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Abstract—We consider the problem of correlated data gather-
ing in sensor networks with multiple sink nodes. The problem
has two objectives. First, we would like to find a rate allocation
on the correlated sensor nodes such that the data gathered by
the sink nodes can reproduce the field of observation. Second,
we would like to find a transmission structure on the network
graph such that the total transmission energy consumed by the
network is minimized. The existing solutions to this problem are
impractical for deployment because they have not considered all
of the following factors: 1) distributed implementation; 2) capacity
and interference associated with the shared medium; and
3) realistic data correlation model. In this paper, we propose a new
distributed framework to achieve minimum energy data gathering
while considering these three factors. Based on a localized version
of Slepian–Wolf coding, the problem is modeled as an optimization
formulation with a distributed solution. The formulation is first
relaxed with Lagrangian dualization and then solved with the sub-
gradient algorithm. The algorithm is amenable to fully distributed
implementations, which corresponds to the decentralized nature of
sensor networks. To evaluate its effectiveness, we have conducted
extensive simulations under a variety of network environments.
The results indicate that the algorithm supports asynchronous
network settings, sink mobility, and duty schedules.

Index Terms—Correlated data gathering, data aggregation, dis-
tributed algorithm, mathematical optimization, wireless sensor
networks.

I. INTRODUCTION

R ECENT technological advances have enabled the produc-

tion of low-cost sensor nodes. These sensor nodes are

small in size and equipped with limited sensing, processing, and

transmission capabilities. They can be deployed in large num-

bers to construct a sensor network with the ability of distributed

wireless sensing. The collaborative effort of these sensor nodes

can achieve significant improvement over traditional sensors

due to their improved accuracy and ease of deployment. In

practice, the sensor nodes are densely deployed in an ad hoc

fashion over the area of interest. After their deployment, the
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sensor nodes collect data from their surroundings, encode the

data, and transmit them to the sink nodes via wireless channels.

In addition to collecting data, the intermediate sensor nodes

can be used as relays for other sensors distant from the sink

nodes. Sink nodes are specialized nodes that are responsible

for gathering collected data and serve as gateways between the

sensor network and the wired or wireless backbone network.

Many applications for sensor networks such as target track-

ing [1] and habitat monitoring [2] involve monitoring a remote

or hostile field. The sensor nodes are assumed to be inaccessible

after deployment for such applications, and thus, their batteries

are irreplaceable. Moreover, due to the small size of sensor

nodes, they carry limited battery power. Thus, energy is a scarce

resource that must be conserved to the extent possible in sensor

networks.

A. Problem Description and Design Goals

In this context, the first objective of the correlated data-

gathering problem is to find a rate allocation on the sensor

nodes such that the aggregated data collected by the sink nodes

can be decoded to reproduce the field of observation. The rate

allocation assigns each sensor node an encoding rate, which is

equivalent to its data transmission rate. If the data collected

by the sensor nodes are statistically independent, then the

rate allocation can be trivially determined—each sensor node

can transmit at its data collection rate. However, the sensor

nodes are densely deployed in sensor networks. Nearby sensor

nodes have overlapping sensing ranges, and their collected

data are either redundant or correlated. This data correlation

can be exploited to reduce the amount of data transmitted

in the network, which results in energy savings. To achieve

minimum energy data gathering, the optimal rate allocation

should minimize the encoding rates while ensuring the rates are

sufficient to represent all the independent data generated by the

sensor nodes.

The second objective of the correlated data-gathering prob-

lem is to find a transmission structure on the network graph such

that the total energy consumed in transporting the collected

data from the sensor nodes to the sink nodes is minimized. If

the network has unconstrained bandwidth capacity, then this

objective can be simply achieved—each sensor node can trans-

mit its collected data via the minimum energy path. However,

in any practical network, there are capacity limitations on the

transmission medium and interference among the competing

signals. In wireline networks, there is a time-dependent con-

tention, where two signals compete with each other if they

both arrived at the receiver at the same time. The effect of
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interference in wireline networks is well studied, but they

are not applicable in the context of sensor networks. As a

variation of wireless ad hoc networks, sensor networks have

the unique characteristic of location-dependent contention in

addition to time-dependent contention. Signals will compete

with each other if multiple sensor nodes in the nearby vicinity

simultaneously access the wireless shared medium. To derive

feasible solutions, the capacity and interference associated with

the shared medium must be considered when constructing the

optimal transmission structure.

It is shown in [3] that if the bandwidth capacity of the

network is unconstrained, the two problem objectives can be

independently achieved in two steps. First, according to the cor-

relation model, the optimal rate allocation can be determined.

Then the optimal transmission structure can be constructed by

combining the minimum energy paths of the sensor nodes.

However, when capacity constraints exist, the problem becomes

complicated because the two objectives are dependent. Given a

transmission structure, if the rate allocation is modified, then

some of the links selected by the transmission structure may

become congested due to the increased traffic flows. To alleviate

this congestion, the transmission structure has to be adjusted.

