

A Distributed File System for a Wide-Area High Performance Computing
Infrastructure

Edward Walker

University of Texas at Austin

Abstract

We describe our work in implementing a wide-area distributed file system for the NSF TeraGrid. The system, called XUFS,
allows private distributed name spaces to be created for transparent access to personal files across over 9000 computer nodes.
XUFS builds on many principles from prior distributed file systems research, but extends key design goals to support the
workflow of computational science researchers. Specifically, XUFS supports file access from the desktop to the wide-area
network seamlessly, survives transient disconnected operations robustly, and demonstrates comparable or better throughput
than some current high performance file systems on the wide-area network.

1. Introduction
How do computational scientists access files in a widely-

distributed computing environment? And what needs to be
provided to enable them to access files easily and be
productive in these environments? We provide one data point
from the NSF TeraGrid towards answering the first question
and we propose a system that we believe provides a simple
answer to the second question.

The TeraGrid is a multi-year, multi-million dollar,
National Science Foundation (NSF) project to deploy the
world’s largest distributed infrastructure for open scientific
research [1]. The project currently links over 9000 compute
nodes, contributed from 19 systems, located at nine
geographically distributed sites, through a dedicated 30 Gbps
wide-area network (WAN). In aggregate, the project provides
over 100 TFLOP of compute power and four PB of disk
capacity for computational science research. Future system
acquisitions for the project are expected to expand the
compute capability of the infrastructure into the PFLOP
range.

In 2005, TeraGrid conducted a survey amongst 412 of its
users. One of the results from the survey highlighted the
secure copy command, SCP, as the most important data
management tool currently being used [2]. To address this
issue, the GPFS-WAN distributed parallel file system [3]
went into production that same year at three sites on the
TeraGrid: the San Diego Supercomputing Center (SDSC), the
National Center for Supercomputing Applications (NCSA)
and Argonne National Laboratory (ANL). Users and jobs
running on any compute node on systems at these three sites
could now access their files from a common /gpfs-wan/
directory cross-mounted at all three sites. GPFS-WAN was
selected over other wide-area distributed file systems, like
OpenAFS [4] and NFSv4 [5], because of the high speed
parallel file access capabilities provided by the underlying
GPFS technology [6][7]. Some of the largest supercomputers
in the world currently use GPFS as their primary work file

system.
However, a number of issues persist with this solution.

First, files (data and code), residing on the user’s personal
workstation, still needs to be manually copied to at least one
of the TeraGrid sites, causing multiple versions of these files
to be created. Second, not all sites use GPFS as their primary
work file system, precluding these sites from participating in
the GPFS-WAN solution. Other parallel file system
technologies in use include Lustre [8] and IBRIX [9].

In this paper, we describe a distributed file system we have
implemented to address these concerns, and in the process
extend some of the traditional design goals assumed by many
past distributed file systems projects. Many techniques
proposed by past projects are valid today, and we have
therefore incorporated these into our design. But there is an
opportunity to reexamine some of these past design goals,
incorporating the current reality of personal mobility,
hardware commoditization and infrastructure advancements,
into a solution that not only builds on prior art, but introduces
new, more productive, usage patterns.

Today, the commoditization of disk and personal
computers has resulted in many scientists owning personal
systems with disk capacity approaching hundreds of GB.
These computational scientists have the ability to routinely
run simulations and store/analyze data on a laptop computer
or a desktop workstation. Only the largest compute runs are
scheduled on high-end systems at the NSF supercomputing
centers.

Also, wide-area network bandwidth is no longer as scarce a
resource as it once was in the computational science
community. In addition to the TeraGrid network, other
national projects like NLR [10] and Abilene-Internet2 [11]
are providing multi-Gbps wide-area networks, with the goal
of 100 Mbps access to every desktop. Furthermore, a lot of
this available bandwidth is not currently fully utilized [12], so
there is an opportunity for software systems to better utilize
this spare capacity, and provide for a richer computing
experience.

