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Abstract

The use of high bit-rate multimedia sensors in networked applications poses a number of scalability challenges.

In this paper, we present howIRISNET, a software infrastructure for authoring wide-area sensor-enriched services,

supports scalable data collection from such sensors by greatly reducing the bandwidth demands. The architecture

makes a number of novel contributions. First, it enables the use of application-specific filtering of sensor feeds near

their sources and provides interfaces that simplify the programming and manipulation of these widely distributed

filters. Second, its sensor feed processing API, when used by multiple different services running on the same machine,

automatically and transparently detects repeated computations among the services and eliminates as much of the

redundancy as possible within the soft real-time constraints of the services. Third,IRISNET distinguishes between

the trusted and untrusted services, and provides mechanisms to hide sensitive sensor data from the untrusted services.

Using implementations of a number of real world sensor-enriched services onIRISNET, we present an evaluation of

the benefits of our distributed filtering architecture. Our evaluation shows that our design can: 1) reduce the bandwidth

demands of many applications to a few hundred bytes per second on each sensor, 2) support a large number of services

on each sensor through the use of redundant computation elimination, and 3) address privacy/security concerns with

little additional overhead.

1 Introduction

The availability and cost of multimedia sensor hardware, such as cameras and microphones, has improved dramati-

cally over the past several years. In fact, such sensors are now regularly incorporated into existing devices such as PCs,

laptops and cell phones. While the state of sensor hardware has progressed rapidly, the software needed to make a col-

lection of these devices useful and accessible to applications is still sorely lacking. This lack of a suitable standardized

infrastructure of hardware and software makes authoring and deploying sensor-enriched services an onerous task, as

each service author needs to address all aspects of data collection, sensor feed processing, sensing device deployment,

etc.

An example of a sensor-enriched application we would like to enable is a Person Locator service that takes sensor

feeds from cameras, indoor positioning systems, smart badges, etc; processes these feeds to determine individuals

locations; and organizes the collected position information to answer user queries (with appropriate attention to pri-

vacy). Several services could use the same sensor feeds simultaneously. For example, a Parking Space Finder service,
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which locates available parking spaces near a user’s destination, may use a subset of the cameras used by the Person

Locator that overlook parking lots to determine the availability of parking spaces. Authors of these services could

benefit from a software infrastructure that aids in collecting and processing sensor feeds, as well as organizing the

resulting data and handling user queries. Our system, calledIRISNET (Internet-scaleResource-IntensiveSensor

Network), handles both these needs and is the first system we know of that is tailored for developing and deploying

new sensor-enriched Internet services on a shared infrastructure of rich sensors. In this paper, we describeIRISNET’s

approach to simplifying the task of sensor data collection. Details ofIRISNET’s support for query processing can be

found in [11, 13, 23].

IRISNET’s data collection component must address the following requirements:

• Use of rich, shared data sources.IRISNET must enable an infrastructure where such sensors can be shared by

a number of simultaneously operating services.

• Scalability up to Internet size. IRISNET must scale to support a large number of simultaneous users, services

and sensors. In addition, it must accommodate a wide heterogeneity in the type and ownership of the sensors.

Despite this scaling, developers should be able to use this Internet-scale sensor collection as a seamless platform

on which they can deploy services.

• Efficient use of bandwidth. IRISNET must support sensors that may be connected to the Internet via low-

bandwidth wireless links. Even those that have better connectivity may not be able to support the transfer of

multimedia streams for many concurrently running services.

IRISNET addresses these challenges through the use ofapplication-specific filtering of sensor feeds at the source.

In IRISNET, each application processes its desired sensor feeds on the CPU of the sensor nodes where the data are

gathered. This dramatically reduces the bandwidth consumed: instead of transferring the raw data across the network,

IRISNET sends only a potentially small amount of postprocessed data. For example, the Parking Space Finder service

would have cameras overlooking parking lots process a video feed to generate a small bit-vector of parking space

availability information. Our experience with anIRISNET prototype has shown that many applications require less

than a hundred bytes per second of communication after post processing.

While it solves some problems, this filtering approach creates a new challenge: many services may have interest

in the same sensor feeds and their associated sensor feed processing may place excessive demands on the computa-

tion resources of the sensor node. To reduce the computation demands of this approach, we take advantage of the

observation that sensor feed processing is a relatively narrow domain and, as a result, many services require similar

processing of the sensor feed.IRISNET includes a mechanism for sharing of resultsbetweensensing services running

on the same node. Distinct sensing tasks name the results of their computations, and use these names to retrieve the

results computed by other sensing tasks. Our results show that this approach makes computation demand scale sub-

linearly with number of applications (e.g., eight simultaneous typical applications sharing a sensor node result in only

twice the computation load of running one such application).

Finally, while this basic design solves the scalability challenges of sensor data collection, it fails to address the

associated security and privacy concerns. For example, the sharing of results between sensor filters allows malicious
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services to feed incorrect data to other services and the creation of an easily accessible shared sensor infrastructure

raises a number of privacy concerns. To mitigate these problems,IRISNET supports different classes (trusted and

untrusted) of services that have different privileges for running code and accessing sensor data on the each node.

In addition, IRISNET also supports probabilistic checking of shared results to identify malicious services. These

techniques place little additional overhead on the system.

The rest of the paper is organized as follows. Section 2 briefly describes the architecture ofIRISNET followed by a

description of a number of real services built on it (Section 3). Section 4 provides a description of the environment of

distributed filtering inIRISNET. We describe howIRISNET addresses scalability and privacy challenges in Section 5

and Section 6 respectively. Section 7 presents the evaluation of our design and implementation. We describe related

work in Section 8 and conclude in Section 9.

