.   This 
experiment measures the amortized overhead of an expected 
common use case on the WAN file systems. 

The timings of consecutive runs are shown in Figure 4.  
Surprisingly XUFS mostly out performs GPFS-WAN in this 
benchmark.  We speculate this is due to our aggressive 
parallel file pre-fetching strategy.  
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Figure 4. Build times on the WAN file systems and the 
local GPFS partition. 

4.3. Large File Access  
In this experiment we measured the time of a shell 

operation on a 1 GB file on the WAN file systems.  The 
command used was “wc –l”: the command opens an input 
file, counts the number of new line characters in that file, and 
prints this count.  The timings of consecutive runs of the 
command are shown in Figure 5.      

The results show the command takes approximately 60 
seconds to complete in the first instance when run in XUFS.  
This delay is due to the system copying the file into its cache 
space for the first invocation of open().  However, 
subsequent invocation of the command performs considerably 
better because XUFS is redirecting all file access to the local 
cache file.  GPFS-WAN show a consistent access time of 33 
seconds in all 5 runs of the experiment.  
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Figure 5. Access timings for a 1GB file on the WAN file 
systems and the local GPFS partition. 

We also compared the XUFS timings, with the timing from 
manually copying the 1GB file from SDSC to NCSA using 
the copy commands TGCP (a GridFTP client) and SCP.  The 
timings are summarized in Table 2.  The results show TGCP 
as having only a slight advantage over XUFS in terms of the 
turnaround time of accessing the large file.  The poor 
performance of SCP is probably due to its use of encryption, 
and its lack of TCP stripping. 

 
Table 2. Mean time of "wc -l" on a 1GB file in XUFS, 
compared to copying the file across the WAN using the 
TGCP and SCP copy commands. 

XUFS (secs) TGCP (secs) SCP (secs) 
57 49 2100 

5.  Related Work 
The XUFS approach of using a shared object to interpose a 

global name space for file systems located across a WAN is 
similar to the approach expounded by the Jade file system 
[22].  Like Jade, XUFS allows private name spaces to be 
created, and aggressively caches remote files to hide access 
latency on the WAN.  However, unlike Jade, XUFS employs a 
different cache consistency protocol, and uses striped block 
transfers and parallel file pre-fetching to better utilize large 
bandwidth networks.   

XUFS caches entire files on disk instead of using smaller 
memory block caches.  Most distributed file systems cache 
memory blocks for fast repeat access [5][6][15][17][18].  A 
few past systems have also used entire file caches; e.g. Cedar 
[28], AFS-1 [14], and Coda [16].  Our primary reason for 
caching entire files is because of our assumption that the 
server is unreliable.   Computation jobs need reliable access to 
input data files, and having the entire file in cache allows 
XUFS to provide access to files even during temporary server 
or network outages. 

XUFS reliance on a callback notification mechanism for its 
cache consistency protocol is similar to the approach used by 
AFS-2 and AFS-3 [30].  Cached copies are always assumed to 
be up-to-date unless otherwise notified by the remote server.  
This protocol is different from the cache consistency protocol 
in NFS and Jade where clients are responsible for checking 
content versions with the remote server on every file 
open().  This is also different from the token-based cache 
consistency protocols used in GPFS [6], Decorum [15] and 
Locus [27].   Token-based consistency protocols are 
particularly efficient for multiple-process write-sharing 



 

scenarios.  However, XUFS allows the high performance 
writing-sharing features in a parallel file system, configured 
as the cache space, to be made available to an application.  
This satisfies the overwhelming majority of cases where an 
application is scheduled to run on multiple CPUs at one site.  
Exposing the local file system features in the distributed file 
system interface is also supported by the Decorum file system 
[15] and extensions to the NFSv4 [25] protocol. 

XUFS share similar motivation with other recent work on 
wide-area network file systems, such as Shark [33].  However, 
XUFS differs with Shark in its fundamental design goals and 
detailed implementation.  Shark uses multiple cooperating 
replica proxies for optimizing network bandwidth utilization 
and alleviating the burden of serving many concurrent client 
requests on the central file server.  XUFS uses stripped file 
transfers to maximize network bandwidth utilization, and 
instantiates a private user-space file server for each user.  

Finally, the semantics of our USSH access client is similar 
in many respects to the import command in Plan 9 [13], 
and to the remote execution shell Rex [32].  However, USSH 
differs from these other commands in the underlying 
protocols used to access files and directories: 9P in the case of 
import, and SFS in the case of Rex. 

6.  Conclusion 
XUFS is motivated by real user requirements; hence we 

expect the system to evolve over time based on feedback from 
scientists using it while engaged in distributed computational 
research.  However, future work on XUFS will also 
investigate integration with alternative interposition 
mechanisms such as SFS [31], FUSE [35] and Windows 
Detours [34].  These will broaden the range of XUFS 
supported platforms and usage scenarios, eliciting a wider 
community of users to instigate its evolution.    

Acknowledgement 
We would like to thank the anonymous reviewers for their 

helpful and constructive comments.  In particular we would 
like to thank our shepherd, Mike Dahlin, for diligently 
reviewing and providing valuable feedback to the final 
manuscript. 

References 
[1] NSF TeraGrid, http://www.teragrid.org  
[2] NSF Cyberinfrastructure User Survey 2005, http://www.ci-

partnership.org/survey/report2005.html  
[3] P. Andrews, P. Kovatch and C. Jordan, “Massive High-Performance 

Global File Systems for Grid Computing”, in Proc of the ACM/IEEE 
Conference on High Performance Networking and Computing (SC05), 
November 12-18, Seattle, WA, USA, 2005. 