In light of these conditions, this paper reconsiders the
following often cited distributed file system design goals
[14][15][16][17][30]:

a. Location transparency: All past distributed file
systems projects assumed this goal. Although being able to
walk down a corridor to physically access the same files from
a different workstation may still be important, a scientist is
equally mobile by physically carrying his (or hers) personal
system in the form of a laptop, or a memory stick, into a
different network. Thus, the ability to extend a users personal
work-space from a laptop, or a foreign desktop with an
attached memory stick, is equally important.

b. Centralized file servers: Many systems, such as AFS
[14], Decorum [15] and Coda [16], make a strict distinction
between clients and servers. Some treat clients primarily as
memory caches, like Sprite [17]. However, personal systems
now have large disk capacity, and this is changing the role of
the “client”. Files residing on multiple, distributed, personal
systems need to be exported to a few central systems for
access by users and their applications. In other words, these
large central systems are now the “clients” for files residing
on the user’s personal workstation.

c. Minimize network load: Systems like Decorum and
Sprite strive to minimize network load as one of their
fundamental design goals. Although this is still an important
design goal, it is no longer as critical as it once was. Cost-
benefit tradeoffs may be made to determine if the increased
user productivity justifies the cost of the extra network
bandwidth utilized.

d. File sharing between users: Previous studies [19][20]
have shown that file sharing between users on a file system is
not common. However, many distributed file systems still
consider it a major benefit to provide the ability to share files
between users [21]. Recently, many other non-file system
mechanisms have been developed to facilitate wide-area data
sharing: e.g. web portals, peer-to-peer systems, etc.
Therefore, developing a system to enable private, transparent,
access to personal files across remote sites not only addresses
the most common use case, but also simplifies the design
space considerably.

For the remainder of this paper, we describe the XUFS
distributed file system. XUFS is a distributed file system that
takes the assumption of personal mobility, with significant
local disk resource and access to high-bandwidth research
networks, as important considerations in its design criteria.
Section 2 further expounds on the system requirements,
including motivating empirical observations made on the
TeraGrid. Section 3 describes the component architecture,
the cache coherency protocol, the recovery mechanism, an
example access client, and the security framework used in
XUFS. Section 4 looks at some comparison benchmarks
between XUFS and GPFS-WAN, and section 5 examines
related work. Section 6 concludes this paper.

2. Requirements Overview

2.1. Computational Science Workflow
From our interviews with many scientists, the

computational science workflow shows many commonalities.
This workflow usually involves 1) developing and testing
simulation code on a local resource (personal workstation or
departmental cluster), 2) copying the source code to a
supercomputing site (where it needs to be ported), 3) copying
input data into the site’s parallel file system scratch space, 4)
running the simulation on the supercomputer (where raw
output data may be generated in the same scratch space), 5)
analyzing the data in the scratch space, 6) copying the
analysis results back to the local resource, and 7) moving the
raw output to an archival facility such as a tape store.

In this scenario, files move from the local disk to a remote
disk (where they reside for the duration of the job run, and
final analysis), with some new files moving back to the local
disk, and the remainder of the new files moving to some other
space (like a tape archive).

In this usage pattern, a traditional distributed file system
will not suffice. Some simulations generate very large raw
output files, and these files are never destined for the user’s
local resource. However, users still require transparent access
to these large data files from their personal work-space in
order to perform result analysis [24].

2.2. File-Sharing in Computational Science
Previous studies have shown that file-sharing between

users is not common [19][20]. However in computational
science this appears to be even less prevalent. We looked at
the directory permissions for the 1,964 TeraGrid users in the
parallel file system scratch space on the TeraGrid cluster at
the Texas Advanced Computing Center (TACC).

We looked at this cluster because of the site’s policy of
setting the default umask for every user to “077”. Thus a
directory created by the user will only have user read-write
permission enabled by default. Group read-write permission
needs to be explicitly given by the user to permit file sharing.
Other sites have a more lenient umask policy; hence no
conclusion can be derived by simply looking at the directory
permissions at those sites. However, since the directories we
examined at TACC belonged to TeraGrid-wide users, with
many having the same accounts on the other systems on the
TeraGrid, our conclusion represents a valid data point for the
entire project as a whole.

Of the 1,964 directories examined at the time of this paper
preparation, only one user explicitly enabled group read-write
permission. This of course does not preclude file sharing in
the future through a different work space, web site or central
database. However, we conclude that at least for the duration
covering the period of input data preparation, the simulation
run and the analysis of the simulation output files, little file-
sharing between users is done.