2 The IRISNET Architecture

In this section, we describe the basic two-tier architecture ofIRISNET (Figure 1), its benefits, and some of the chal-

lenges it creates. We also examine how a service developer can build services using this infrastructure. The two tiers

of the IRISNET system are the Sensing Agents (SAs1), which collect and filter sensor readings, and the Organizing

Agents (OAs), which perform query processing tasks on the sensor readings. Service developers deploy sensor-based

services by orchestrating a group of OAs dedicated to the service. As a result, each OA participates in only one sensor

service (a single physical machine may run multiple OAs), while an SA may provide its sensor feeds and processing

capabilities to a large number of such services.

2.1 OA Architecture

The group of OAs for a single service is responsible for collecting and organizing sensor data in order to answer the

particular class of queries relevant to the service (e.g.,queries about parking spaces for a Parking Space Finder (PSF)

service). In our deployments, an OA is typically a well provisioned PC with a fast connection to the Internet. Each

OA has a local database for storing sensor-derived data; these local databases combine to constitute an overall sensor

1We use the terms ”SA” and ”SA daemon” interchangeably
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database for the service. One of the key challenges is to divide the responsibility for maintaining this Internet-scale

sensor database among the participating OAs.IRISNET relies on a hierarchically organized database schema (using

XML) and on corresponding hierarchical partitions of the overall database, in order to define the responsibility of any

particular OA. Users can use XPath [8], a standard XML query language, to query the sensor database. Each service

can tailor its database schema and indexing to the particular service’s needs, because separate OA groups are used

for distinct services. The design of the OAs poses a number of challenges including distributed query processing,

caching, data consistency, data placement, replication and fault tolerance, etc. The details of howIRISNET addresses

these challenges can be found in [11, 13, 23].

2.2 SA Architecture

SAs collect raw sensor data from a number of (possibly different types of) sensors. The types of sensors can range

from webcams and microphones to temperature and pressure gauges. The focus of our design is on sensors such as

webcams that produce large volumes of data, and can be used by a variety of services. In our deployments, an SA is

typically a laptop with one or more such sensors and either a wireless or wired connection to the Internet.

One key challenge is that transferring large volumes of data to the OAs can easily exhaust the resources of the

network.IRISNET relies on sophisticated processing and filtering of the sensor feed at the SA to reduce the bandwidth

requirements. To greatly enhance the opportunities for bandwidth reduction, this processing is done in aservice-

specificfashion.IRISNET allows service authors to upload programs, calledsenselets, that perform this processing to

any SA collecting sensor data of interest to the service. These senselets instruct the SA to take the raw sensor feed,

perform a specified set of processing steps, and send the distilled information to the OA. Senselets can reduce the

needed bandwidth by orders of magnitude,e.g.,PSF senselets reduce the high volume video feed to a few bytes of

available parking space data per time period.

Many sensors can be actuated by software via a control interface. This actuation can initiate, stop, or configure the

data collection. Examples of such sensors include a camera whose viewing angle and focus point can be controlled

with software commands, a robot which can be instructed to go closer to some object and take pictures of it, etc.

In addition to filtering sensor data, senselets interface with an SA’s actuator interfaces to configure and control data

collection.

The use of senselets raises three new questions: (1) What programming environment doesIRISNET provide for

the senselets?, (2) how doesIRISNET enable scaling to a large number of senselets running on the same SA? and (3)

How doesIRISNET support untrusted, buggy, or malicious senselets? We address these three questions in Section 4,

Section 5, and Section 6 respectively.

2.3 Authoring a Service in IrisNet

To author a sensor-enriched service onIRISNET, a service author needs to first create the sensor database schema

that defines the attributes, tags and hierarchies used to describe and organize sensor readings. He then writes senselet

code for the SAs having sensor coverage relevant to the desired sensor service. This senselet code converts raw

sensor feeds into updates on the database defined by the schema. Finally, he provides a user interface for end users

4



(a) Raw video feed input (left) and time-averaged output (right) (b) Output of the PSF service, showing
of the Coastal Imaging service direction to an empty parking spot

Figure 2: Outputs of two services built on IrisNet

to access the service. These simple steps highlight howIRISNET makes it easy to create and deploy new services.

IRISNET seamlessly handles many of the common tasks within sensor-based services, such as the data collection,

query processing, indexing, networking, caching, load balancing, and resource sharing.

3 Example Services

A number ofIRISNET-based services are being developed and deployed [22]. This section describes two such services

and the distributed filtering they perform at the SAs.

3.1 Coastal Imaging Service

In collaboration with oceanographers of the Argus project [1] at Oregon State University, we have developed a coastal

imaging service onIRISNET. The service uses cameras installed at sites along the Oregon coastline. These SAs

communicate with the OAs through wireless network. The senselets running on the SAs process the video to identify

the visible signatures of the nearshore phenomena such as riptides and sandbar formations. One senselet produces

10-minute time-averaged exposure images (Figure 2(a)) that show wave dissipation patterns (indicating submerged

sandbars), variance images, and photogrammetric metadata. Senselets for other experiments often perform similar

processing with slightly different run-time parameters. Users can also change the data collection and filtering param-

eters remotely and install triggers to change the data acquisition rates after certain events (for example, to increase

sampling frequency when interesting phenomena are detected).

3.2 Parking-space Finder

The Parking-Space Finder (PSF) service uses cameras throughout a metropolitan area to track parking space avail-

ability. Users fill out a Web form to specify a destination and any constraints on a desired parking space (e.g., must

be covered, does not require permit, etc.). Based on the input criteria, the PSF service identifies the available parking

space nearest to the destination and uses the Yahoo! Maps service to find driving directions to that parking space from
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Figure 3: Execution Environment in SA

the user’s current location (Figure 2(b)).

We have implemented multiple versions of the PSF senselets. Each of these uses different image processing

algorithms to recognize if a parking spot is empty2. One version of the senselet is configured with the locations and

background images of the spots. It determines whether a space is full or not by subtracting the current image from the

background and comparing it with a predefined threshold. Another version of the PSF senselet uses variance of the

color of each pixel with its neighboring pixels to detect the edges of the cars.