[4] OpenAFS, http://www.openafs.org  
[5] B. Pawlowski, S. Shepler, C. Beame, B. Callagham, M. Eisler, D. Noveck, 

D. Robinson, and R. Thurlow, “The NFS Version 4 Protocol”, in Proc. of 
the 2nd Intl. System Admin. And Networking Conference (SANE2000), 
2000 

[6] F. Schmuck, and R. Haskin, “GPFS: A Shared-Disk File System for Large 
Computing Clusters”, in Proc. of the 1st USENIX Conference on File and 
Storage Technologies, Monterey, CA, 2002 

[7] IBM Research, General Parallel File System (GPFS), 
http://www.almaden.ibm.com/StorageSystems/file_systems/GPFS/  

[8] P. Schwan, “Lustre: Building a File System for 1,000-node Clusters”, in 
Proc. of Ottawa Linux Symposium, 2003. 

[9] IBRIX, http://www.ibrix.com  
[10] National LambdaRail, http://www.nlr.net  
[11] Abilene, http://abilene.internet2.edu  
[12] NLR Weather Map, http://weathermap.grnoc.iu.edu/nlrmaps/layer3.html  
[13] Plan 9 from Bell Labs.  http://cm.bell-labs.com/plan9/ 
[14] J. H. Howard, M. L. Kazar, S. G. Menees, D. A. Nichols, M. 

Satyanarayanan, R. N. Sidebotham, and M. J. West, “Scale and 
Performance in a Distributed File System”, ACM Trans. on Computer 
Systems, 6(1), Feb 1988, pp. 51-81. 

[15] M. L. Kazar, et. al., “Decorum File System Architectural Overview”, in 
Proc. of the 1990 USENIX Technical Conf., CA, June 1990, pp. 151-164. 

[16] M. Satyanarayanan, “Coda: A Highly Available File System for 
Distributed Workstation Environment”, IEEE Trans. on Computers, 39(4), 
1990, pp. 447-459.  

[17] M. N. Nelson, et. al., “Caching in the Sprite Network File System”, ACM 
Trans. on Computer Systems,  6(1), Feb 1988, pp. 134-154.  

[18] T. Anderson, M. Dahlin, J. Neefe, D. Patterson, D. Roselli, and R. Wang, 
“Serverless Network File Systems”, ACM Trans. on Computer Systems, 
14(1), Feb. 1996, pp. 41—79.  

[19] M. G. Baker, J. H. Hartman, M. D. Kupfer, K. W. Shirrif, and J. K. 
Ousterhout, “Measurements of a Distributed File System”, in Proc. of the 
13th ACM Symp. on Operating Systems Principles,  1991. 

[20] J. Ousterhout, H. Da Costa, D. Harrison, J. Kunze, M. Kupfer, and J. 
Thomson, “A Trace-Driven Analysis of the 4.2BSD File System”, in Proc. 
of the 10th ACM Symp. on Operating System Principles, 1985. 

[21] M. Spasojevic, and M. Satyanarayanan, “An Empirical Study of a Wide-
Area Distributed File System”, ACM Trans. on Computer Systems, 14(2), 
1996, pp. 200-222. 

[22] H. C. Rao and L. L. Peterson, “Accessing Files in an Internet: The Jade 
File System”, IEEE Trans. on Software Engineering, 19.(6), June 1993 

[23] F. Wang, Q. Xin, B. Hong, S. A. Brandt, E. L. Miller, D. D. E. Long, and 
T. T. McLarty, “File System Workload Analysis for Large Scale Scientific 
Computing Applications”, in Proc. 21st IEEE Conf. on Mass Storage 
Systems and Technologies, MD, 2004, pp. 129-152.  

[24] TeraGrid Director Presentation (slide 27): 
http://www.tacc.utexas.edu/~ewalker/director.ppt 

[25] A. Adamson, D. Hildebrand, P. Honeyman, S. McKee, and J. Zhang, 
“Extending NFSv4 for Petascale Data Management”, in Proc. of 
Workshop on Next-Generation Distributed Data Management, Paris, 
June 2006. 

[26] J. J. Kistler, and M. Satyanarayanan, “Disconnected Operation in the Coda 
File System”, ACM Trans. On Computer Systems, 10(1), 1992. 

[27] G. J. Popek and B. J. Walker, eds., The LOCUS Distributed System 
Architecture, MIT Press, Cambridge MA, 1985.  

[28] D. K. Gifford, R. M. Needham, and M. D. Schroeder, “The Cedar File 
System”, Comm. of the ACM, 31(3), 1988, pp. 288-298. 

[29] IOzone filesystem benchmark, http://www.iozone.org  
[30] M. Satyanarayanan, “Scalable, Secure and Highly Available File Access in 

a Distributed Workstation Environment”, IEEE Computer, 23(5), May 
1990, pp. 9-22.  

[31] D. Mazieres, “A Toolkit for User-Level File Systems”, in Proc. of the 
2001 USENIX Technical conf., Boston, MA, June 2001. 

[32] M. Kaminsky, E. Peterson, D. B. Giffin, K. Fu, D. Mazieres, and F. 
Kaashoek, “Rex: Secure, Extensible Remote Execution”, in Proc. of 2004 
USENIX Technical Conf., 2004. 

[33] S. Annapureddy, M. J. Freedman, D. Mazieres, “Shark: Scaling File 
Servers via Cooperative Caching”, in Proc. of 2nd USENIX/ACM Symp. on 
Networked System Design and Implementation, 2005. 

[34] G. Hunt and D. Brubacher, “Detours: Binary Interception of Win32 
Functions”, in Proc. of the 3rd USENIX Windows NT Symposium, Seattle, 
WA 1999, pp. 135-143. 

[35] M. Szeredi, FUSE, http://sourceforge.net/projects/fuse 