2.3. Where are the Bytes?
This time we looked at a snapshot of the size distribution of

all files in the parallel file system scratch space on the TACC
TeraGrid cluster. TACC has a policy of purging any files in
its scratch file system that has not been accessed for more
then ten days. We can therefore assume that the files were
actively accessed by running jobs or users. Again, the
directories where these files were examined belonged to
TeraGrid-wide users, so our conclusions represent one data
point for the TeraGrid as well.

Table 1. Cumulative file size distribution for the parallel
file system scratch space on the TACC TeraGrid cluster.

Size Files Frequency Total gigabytes Frequency
> 500M 130 0.09% 302.471 35%
> 400M 204 0.14% 335.945 38.87%
> 300M 271 0.19% 359.140 41.55%
> 200M 1413 0.99% 623.137 70.09%
> 100M 2523 1.76% 779.611 90.19%
> 1M 12856 9% 851.347 98.49%
> 0.5M 16077 11.23% 853.755 98.77%
> 0.25M 30962 21.62% 859.584 99.45%
Total 143190 100% 864.385 100%

Table 1 summarizes our findings. We note that even
though only 9% of the files were greater then 1 megabyte in
size, over 98.49% of the bytes are from files in this range.
The file bytes represent the used/generated bytes by
computational simulation runs in the TeraGrid cluster; hence
they represent the majority of the I/O activity for the parallel
file system. Out study validates other studies [23] that have
also shown this trend towards larger files in scientific
computing environments.

2.4. Design Assumptions
From our empirical observations we make the following

design assumptions. First, file access is more important then
file-sharing between users. This is additionally borne out in
an internal 2004 TeraGrid survey [24]. If file sharing
between users is required, this can be easily achieved by
copying files from XUFS to some other space if needed.

Second, file access needs to originate from a user’s
personal work-space, from a desktop workstation or laptop.
A consequence of this is that the file server is now the user’s
personal system, and we assume this to be unreliable, i.e.
disconnects from the server is the norm.

Third, some files should never be copied back to the
personal work-space. In our case, we allow the user to specify
hints as to which directory any newly generated files are kept
local to the client. We call these localized directories.

Fourth, client machines can have plenty of disk capacity.
User files residing on personal workstations need to be
accessed by TeraGrid “client” sites where over 4 PB of
combined disk capacity exists.

Fifth, the interface to the local parallel file system should
be exposed to the application at the client, enabling the use of
any available advanced file system features.

3. Detailed Design

3.1. Component architecture
The current implementation of XUFS is provided in a

shared object, libxufs.so, and a user-space file server.
XUFS uses the library preloading feature in many UNIX
variants to load shared objects into a process image. The
XUFS shared object implement functions that interpose the
libc file system calls, allowing applications to transparently
access files and directories across the WAN by redirecting
operations to local cached copies.

Shell, Unix commands, user
application, etc.

Interposition shared
object

Meta-operations
queue

File server

Cache spaceLocal name
space

Home name
space

Sync manager

Notification
callback manager

Operation
Log

Extended file
name space

Lease manager

Extended Work-
space (TeraGrid site)

Personal work-
space (local
workstation)

Figure 1. XUFS component architecture

The component architecture of XUFS is shown in Figure 1.
When an application or user first mounts a remote name
space in XUFS, a private cache space is created on the client
host. At TeraGrid sites, this cache space is expected to be on
the parallel file system work partition.

When an opendir() is first invoked on a directory that
resides in the remote home name space, the interposed
version of the system call contacts a sync manager,
downloads the directory entries into the cache space, and
redirects all directory operations to this local cache copy.
XUFS essentially recreates the entire remote directory in
cache space, and stores the directory entry attributes in
hidden files alongside the initial empty file entries.
Subsequent stat() system calls on entries in this directory
return the attributes stored in the hidden file associated with
each entry. Only when an open() is first invoked on a file
in this directory will the interposed version of the open
system call contact the sync manager again to download the
file into the cache space.