4 The SA Execution Environment

This section describes the basic execution environment of an SA inIRISNET (Figure 4).

4.1 Controlling Senselets

EachIRISNET service processes the sensor data at the SAs with application specific code called senselets. Each sense-

let runs as separate process, collects sensors data from the SAs, filters them, and finally sends the filtered information

to the OAs. Senselets can be any executable code and are typically written using standard C and C++ programming

languages.

IRISNET provides a set of APIs (Figure 4) by which service authors can interact with SAs to install and control

senselets. In the simplest case, service authors can use these APIs to interact with a single specified SA. However, in

a deployment with thousands of SAs, it might be more useful to interact with a large subset of the SAs with a single

command. For example, a service author might want to upload a new senselet to all the SAs in Pittsburgh. This task

requires a compact way to select a set of SAs before interacting with them.IRISNET supports this by interfacing

the senselet manipulation APIs with its query processing feature. A service author can call the intended senselet

2Our current algorithms are very simple. We could use more sophisticated image processing algorithms. A possible algorithm [12] would be to
maintain different statistical models for each pixel in the background image based on the time of day. This model could more easily compensate for
changes in sunlight, shadows, etc. However, our simple image processing code is sufficient to demonstrate the important features of theIRISNET

infrastructure.
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Load(senselet-code, senselet-id, SA-name)
Uploads the specified senselet code to an SA. The senselet can later be referenced by usingsenselet-id.

StartSenselet(senseied-id, SA-name)
Starts the senselet at the specified SA. It assumes that the senselet is already uploaded to the SA.

ControlSenselet(control-message, senseied-id, SA-name)
Sends a control message (e.g., stop, change sampling-rate) to the specified senselet running on the
specified SA. It returns the concatenated responses.

Figure 4: Senselet Manipulation APIs.

manipulation API with a selection query that selects the intended subset of SAs. This simplifies the task of managing

a widely deployed service.

In addition to providing access to sensor and actuators via senselets, an SA also provides access via HTTP. Each

sensor/actuator is named with a uniform resource identifier (URI). HTTP GET requests (with optional parameters)

for this URI provides applications with a simpler interface for configuring data collection and retrieving sensor feeds.

However, this interface provides little filtering (other than controlling the sampling rate for sensors) of the sensor data.

The input/output syntax for this interface follows the specification given in [25] for the software sensors provided by

the PlanetLab [6] infrastructure.

4.2 Programming Interfaces

While a senselet can be an arbitrary executable, there are a number of important programming interfaces that it must

use. These interfaces provide support for a senselet’s access to the sensors/actuators, its filtering of the collected sensor

data and its scheduling for CPU resources.

Sensor Access IRISNET exposes the sensors and actuators through well defined interfaces so that senselets can

interact with them. The SA places all readings from a sensor into a shared memory segment associated with that

sensor. Senselets gain access to the sensor feed by mapping the shared memory segment into its address space. This

interface is especially suitable for high bandwidth sensor feeds (e.g., video) since it minimizes data copying. The

shared memory segment keeps a sliding window of sensor data, annotated with relevant metadata (e.g., timestamp),

so that senselets can randomly access them for further processing. This well defined interface also hides from the

senselets the details and heterogeneity of the drivers by which SA hosts interact with the sensors.

Filtering Libraries The IRISNET also provides sensor feed processing libraries with well-known APIs to be used

by the senselets. For example, senselets can perform the image processing task on video data by using anIRISNET

customized version of the OpenCV library [3]. We expect typical senselets to be sequences and compositions of these

well-known library calls, such that the bulk of the computation conducted by a senselet occurs inside the processing

libraries. The computation outside the libraries largely implements service-specific intelligence. For example, while

the OpenCV library performs high-level tasks such as edge, object and face detection, the senselet must decide which

objects to transmit to the OAs and possibly how to reconfigure data collection when objects are detected. Senselets

may also include code to react to external events (e.g.,the Parking Space Finder senselet may start archiving video
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feed when a security alarm is raised).

CPU Scheduling A typical senselet is written in a way to achievesoft real time behavior. A senselet uses periodic

deadlines for completing computations, but associates aslack time, or tolerance for delay, with these deadlines. A

senselet periodically reads a sensor feed, processes it, sends output information to an OA, and sleeps until the next

deadline. Senselets dynamically adapt their sleep times under varying CPU load to target finishing their next round

of processing within the window defined by the next deadline, plus-or-minus the slack time. Note that the slack time

allows the senselets to make only an approximate guess of its sleeping time between two deadlines. While we use

standard UNIX scheduling (i.e., not a real-time scheduler) on the SAs, this typical behavior provides a simple way for

senselets to yield computation and provides a metric by which we can evaluate the behavior of an SA schedule (how

often thedeadline + slack is violated).

5 Scalable Filtering

So far we have discussed howIRISNET uses senselets to perform distributed filtering to reduce the network overhead

of sensor data collection. In this section, we discuss how an SA can support a large number of computationally

intensive senselets. This is especially critical as we expect some sensor feeds to be much more popular than others.

We exploit the following observation to achieve scalability. In general, we expect sensor feed processing prim-

itives (e.g. on video streams, color-to-gray conversion, noise reduction, edge detection,etc.) to be reused heavily

across senselets working on the same sensor feed or video stream. If multiple senselets perform very similar jobs

(e.g.,tracking different objects),mostof their processing would overlap [14]. For example, many image processing

algorithms for object detection and tracking use background subtraction. Multiple senselets using such algorithms

need to continuously maintain a statistical model of thesamebackground [12]. Similarly, we have seen that exper-

iments in the Coastal Imaging service have much similarity in their computations. These examples suggest a large

degree of shared computation across services we are currently considering. Because most of a senselet’s time is spent

within the sensor feed processing APIs, using this simple mechanism to optimize these APIs will reduce computation

and storage requirements significantly. In this section, we describe our design for supporting shared filtering across

multiple senselets.