On the other hand, there are different coding schemes that

exploit data correlation in the literature. They can be generally

divided into two categories, i.e., distributed source coding and

joint entropy coding with explicit communication. In practice,

the coding schemes from both categories determine the rate al-

location based on a given transmission structure. Consequently,

the decision on the rate allocation affects the decision on the

transmission structure, and vice versa. One of the highlights

of this paper is to take this dependence into account and

design an algorithm that jointly optimizes the rate allocation

and the transmission structure while satisfying the capacity

constraints.

In addition to the problem objectives, we have included

several design goals when constructing the framework. The

ultimate purpose of this paper is to create a solution to the cor-

related data-gathering problem that is practical for deployment.

More importantly, the framework should be compatible, which

allows other energy-saving mechanisms to be built on top of

the framework to further extend the lifetime of data-gathering

sensor networks.

• Multisink support: To facilitate efficient data gathering, it

is envisioned that future sensor networks will consist of

multiple sink nodes. By providing multisink support, the

framework becomes feasible for deployment in large-scale

sensor networks.

• Distributed solutions: With centralized solutions, the par-

ticipating nodes need to repeatedly transmit detailed status

information across the network to a central computation

node. Although centralized approaches can generate re-

sults closer to the global optimum, they are generally not

feasible in energy-constrained sensor networks.

• Asynchronous network settings: Due to the ad hoc in-

frastructure of sensor networks, it is expensive in terms of

communication overhead to synchronize the nodes. If the

framework is applicable in asynchronous network settings,

it can avoid the scaling limitation posed by synchronous

solutions.

• Sink mobility: Because of its multihop nature, the appear-

ance of energy holes in static sensor networks seems un-

avoidable. Sensor nodes positioned around the sink nodes

deplete their energy faster because they are frequently

acting as relays. A natural way to counter energy holes is

to introduce sink mobility, where sink nodes move within

the network as they gather data from the sensor nodes.

• Duty schedules: To achieve maximum network lifetime,

load balancing among the sensor nodes must be enforced.

This can be accomplished with the introduction of duty

schedules, where sensor nodes switch their operating sta-

tus (on/off) to control and match their energy consump-

tion rates. However, duty schedules give rise to network

dynamics, since the sensor nodes may join and leave the

network at run time.

B. Main Contributions

Data gathering with correlated sources in sensor networks

and resource allocation with capacity constraints in wireless

links were separately studied in the past literature. The main

contribution of this paper is to propose a solution to the data-

gathering problem that simultaneously considers both topics.

The proposed solution copes with the dependence that exists

between the two problem objectives as it jointly optimizes

the rate allocation and the transmission structure. Furthermore,

the optimization formulation is specifically designed to have a

distributed solution.

Since the aim of the problem is to minimize energy consump-

tion, it is a natural decision to employ optimization techniques.

We model the problem as an exponential-constraint linear op-

timization formulation. According to the protocol model [4]

of packet transmission in wireless networks, the formulation

considers the capacity limitation of the network and the effect

of location-dependent contention. As a result, our solution is

guaranteed to be supported by the wireless shared medium.

Since the exponential-constraint linear formulations are gener-

ally difficult to solve, we relax the formulation to become linear

by adapting a localized version of Slepian–Wolf coding. Based

on Lagrangian dualization, we utilize a price-based resource

allocation strategy and solve the formulation with the subgradi-

ent algorithm. The price signals are communicated among the

sensor nodes to reflect the congestion status of the network.

The subgradient algorithm is amenable to distributed imple-

mentations, which makes it feasible for practical deployment.

Moreover, we conduct extensive simulations to validate that our

solution supports asynchronous network settings, sink mobility,

and duty schedules. To the best of our knowledge, no previous

works have addressed the correlated data-gathering problem

considering all of the factors above.

C. Paper Organization

The remainder of this paper is organized as follows: In

Section II, we present the exponential-constraint linear opti-

mization formulation for the correlated data-gathering problem.
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In Section III, we describe the localized Slepian–Wolf coding

scheme and present the linear formulation. In Section IV, we

construct an efficient distributed algorithm to solve the formula-

tion with Lagrangian dualization and the subgradient algorithm.

In Section V, we discuss implementation issues related to the

algorithm. Numerical results from simulations are presented in

Section VI. Finally, we discuss related work in Section VII and

conclude this paper in Section VIII.

II. PROBLEM FORMULATION

A. Network Model and Assumptions

The wireless sensor network is modeled as a directed graph

G = (V, E), where V is the set of nodes, and E is the set of

directed wireless links. SN denotes the set of sensor nodes, and

SK denotes the set of sink nodes. Then, V = SN ∪ SK . The

rate allocation assigns each sensor node i ∈ SN with Ri, which

refers to a nonnegative data transmission rate. All the sensor

nodes have a fixed transmission range rtx. Let dij denote the

distance between node i and node j. A directed link (i, j) ∈ E
exists if dij ≤ rtx. Each link is associated with a weight eij =
d2

ij , which refers to the energy consumed per unit flow on link

(i, j). All the links are assumed to be symmetrical, where eij =
eji. Moreover, fij represents the flow rate of link (i, j). Here,

the rate vector [Ri]∀i∈SN
and the flow vector [fij ]∀(i,j)∈E are

the variables that can be adjusted to minimize the optimization

objective.