System calls that modify a file (or directory) in a XUFS
partition return when the local cache copy is updated, and the
operation is appended to a persisted meta-operation queue.
No file (or directory) operation blocks on a remote network
call. A write() operations is treated differently from other
attribute modification operations however, in that the write
offsets and contents are stored into an internal shadow file

and the shadow file flush is only appended to the meta-
operations queue on a close(). Thus only the aggregated
change to the content of a file is sent back to the file server on
a close. XUFS therefore implements the last-close-wins
semantics for files modified in XUFS mounted partitions.

Cache consistency with the home space is maintained by
the notification callback manager. This component registers
with the remote file server, via a TCP connection, for
notification of any changes in the home name space. Any
change at the home space will result in the invalidation of the
cached copy, requiring it to be re-fetched prior to being
accessed again. This guarantees the same semantics the user
is expected to encounter when the file is similarly
manipulated locally.

In the case of a client crash, we provide a command-line
tool for users to sync operations, which were in the meta-
operations queue at the time of the crash, with the file server.
In the case of a server crash, the file server is restarted with a
crontab job on recovery, with the client periodically
attempting to re-establish the notification callback channel
when it notices its termination.

File locking operations, except for files in localized
directories, are forwarded to the file server through the lease
manager. The lease manager is responsible for periodically
renewing the lease on a remote lock to prevent orphaned
locks. Files in a localized directory can use the locking
mechanisms provided by the cache space file system.

3.2. Security
XUFS provides multiple means to access its distributed file

system functionality. However, we provide an OpenSSH
client, USSH, as one default mechanism. With USSH, users
can login from their personal system into a site on the
TeraGrid and access personal files from within this login
session by mounting entire directory trees from their personal
work-space. USSH provides XUFS with a framework for
authenticating all connections between client and server.

When USSH is used to log into a remote site, the command
generates a short-lived secret <key,phrase> pair, starts a
personal XUFS file server, authenticates with the remote site
using standard SSH mechanisms, and starts a remote login
shell. USSH then preloads the XUFS shared object in the
remote login shell, and sets the <key, phrase> pair in the
environment for use by the preloaded shared object.
Subsequent TCP connections between the client and file
server is then authenticated with the <key, phrase> pair
using an encrypted challenge string. Communication
encryption can be further configured by enabling the use of
port-forwarding through a SSH tunnel. This option can also
be used for tunneling through local firewalls if needed.

3.3. Striped Transfers and Parallel Pre-Fetches
For large latency wide-area networks, the caching of entire

files can take a non-negligible amount of time. The situation
is further exacerbated by the fact that there are a significant
number of very large files in use in our environment. In
order to alleviate this potential usability issue, we take

advantage of the large network bandwidth available on the
TeraGrid.

All data transfers in XUFS over 64 Kbytes are striped
across multiple TCP connections. XUFS uses up to 12 stripes
with a minimum 64 kilobytes block size each when
performing file caching transfers. XUFS also tries to
maximize the use of the network bandwidth for caching
smaller files by spawning multiple (12 by default) parallel
threads for pre-fetching files smaller then 64 kilobytes in size.
It does this every time the user or application first changes
into a XUFS mounted directory.

4. Performance
We perform three experiments to examine the micro and

macro behavior of XUFS, compared to GPFS-WAN, on the
TeraGrid WAN. The experiments measure the comparative
performance of the two file systems using 1) the IOzone
micro-benchmarks [29], 2) the build time of a moderate size
source code tree, and 3) the turnaround times for accessing a
large file located across the WAN.

For the GPFS-WAN scenarios, the benchmarks were all
run at NCSA. For the XUFS scenarios, configured with no
encryption, we import a directory from the SDSC GPFS
scratch space into the NCSA GPFS scratch space, and we ran
the benchmarks in the imported directory. Thus in both
scenarios, the authoritative versions of the files were always
at SDSC (the GPFS-WAN file servers are at SDSC). The
network bandwidth between SDSC and NCSA is 30 Gbps.

4.1. Micro-Benchmark
The IOzone benchmark measures the throughput of a

variety of file operations on a file system. In this experiment
we use the benchmark to measure the read and write
performance.