5.1 Cross-Senselet Sharing

Multiple senselets in an SA run continuously on the same sensor feed, such that there may exist many common sub-

tasks across the senselets. For example, consider the two senselets whose data flow graphs (that show the sequence

of sensor feed updates, computations and intermediate results) are shown in Figure 5(a). Note the bifurcation at time

12, step (b) between senselets 1 and 2; their first two image processing steps, “Reduce Noise” and “Find Contour,”

are identical, and computed over the same raw input video frame. More formally, a sequence of operations on a set of

raw sensor data feeds{V } can be represented as a directed acyclic graph (DAG), where the nodes with zero in-degree

are in{V }, the remainder of the nodes represent intermediate results, and the edges are the operations on intermediate

results. If multiple senselets use the same sensor data feed set{V }, their corresponding DAGs can be merged into a
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void saAbsDiff(TimeSpec ts, IplImage* srcA,
IplImage* srcB, IplImage* dst) {

// pre−processing

cvAbsDiff(srcA, srcB, dst);

// post−processing
tuple−>name = name;
tuple−>result = dst;
Insert(tuple);
return;

}

void cvsAbsDiff(IplImage* srcA,IplImage* srcB,
IplImage* dst);

name = getName(srcA, srcB,SA_ABSDIFF);
foundTuple = Lookup(name, ts);
if (foundTuple != NULL) {

dst = foundTuple−>result;
return;
}

// call the OpenCV API

(a) Computation DAGs for two senselets. (b) Wrapped version of an OpenCV API.

Figure 5: Cross senselet sharing between PSF and Person Locator. In (a), the complete DAG is shown for the video
frame at time 12. A few tuples of the computation DAGs for previous frames are also shown. In (b), the OpenCV API
cvsAbsDiff() is wrapped to enable cross senselet sharing.

single DAG referred to as thecomputation DAG. Figure 5(a) shows such a computation DAG where two scripts are

processing the same sensor data with timestamp 12.

We wish to enable senselets like the pair shown in Figure 5(a) to cooperate with one another. In the figure, one

senselet could share its intermediate results (marked as (a) and (b)) with the other, and, thus, eliminate the computation

and storage of redundant results by the other.IRISNET uses names of sensor feed processing API calls to identify

commonality in execution, rather than attempting to determine commonality acrossanyarbitrary piece of C code.

Two mechanisms are required for sharing intermediate results between senselets: a data store that is shared between

separate senselets (which run as distinct processes), and an index whereby senselets can publish results of interest to

other senselets, and learn of ones of interest to themselves. We describe these mechanisms in the following two

subsections.

5.2 Shared Buffering of Intermediate Results

In IRISNET, intermediate results generated by the senselets are kept in shared memory regions so that all senselets can

use them. This technique is quite similar in spirit to the memoization done by optimizing compilers, where the result

of an expensive computation is stored in memory for re-use later, without repetition of the same computation.

The SA daemon, which spawns senselets, allocates each new senselet a shared memory region. A senselet has

read/write access to memory allocated from its own shared memory pool, but read-only access to memory allocated

in other senselets’ shared memory pools. This allocation strategy prevents one senselet from overwriting intermediate

results generated by other senselets. Figure 3 shows that the Parking Space Finder senselet can read and write the

memory allocated from its own shared memory pool, but can only read from other shared memories.
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To generate intermediate results in the shared memory, we replace standard dynamic memory allocation calls in

the sensor feed processing libraries with shared memory allocation calls (based on [5]) that allocate memory from the

calling senselet’s own shared memory pool. Note that intermediate results are not self-contained – they often may

contain pointers to other objects which may, in turn, contain additional pointers. These pointers, in general, are not

meaningful across senselets running as separate processes. Fortunately, pointers within the shared memory regions

are valid for all senselet processes since they map each others’ shared memory regions at identical addresses. This

equivalence of pointers across address spaces is also essential for indexing the shared memory, as will be revealed in

the next section. All intermediate results are marked with the timestamp of the original sensor feeds they are generated

from.

When allocation of shared memory for a new result fails,IRISNET evicts an intermediate result from shared

memory. The replacement policy for shared memory is to evict the item with the oldest timestamp. If multiple such

results exist (because they all are from the same DAG), the one generated most recently is selected. The intuition here

is that old results are relatively less likely to be used by other senselets, and within the same computation DAG, the

ones generated more recently (farther down in the computation DAG) are less likely to be common across senselets.

5.3 TStore: Indexing Intermediate Results

To make use of the shared memory store, senselets need to maintain an index in order to advertise and find intermediate

results.IRISNET indexes intermediate results astuplesin a Tuple Store(TStore), which is itself in a shared memory

region mapped into all senselets’ address spaces3. Tuples are of the form(name, timestamp, result) , where

name is a unique name for theresult computed from a sensor feed with timestamptimestamp . The result

may contain a value (if the intermediate result is a scalar) or point to a shared memory address where that intermediate

result is stored; recall that shared memory pointer values are valid across all senselets. Conceptually, TStore is a

black box with two operations:Insert(tuple) , which inserts a tuple into TStore, andLookup(tuple-name,

time-spec) , which finds tuples with the specified tuple-name and time-spec (timestamp and slack) in the TStore.

The slack in the time-spec allows a senselet to take advantage of its tolerance for accepting any of number of close

together sensor readings.Lookup returns a result as long as the appropriate computed value exists for any of the

sensor readings in (timestamp± slack).

The names of intermediate results (i.e., the name fields of tuples) must be consistent across senselets, uniquely

describe results, and be easily computable. Recall that senselets are comprised of API function calls to libraries

provided by theIRISNET SA platform. Senselets leverage the function names in this well-known library API to name

their intermediate results for sharing with other senselets.

A tuple within TStore represents the result of applying a series of API function calls to some particular sensor feed.

We name a tuple using itslineage, which is an encoding of the path from the original sensor feed to the result in the

computation DAG. The encoding should preserve the order of the non-commutative function calls.IRISNET names the

intermediate result produced by a function by hashing the concatenation of the names of the function and its operands.

For example, the name of the tuple marked (b) in Figure 5(a) is the hash of the function namesaFindContour , con-

3In our current implementation, all senselets have read and write permissions to the TStore. However, we are moving to a model where only the
SA daemon has write permission and performs all writes to the TStore.
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catenated with the name of the tuple marked (a), concatenated with the names of other operands tosaFindContour .

Note that TStore may contain multiple tuples with the same name, but they will have different timestamps.

We implement TStore as a hash table keyed on tuplename fields. Within a hash chain, tuples are stored as a

linked list in decreasing order of their timestamps. This ordering improves the performance ofLookup andInsert

operations. Tuples are evicted from TStore when the corresponding intermediate results are evicted from shared

memory, or when TStore itself exhausts storage for new tuples. The TStore tuple replacement policy for selecting a

victim tuple is similar to that for intermediate results in shared memory.

5.4 APIs to Enable Sharing

The sharing of the intermediate results through TStore are completely hidden from the senselet authors. The sharing

is automatically enabled if the authors use the sensor feed processing library provided byIRISNET. The APIs of this

library are built from the APIs of widely used libraries with the addition of a simple wrapper that enables sharing.

The wrapper uses TStore by preceding calls to the sensor data processing libraries withLookup calls for tuples

with names for the appropriate function and data source, and the desired time-spec. If TStore contains a matching

intermediate result previously computed by another senselet within the appropriate time range,Lookup returns the

requested intermediate result from shared memory. Otherwise, the senselet calls the actual sensor data processing

library function and stores the result in TStore withInsert .

We show, in Figure 5(b), how thecvAbsDiff API (that finds the pixel-by-pixel difference of two images) of the

OpenCV [3] library has been modified. The wrapped version of the API, namedsaAvsDiff has a similar interface

ascvAbsDiff , except with the additionalTimeSpec parameter that defines the desired timestamp and slack in the

sensor data. For example, if theTimeSpec parameter specifies that the timestamp is now and slack is 100 ms, then

a previously computed result is returned only if it has been computed on data within the last 100 ms, otherwise the

result is computed anew. Before calling thecvAbsDiff function provided by the OpenCV library, thesaAbsDiff

function uses thegetName andLookup calls to determine if the result of the call is already available in the tuple

store. Similarly, if the result is computed, theInsert call is used to add the result to the tuple store so that other

senselets can reuse them.

Since the wrapped APIs have very similar interface as the original APIs, it is relatively easy for a senselet author to

modify his code to use theIRISNET provided library and enable sharing. The maximum amount of advantage that can

be achieved from the commonality of computation across senselets depends on the size of the slack and the amount of

shared memory allocated to store the intermediate results. In Section 7.3, we present experimental results measuring

the effect of these two factors on system performance.

6 Privacy and Security of Distributed Filtering

Running senselets at sensor hosts is fraught with safety concerns. Buggy or malicious senselets may consume exces-

sive resources on a sensor host or may even exploit security vulnerabilities in the sensor host OS. Currently,IRISNET

uses two simple mechanisms for safe execution of senselet code. First, all the senselets are run inside a single User-

Mode Linux (UML) virtual machine [17]; this ensures that bugs in the senselets can not compromise the SA host.
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Second, each senselet is run as a separate process; this ensures process level security among the senselets. Since the

code is relatively compute intensive (rather than system call or I/O intensive), this virtual machine (VM) approach

imposes a modest 13% reduction in our test senselet’s video processing rate.

We should note thatIRISNET’s VM approach is neither the most fool-proof or efficient solution. However, such

safety concerns are far from new andIRISNET can easily take advantage of existing efficient techniques for safe

execution of such code [4, 24, 26]. Our efforts focus more on new types of safety concerns that theIRISNET archi-

tecture creates rather than on ones that traditional techniques can solve. In this section, we describe our approach

to two such issues: 1) the sharing of results between senselets allows malicious senselets to feed incorrect data to

other applications, and 2) the creation of an easily accessible shared sensor infrastructure raises a number of privacy

concerns.

6.1 Sharing in the Presence of Malicious Senselets
A malicious senselet can compute and share incorrect intermediate results to feed false sensor readings to other ap-

plications. For example, a malicious senselet processing the image of an empty parking spot can produce incorrect

intermediate results that, when used by the PSF senselet, can make it infer that the parking spot is full.

AlthoughIRISNET currently assumes that the senselets are not malicious, it supports mechanisms to deal with this

problem. Passing the value of -1 for thetime-spec parameter of an function supporting sharing forcesIRISNET

to compute a result from the original sensor data, even if the same result is available in the TStore. Thus, a senselet,

S1, can occasionally compute the intermediate results itself and compare them with those available in the TStore. If

the results disagree,S1 adds the producer of the TStore value into its black-list and avoids sharing intermediate results

computed by that producer.

6.2 Protecting Privacy

Providing easy access to live video and other sensor feeds raises a number of obvious privacy concerns. Ensuring, with

full generality, that a sensor feedcannotbe used to compromise the privacy of any individual is out-of-scope for our

work onIRISNET. Nevertheless, we believe thatIRISNET must provide a framework for helping to limit the ability of

senselets to misuse video streams for unauthorized surveillance.