1
10

100

1000

10000

100000

1000000
10000000

1M
B

5M
B

10
0M

B

20
0M

B

30
0M

B

40
0M

B

50
0M

B

60
0M

B

70
0M

B

80
0M

B

90
0M

B

10
00

MB

File size

Ki
lo

by
te

s/
se

c

GPFS-WAN
XUFS

Figure 2. Write performance of the WAN file systems

1000

10000

100000

1000000

10000000

1M
B

5M
B

10
0M

B

20
0M

B

30
0M

B

40
0M

B

50
0M

B

60
0M

B

70
0M

B

80
0M

B

90
0M

B

10
00

MB

File size

K
ilo

by
te

s/
se

c

GPFS-WAN
XUFS

Figure 3. Read performance of the WAN file systems

We ran the benchmark for a range of file sizes from 1 MB
to 1 GB, and we also included the time of the close

operation in all our measurements to include the cost of cache
flushes. The throughput for the write and read performance
is shown in Figure 2 and Figure 3.

XUFS demonstrates better performance then GPFS-WAN
in the read case for files larger then 1 MB. As we have seen,
the majority of bytes on the TeraGrid are in files greater then
1 MB, so this is an important benefit. XUFS does well
because it directly accesses files from the local cache file
system.

Also, XUFS performance is generally comparable to GPFS-
WAN for the write case. However, GPFS-WAN demonstrate
far better write performance than XUFS for the 1 MB file.
This is probably demonstrates the benefit of memory caching
in GPFS.

4.2. Source Code Build Times
In this experiment we built a source code tree, containing

24 files of approximately 12000 lines of C source code
distributed over 5 sub-directories. A majority of the files in
this scenario were less then 64 KB in size. In our
measurements we include the time to change to the source
code tree directory and perform a clean “make”. This
experiment measures the amortized overhead of an expected
common use case on the WAN file systems.

The timings of consecutive runs are shown in Figure 4.
Surprisingly XUFS mostly out performs GPFS-WAN in this
benchmark. We speculate this is due to our aggressive
parallel file pre-fetching strategy.

1

10

100

1000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Consecutive runs

B
ui

ld
 ti

m
e

(s
ec

s)

GPFS-WAN
XUFS
GPFS Scratch

Figure 4. Build times on the WAN file systems and the
local GPFS partition.

4.3. Large File Access
In this experiment we measured the time of a shell

operation on a 1 GB file on the WAN file systems. The
command used was “wc –l”: the command opens an input
file, counts the number of new line characters in that file, and
prints this count. The timings of consecutive runs of the
command are shown in Figure 5.

The results show the command takes approximately 60
seconds to complete in the first instance when run in XUFS.
This delay is due to the system copying the file into its cache
space for the first invocation of open(). However,
subsequent invocation of the command performs considerably
better because XUFS is redirecting all file access to the local
cache file. GPFS-WAN show a consistent access time of 33
seconds in all 5 runs of the experiment.

1

10

100

1 2 3 4 5 6

Consecutive runs

S
ec

s GPFS-WAN
XUFS
GPFS Scratch

Figure 5. Access timings for a 1GB file on the WAN file
systems and the local GPFS partition.

We also compared the XUFS timings, with the timing from
manually copying the 1GB file from SDSC to NCSA using
the copy commands TGCP (a GridFTP client) and SCP. The
timings are summarized in Table 2. The results show TGCP
as having only a slight advantage over XUFS in terms of the
turnaround time of accessing the large file. The poor
performance of SCP is probably due to its use of encryption,
and its lack of TCP stripping.

Table 2. Mean time of "wc -l" on a 1GB file in XUFS,
compared to copying the file across the WAN using the
TGCP and SCP copy commands.

XUFS (secs) TGCP (secs) SCP (secs)
57 49 2100

5. Related Work
The XUFS approach of using a shared object to interpose a

global name space for file systems located across a WAN is
similar to the approach expounded by the Jade file system
[22]. Like Jade, XUFS allows private name spaces to be
created, and aggressively caches remote files to hide access
latency on the WAN. However, unlike Jade, XUFS employs a
different cache consistency protocol, and uses striped block
transfers and parallel file pre-fetching to better utilize large
bandwidth networks.

XUFS caches entire files on disk instead of using smaller
memory block caches. Most distributed file systems cache
memory blocks for fast repeat access [5][6][15][17][18]. A
few past systems have also used entire file caches; e.g. Cedar
[28], AFS-1 [14], and Coda [16]. Our primary reason for
caching entire files is because of our assumption that the
server is unreliable. Computation jobs need reliable access to
input data files, and having the entire file in cache allows
XUFS to provide access to files even during temporary server
or network outages.