Towards this goal, we divide the senselets into two classestrustedanduntrusted. Senselet authors cryptographi-

cally sign senselets, and SAs classify them into one of these two categories according to the (verified) identity of the

author. While trusted senselets are given access to the raw sensor feeds, untrusted senselets can only access sensor

feeds that have been pre-processed. This pre-processing attempts to remove any data that affects the privacy of an

individual. For example, we have implementedprivacy-protecting image processingfor IRISNET, in which we use

image processing techniques to anonymize a video stream. Our prototype uses a face detector algorithm to identify

the boundaries of human faces in an image, and replaces these regions with black rectangles. Identifying people in

the anonymized image is significantly more difficult. Figure 6 shows the resulting architecture of theIRISNET SA

augmented to support privacy-protecting image processing. Also, note that there are separate shared memories for the

two senselet classes; intermediate result sharing is done as before, but only among senselets in thesameclass.

One challenge in this design is that if the privacy filter and untrusted senselets are free-running, the resulting naive
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CPU allocation may be inefficient. For example, if when sharing the CPU equally, the privacy filter produces 10 frames

per second of video and an untrusted senselet process 5 frames per second of video, the privacy filter wastes half the

CPU it consumes. These cycles might instead have been used by the untrusted senselets to increase their output frame

rates. However, carefully coordinating the demands of the different senselets can be difficult. For example, supporting

two senselets each requiring 5 frames per second may result in the privacy filter generating anywhere between 5 to 10

frames per second depending on how cleverly the demands are processed.

To support scheduling that maximizes the output frame rate of the untrusted senselets (the “useful work” done by

the system), and eliminates wasted work by the privacy filter,IRISNET incorporates flow-control between the privacy

filter and untrusted senselets. The privacy filter timestamps each video frame it produces, and marks the frame as

unused. Any untrusted senselet that reads a frame marks that frame asused. An untrusted senselet requests a video

frame by specifying the oldest timestamp value it can accept. It retrieves the newest used frame more recent than that

timestamp. If no such frame is available, the senselet tries to retrieve the newest unused frame that is more recent than

the timestamp. However, if no frames are more recent than the timestamp, the untrusted senselet sets the used bit on

the newest frame and cedes the CPU until a sufficiently new anonymized frame is produced by the privacy filter. This

preference for retrieving previously used frames reduces the aggregate frame rate requested by the set of untrusted

senselets by increasing sharing of frames, within their frame freshness constraints. The privacy filter monitors the

number of unused frames in its output buffer. It only generates a new frame when there areno unused frames in the

output buffer. In this way, we can ensure that the privacy filter produces frames at a rate no greater than the rate the

fastest senselet consumes them.

7 Experimental Results
We present a performance evaluation of theIRISNET’s SA architecture that seeks to answer the following three ques-

tions: 1) What are the performance gains in intelligently filtering at the SAsvs. performing the work at the OAs,

(Section 7.2)? 2) What is the cost or gain of cross-senselet sharing (Section 7.3)?, and 3) What are the overheads of

providing privacy through a privacy filter (Section 7.4)?

7.1 Experimental Setup
In our experiments, we run SAs on 1.2 GHz and OAs on 2.0 GHz Pentium IV PCs, all with 512 MB RAM. All

the machines run Redhat 7.3 Linux with kernel 2.4.18. SAs sample the webcam feed 10 times per second, to support
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Method Bandwidth (bps)

Raw camera feed (30 FPS) 221184000
1 FPS sampling 7372800
Compressing in SA (1 FPS) 143000
Filtering in SA (1 FPS) 256

Figure 7: Bandwidth requirements for data sent from the SA to the OA under four scenarios.
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Figure 8: Breakdown of time spent extracting information from video frames and updating the database.

services that require up to that frame rate, and write frames into a shared buffer sized to hold 50 frames. Note, however,

that senselets may elect to sample frames at a lower rate. For example, the PSF service we examine reads one frame

per second. Unless otherwise specified, we use the PSF service described in Section 3.

7.2 Processing Webcam Feeds
In our first set of experiments, we show the effectiveness of filtering sensor feeds at the SAs. We compare two

scenarios. In the first scenario, filtering is done in the SAs with senselets. In the second scenario, filtering is done

in the OAs — SAs send compressed video frames to the OAs, which then decode the frames, process them with the

senselet code, and update their local databases. We use theFAME [2] library for encoding the video frames into

MPEG-4 at the SAs, and theSMPEG[7] library for decoding the frames at the OAs. We assume that the SAs are in

the same local area network as the OAs and the OA database is updated once per second.

Figure 7 shows how filtering at the SAs reduces the required bandwidth between SAs and OAs. The first two rows

in the figure show numbers estimated using640×480 RGB video frames, while the last two rows show numbers from

actual measurements. Although cameras feed a large volume of raw video data to the SAs4, our PSF service samples

the frames at only 1 frame per second. Still, sending these uncompressed frames to the OAs demands a vast amount of

bandwidth. The figure reveals that encoding the frames in MPEG-4 format reduces the traffic. While the compression

ratio depends on the dynamic behavior of the video feed, we found the average compression ratio to be approximately

50. However, filtering the frames in the SAs produces the least volume of traffic—as low as a few bytes per frame.

Figure 8 shows the breakdown of time spent on stages of extracting information from a video frame and updating

the database under the strategies of filtering in SAs and OAs, respectively. Here, we measure the execution time

required to run one senselet on the SA, 8 senselets on the SA (the scenario is described in the next section), and one

4Most webcams compress the video to less than 12Mbps to transfer it across a USB bus.
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senselet on the OA. Not only does filtering at SAs save network bandwidth; it also parallelizes sensor feed processing

across SAs, rather than concentrating processing at OAs. Figure 8(b) shows that an OA takes the same order of time to

process a video frame as an SA, but intuitively, aggregation of feeds from many SAs at an OA can easily overwhelm

the computational capability of even the fastest processor. This poor scaling is exacerbated in the case where multiple

OAs run on the same physical machine. Figure 8(a) also reveals that while filtering at SAs puts high load on SA hosts,

even moderate sharing across the senselets reduces the per-senselet computational load significantly. For example, the

second bar in the graph shows that running 8 concurrent senselets and enabling result sharing across them significantly

reduces the per-senselet costs.