XUFS reliance on a callback notification mechanism for its
cache consistency protocol is similar to the approach used by
AFS-2 and AFS-3 [30]. Cached copies are always assumed to
be up-to-date unless otherwise notified by the remote server.
This protocol is different from the cache consistency protocol
in NFS and Jade where clients are responsible for checking
content versions with the remote server on every file
open(). This is also different from the token-based cache
consistency protocols used in GPFS [6], Decorum [15] and
Locus [27]. Token-based consistency protocols are
particularly efficient for multiple-process write-sharing

scenarios. However, XUFS allows the high performance
writing-sharing features in a parallel file system, configured
as the cache space, to be made available to an application.
This satisfies the overwhelming majority of cases where an
application is scheduled to run on multiple CPUs at one site.
Exposing the local file system features in the distributed file
system interface is also supported by the Decorum file system
[15] and extensions to the NFSv4 [25] protocol.

XUFS share similar motivation with other recent work on
wide-area network file systems, such as Shark [33]. However,
XUFS differs with Shark in its fundamental design goals and
detailed implementation. Shark uses multiple cooperating
replica proxies for optimizing network bandwidth utilization
and alleviating the burden of serving many concurrent client
requests on the central file server. XUFS uses stripped file
transfers to maximize network bandwidth utilization, and
instantiates a private user-space file server for each user.

Finally, the semantics of our USSH access client is similar
in many respects to the import command in Plan 9 [13],
and to the remote execution shell Rex [32]. However, USSH
differs from these other commands in the underlying
protocols used to access files and directories: 9P in the case of
import, and SFS in the case of Rex.

6. Conclusion
XUFS is motivated by real user requirements; hence we

expect the system to evolve over time based on feedback from
scientists using it while engaged in distributed computational
research. However, future work on XUFS will also
investigate integration with alternative interposition
mechanisms such as SFS [31], FUSE [35] and Windows
Detours [34]. These will broaden the range of XUFS
supported platforms and usage scenarios, eliciting a wider
community of users to instigate its evolution.

Acknowledgement
We would like to thank the anonymous reviewers for their

helpful and constructive comments. In particular we would
like to thank our shepherd, Mike Dahlin, for diligently
reviewing and providing valuable feedback to the final
manuscript.

References
[1] NSF TeraGrid, http://www.teragrid.org
[2] NSF Cyberinfrastructure User Survey 2005, http://www.ci-

partnership.org/survey/report2005.html
[3] P. Andrews, P. Kovatch and C. Jordan, “Massive High-Performance

Global File Systems for Grid Computing”, in Proc of the ACM/IEEE
Conference on High Performance Networking and Computing (SC05),
November 12-18, Seattle, WA, USA, 2005.

[4] OpenAFS, http://www.openafs.org
[5] B. Pawlowski, S. Shepler, C. Beame, B. Callagham, M. Eisler, D. Noveck,

D. Robinson, and R. Thurlow, “The NFS Version 4 Protocol”, in Proc. of
the 2nd Intl. System Admin. And Networking Conference (SANE2000),
2000

[6] F. Schmuck, and R. Haskin, “GPFS: A Shared-Disk File System for Large
Computing Clusters”, in Proc. of the 1st USENIX Conference on File and
Storage Technologies, Monterey, CA, 2002

[7] IBM Research, General Parallel File System (GPFS),
http://www.almaden.ibm.com/StorageSystems/file_systems/GPFS/

[8] P. Schwan, “Lustre: Building a File System for 1,000-node Clusters”, in
Proc. of Ottawa Linux Symposium, 2003.

[9] IBRIX, http://www.ibrix.com
[10] National LambdaRail, http://www.nlr.net
[11] Abilene, http://abilene.internet2.edu
[12] NLR Weather Map, http://weathermap.grnoc.iu.edu/nlrmaps/layer3.html
[13] Plan 9 from Bell Labs. http://cm.bell-labs.com/plan9/
[14] J. H. Howard, M. L. Kazar, S. G. Menees, D. A. Nichols, M.

Satyanarayanan, R. N. Sidebotham, and M. J. West, “Scale and
Performance in a Distributed File System”, ACM Trans. on Computer
Systems, 6(1), Feb 1988, pp. 51-81.

[15] M. L. Kazar, et. al., “Decorum File System Architectural Overview”, in
Proc. of the 1990 USENIX Technical Conf., CA, June 1990, pp. 151-164.

[16] M. Satyanarayanan, “Coda: A Highly Available File System for
Distributed Workstation Environment”, IEEE Trans. on Computers, 39(4),
1990, pp. 447-459.

[17] M. N. Nelson, et. al., “Caching in the Sprite Network File System”, ACM
Trans. on Computer Systems, 6(1), Feb 1988, pp. 134-154.

[18] T. Anderson, M. Dahlin, J. Neefe, D. Patterson, D. Roselli, and R. Wang,
“Serverless Network File Systems”, ACM Trans. on Computer Systems,
14(1), Feb. 1996, pp. 41—79.

[19] M. G. Baker, J. H. Hartman, M. D. Kupfer, K. W. Shirrif, and J. K.
Ousterhout, “Measurements of a Distributed File System”, in Proc. of the
13th ACM Symp. on Operating Systems Principles, 1991.

[20] J. Ousterhout, H. Da Costa, D. Harrison, J. Kunze, M. Kupfer, and J.
Thomson, “A Trace-Driven Analysis of the 4.2BSD File System”, in Proc.
of the 10th ACM Symp. on Operating System Principles, 1985.

[21] M. Spasojevic, and M. Satyanarayanan, “An Empirical Study of a Wide-
Area Distributed File System”, ACM Trans. on Computer Systems, 14(2),
1996, pp. 200-222.

[22] H. C. Rao and L. L. Peterson, “Accessing Files in an Internet: The Jade
File System”, IEEE Trans. on Software Engineering, 19.(6), June 1993

[23] F. Wang, Q. Xin, B. Hong, S. A. Brandt, E. L. Miller, D. D. E. Long, and
T. T. McLarty, “File System Workload Analysis for Large Scale Scientific
Computing Applications”, in Proc. 21st IEEE Conf. on Mass Storage
Systems and Technologies, MD, 2004, pp. 129-152.

[24] TeraGrid Director Presentation (slide 27):
http://www.tacc.utexas.edu/~ewalker/director.ppt

[25] A. Adamson, D. Hildebrand, P. Honeyman, S. McKee, and J. Zhang,
“Extending NFSv4 for Petascale Data Management”, in Proc. of
Workshop on Next-Generation Distributed Data Management, Paris,
June 2006.

[26] J. J. Kistler, and M. Satyanarayanan, “Disconnected Operation in the Coda
File System”, ACM Trans. On Computer Systems, 10(1), 1992.

[27] G. J. Popek and B. J. Walker, eds., The LOCUS Distributed System
Architecture, MIT Press, Cambridge MA, 1985.

[28] D. K. Gifford, R. M. Needham, and M. D. Schroeder, “The Cedar File
System”, Comm. of the ACM, 31(3), 1988, pp. 288-298.

[29] IOzone filesystem benchmark, http://www.iozone.org
[30] M. Satyanarayanan, “Scalable, Secure and Highly Available File Access in

a Distributed Workstation Environment”, IEEE Computer, 23(5), May
1990, pp. 9-22.

[31] D. Mazieres, “A Toolkit for User-Level File Systems”, in Proc. of the
2001 USENIX Technical conf., Boston, MA, June 2001.

[32] M. Kaminsky, E. Peterson, D. B. Giffin, K. Fu, D. Mazieres, and F.
Kaashoek, “Rex: Secure, Extensible Remote Execution”, in Proc. of 2004
USENIX Technical Conf., 2004.

[33] S. Annapureddy, M. J. Freedman, D. Mazieres, “Shark: Scaling File
Servers via Cooperative Caching”, in Proc. of 2nd USENIX/ACM Symp. on
Networked System Design and Implementation, 2005.

[34] G. Hunt and D. Brubacher, “Detours: Binary Interception of Win32
Functions”, in Proc. of the 3rd USENIX Windows NT Symposium, Seattle,
WA 1999, pp. 135-143.

[35] M. Szeredi, FUSE, http://sourceforge.net/projects/fuse