All these results suggest that filtering at SAs is far more scalable than filtering at OAs. The advantage is two-fold:

first, the network and computational loads are distributed over the SAs (expected to outnumber the OAs, as multiple

SAs may report to the same OA), and second, co-locating senselets at SAs creates the opportunity to share computation

among senselets.

7.3 Effectiveness of Sharing Among Services
In this section, we evaluate the overhead introduced by wrapping the OpenCV image processing APIs in TStore calls,

and the performance gains we achieve from sharing across senselets.

7.3.1 Experiment Parameters

Our evaluation of sharing has three critical parameters: workload, shared memory size and execution slack. We

describe each below.

Workload In order to evaluate the effectiveness of sharing, we created a SA workload based on four different image

processing senselets we have developed. For example, the PSF service described in Section 3 uses the senselet PSF2

below. These senselets perform image processing tasks (e.g., detecting an empty parking spot, detecting motion, etc.),

and constitute a realistic synthetic workload for SAs. The four senselets and the sequences of major image processing

operations they perform are as follows:

• Parking Space Finder 1 (PSF1): Get current frame→ Reduce noise→ Convert to gray→ Find contour→
Compare contours→ · · ·

• Parking Space Finder 2 (PSF2): Current frame→ Reduce noise→ Convert to gray→ Get image parts→
Subtract background→ · · ·

• Motion Detector (MD):{Current frame→Reduce noise→Gray, 1 second old frame→Reduce noise→Gray}
→ Subtract images→ · · ·

• Person Tracker (PT): Current frame→ Reduce noise→ Gray→ Find Contour→ Get image parts→ Subtract

background→ · · ·

We average all measurements in this section over 20 30-minute executions. We report the results of four sets of

experiments. The combinations of senselets in each set, and their deadline intervals in seconds are as follows:
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Operation Time (ms)

cvCvtColor() 1.78
cvAbsDiff() 2.85
cvFindContour() 4.95
Lookup() + Insert() 0.02

Figure 9: Average time required by different operations.

[E1] 2 senselets:{PSF1, 1 sec} + {MD, 1 sec}
[E2] 4 senselets: E1 +{PSF2, 1 sec} + {PT, 1 sec}
[E3] 6 senselets: E2 +{PSF1, 2 secs} + {MD, 2 secs}
[E4] 8 senselets: E3 +{PSF2, 2 secs} + {PT, 2 secs}

Shared Memory Size The optimal size of shared memory needed to achieve the maximum sharing depends on

a senselet’s sensor feed access pattern, execution pattern (deadline and slack values), and intermediate result gen-

eration rate. For a small shared memory, arrival of a new intermediate result may force the discarding of an old

intermediate result, before that prior result has been used by other senselets. In these cases, the prior result will be

recomputed redundantly. Let us assume that around1/k (k is a constant in each run - but is varied between ex-

periments) of the intermediate results generated by one senselet will eventually be used by some other senselet. In

the case where most senselets use input from the same sensor data feed, we estimate that a senselet should allocate

(Periodmax/Periodsenselet× SizeIR)/k bytes of shared memory, where Periodmax is the maximum of the periods

of all the concurrent senselets, Periodsenseletis the per-iteration running time of the senselet under consideration, and

SizeIR is the size of the intermediate results the senselet generates in each execution round for other scripts to share.

Slack As mentioned before, the senselets have soft real time behavior; they process data periodically, and the dead-

lines have small slack periods. This slack in execution time is the same slack that is used in retrieving results from the

TStore. In this evaluation, slack is defined as a percentage of senselet’s execution interval. We vary this slack between

experiments.

7.3.2 Overhead of Wrapping APIs

Figure 9 shows the execution times for a few typical functions in the OpenCV API and the overhead of wrapping

them. The numbers reported in the figure are the averages of performing the operations on a lightly loaded SA on

20 different640 × 480 24-bit images. A typical OpenCV API takes 1-5 ms, whereas the overhead we introduce by

wrapping them is around 0.02 ms, less than1% of the time taken by the original API in most of the cases. As we show

later in this section, we make significant gains for this small cost.

7.3.3 The Effect of Sharing on CPU Load

Figures 10(a) and 10(b) show that cross-senselet sharing significantly reduces the CPU load on SAs. In accordance

with intuition, the gain from sharing increases as the number of senselets increases, and more redundant computation

is saved by result reuse. The graphs also show theideal CPU load for the same set of senselets, where the ideal load
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Figure 10: Plots showing the effect of sharing on CPU time.

0

10

20

30

40

50

60

70

80

90

2 (E1) 4 (E2) 6 (E3) 8(E4)

# Senselets

M
is

se
d

 D
ea

d
lin

es
 (

%
) No Sharing

Sharing (10%
slack)

Sharing (25%
slack)

Sharing (50%
slack)

0

10

20

30

40

50

60

70

80

90

2 (E1) 4 (E2) 6 (E3) 8 (E4)
# Senselets

M
is

se
d

 D
ea

d
lin

es
 (

%
) No Sharing

k = 3

k = 2

k = 1.5

k = 1

(a) Effect of slack on missed deadlines (k = 2) (b) Effect of memory size on missed deadlines (slack = 10%)

Figure 11: Plots showing the effect of sharing on missed deadlines.

is computed assuming that no two tuples with the same lineage and timestamp are ever generated. In addition, the

ideal case assumes that every senselet is scheduled to execute exactly periodically (i.e. it ignores CPU scheduling

conflicts). However, inIRISNET, a result computed by one senselet may be evicted from the fixed-size TStore and

shared memory before it is needed by another senselet, and thus must be computed again. Also, if a senselet working

on the current frame misses its deadline and is scheduled later, it may not find a tuple fresh enough to use, even

though it could have used the tuple if scheduled within the deadline. The likelihood of these occurrences increases

with the number of concurrent senselets, as at higher CPU loads, senselets requiring the same tuple may be scheduled

to execute far apart in time from each other. This argument explains why the load with sharing inIRISNET is higher

than the ideal load, and why the gap between the two curves grows with the number of concurrent senselets.

We note that the performance gap between sharing and the ideal case can be reduced by using greater slack values

on senselet deadlines or larger shared memory buffers. Figure 10(a) shows that the CPU utilization under result

sharing approaches the ideal CPU utilization as the slack value increases. Greater tolerance of older results increases

the likelihood of finding an intermediate result with a timestamp falling in the desired window. Figure 10(b) reveals

that as the shared memory size increases (k decreases), the performance of sharing again approaches the ideal case, as

shared memory holds progressively more results for later re-use.
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7.3.4 The Effect of Sharing on Missed Deadlines

As described in Section 4.1, senselets exhibit soft real time behavior by dynamically adjusting the length of the period

they sleep between two successive rounds of processing. However, because the SAs do not run under a real-time OS,

scheduling of SAs may become unpredictable at high CPU loads and senselets miss more deadlines. Figures 11(a)

and 11(b) show how the number of missed deadlines increases with the number of concurrent senselets. Without

sharing, the SA host becomes overloaded quickly and senselets miss more and more deadlines. Cross-senselet sharing

significantly reduces missed deadlines by shedding redundant CPU load and re-using tuples computed previously to

meet deadlines. As before, the number of missed deadlines can be reduced by using longer slack times (Figure 11(a))

and larger shared memories (Figure 11(b)).

7.4 Overhead of Privacy Protection
To evaluate the potential overhead of the privacy-protecting filter, we have constructed a filter using the OpenCV face

detector. The filter detects all human faces in a video frame and replaces them with a gray rectangle. We measured

the effects on three different untrusted senselets, each requiring different amounts of processing time per frame. We

modified the PSF senselet into three different senselets that differ in the frequency of camera calibration, a desirable

functionality when the cameras may move (by wind, for example). Camera calibration uses a few predefined landmarks

to infer positions of the parking spots in the video frames. We deliberately choose this compute-intensive function and

disabled sharing to illustrate the effects of flow control.

The first bar of each group in Figure 12 shows the frame rate of each component when they run concurrently

and without any flow control. They are scheduled using the default Linux process scheduler. Because there are four

concurrent processes running, the frame rate of each component running individually is four times of what is shown in

the graph. With no flow control, the face removal filter runs at 0.44 fps while Parking 1 runs at 0.25 fps. The filter is

wasting 43% of its work. After adding flow control between the face filter and the senselets, the face filter’s frame rate

drops to 0.30 fps, while Parking 1’s frame rate increases to 0.28 fps. We see a 12, 16, and 14 percent increase in frame

rates for parking apps 1, 2 and 3, respectively. As expected, the CPU time given up by the filter is evenly distributed

among the senselets.
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8 Related Work

In this section, we explore related efforts in the following areas of work: video surveillance, active networks, and

sensor networks. Note that while each of these related efforts addresses a subset of the issues in creating sensor

services, onlyIRISNET provides a complete solution for enabling such applications.

Video Surveillance. The use of video sensors has been explored by efforts such as the Video Surveillance and

Monitoring (VSAM) [10] project. Efforts in this area have concentrated on image processing challenges such as

identifying and tracking moving objects within a camera’s field of vision. These efforts are complementary to our

focus on wide-area scaling and service authorship tools.

Active Networks. The Active Network architecture [26] shares much in common with our SA design. In both systems,

a shared infrastructure component (routers and SA hosts) is programmed by end-users and developers to create a new

service. However, the differences between the target applications of packet forwarding and sensor data retrieval result

in significant differences in the requirements for Active Networks’ code capsules andIRISNET’s senselets. In order to

protect the resources of the router, capsules need to complete execution quickly, typically before the arrival of the next

capsule. Capsule code is also limited to using soft-state at the router across invocations. In contrast, the very purpose

of senselets forces them to be long-running and store hard state. Another important difference is that capsule code

is fetched on demand (and cached) upon arrival of a packet. This fact and resource constraints force capsule code to

be relatively small. The loading and execution of a senselet is performed once—upon the initialization of the sensor

service. In general, the programming environment of SAs is far less constrained than that of capsules.

Sensor Networks.Sensor networks andIRISNET share the goal of making real world measurements accessible by

applications. The work on sensor networks has largely concentrated on the use of “motes,” small nodes containing

a simple processor, a little memory, a wireless network connection and a sensing device. Because of the emphasis

on resource-constrained motes, earlier key contributions have been in the areas of tiny operating systems [16] and

low-power network protocols [18]. Mote-based systems have relied on techniques such as directed diffusion [15] to

direct sensor readings to interested parties or long-running queries [9] to retrieve the needed sensor data to a front-end

database. Other groups have explored using query techniques for streaming data and using sensor proxies to coordinate

queries [19, 20, 21], to address the limitations of sensor motes. None of this work considers sensor networks with

intelligent sensor nodes, high-bit-rate sensor feeds, and global scale.

9 Conclusion

Distributed filtering is the key to creating sensing services that can scale to employ a large number of high bit-rate

sensors such as webcams. In this paper, we have described several techniques that address the challenges of efficiently

supporting this filtering near the sensors. In the context ofIRISNET, we have presented the APIs required to perform

distributed filtering, techniques required to scale the infrastructure to a large number of concurrent sensor-enriched

services, and mechanisms to address the privacy and security issues raised by untrusted services. The deployment of

a number of real world services onIRISNET indicates that our solutions place few restrictions on the type of services

that IRISNET can support. Finally, we have shown the significant benefits of our design through experiments with our
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IRISNET implementation.
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