There are various models for sensor networks. In this paper,

we mainly focus on a sensor network environment where we

have the following.

• A spatial data correlation model [5] is assumed, where the

sensor nodes can achieve various amounts of data aggre-

gation based on their distance of separation. In contrast,

a perfect data correlation model is assumed in [6]–[8],

where intermediate sensor nodes can aggregate any num-

ber of incoming packets into a single packet. Although the

perfect data correlation model can represent higher energy

savings, it is generally not practical in most application

scenarios.

• The transmission power is automatically managed by the

sensor nodes. During a transmission, the sensor nodes

have the ability to adjust their transmission power de-

pending on the distance of transmission. Consequently, the

energy consumed per unit flow on a link is a function of

its distance. Moreover, the transmission power is assumed

to be allocated in a specific way such that the capacity of

the wireless shared medium is constant across the entire

network. Power allocation is out of the scope of this paper

and is left as a future research direction.

• Depending on the application of the sensor network, its

data delivery model can be continuous, event driven, or

query driven [9]. We have assumed a continuous data

delivery model for illustration, where the sensor nodes

periodically sense their surroundings and always have

data to transmit in each round of communication. In the

event-driven or query-driven delivery model, the data are

transmitted to the sink nodes when the sensor node detects

an event or receives a query. We emphasize that since our

proposed solution supports duty schedules, it can be easily

extended to accommodate these data delivery models.

• The objective of the correlated data-gathering problem

is to minimize the total transmission energy consumed

by the network. While this objective does not guarantee

to maximize the lifetime of each individual sensor node,

it can achieve a better energy efficiency, thus extending

the network lifetime. In this paper, the sensor networks

are assumed to have a high density of sensor nodes.

This implies that the failure of an individual sensor node

(possibility due to energy exhaustion) will not have a

critical impact on the coverage or connectivity of the

network. Moreover, our solution can be combined with

load-balancing mechanisms to achieve fairness in energy

consumption.

B. Data Correlation Model

Since the sensor nodes are usually continuous and not dis-

crete sources, the theoretical tool to analyze the problem is

the rate distortion theory [10], [11]. Let S be a vector of n
samples of the measured random field returned by n sensor

nodes. Let Ŝ be a representation of S and d(S, Ŝ) be a distortion

measure. With the mean square error as the distortion measure

d(S, Ŝ) = ‖S − Ŝ‖2 and with the constraint

E
(

‖S − Ŝ‖2
)

< D (1)

a Gaussian source is the worst case and needs the most bits

to be represented compared with other sources [10]. For the

purpose of illustration, we let S be a spatially correlated random

Gaussian vector ∼ N(µ,Σ). In this case, the rate distortion

function of S is

R(Σ, D) =

N
∑

n=1

1

2
log

λn

Dn

(2)

where λ1 ≥ λ2 · · · ≥ λN are the ordered eigenvalues of the

correlation matrix Σ

Dn = min(K, λn) (3)

and K is chosen such that

N
∑

n=1

Dn = D. (4)

This is known as “reverse water filling” [11]. To formulate

the optimization problem, we need to express the data corre-

lations between the sensor nodes with a mathematical model.

In sensor networks, sensor nodes generate data by detecting

their surroundings; hence, it is a reasonable assumption that the

data correlation between two nodes (node i and node j) can be

expressed as a function of their spatial distance dij . Particularly,

we let Σij = W d2

ij , where W is a correlation parameter that

represents the amount of correlation between spatial samples.

W should be less than 1 such that Σ is a semi-positive definite

matrix. Given any subset of nodes X and the distortion per node

d, we can construct its correlation matrix ΣX and calculate
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its rate distortion function R(ΣX , d · |X|). We believe that

Σij = W d2

ij is a practical model. Since W is always less than 1,

the data correlation between two nodes exponentially decreases

with increasing spatial distance. Moreover, our optimization

framework can be applied with other data correlation models.

Provided that the data correlation decreases with increasing

spatial distance, the result of this paper should not be affected.

Depending on the application of the sensor network, its

data source can be either continuous or discrete. Since the

sources are continuous for most applications, we assume in

this paper that the data generated by the sensor nodes can be

represented by continuous random variables. For continuous

random variables, their entropies are not significant as they

always approach infinity. It is widely known that we can apply

the rate distortion theory to find the minimum number of bits

to represent continuous random variables given a distortion

threshold. Recalling that entropy defines the minimum number

of bits to represent a random variable, we can approximate the

entropy of a continuous source with its rate distortion function

H(X) ≈ R(ΣX , d · |X|).
Throughout this paper, the notation H(X) is used to repre-

sent the entropy of the data generated by a set of sensor nodes

X . Hence, while X represents a set of sensor nodes, it also

stands for a random variable representing the data generated

by X . This double representation of X applies whenever the

notation H(X) is used.

C. Optimization Objective

Given a rate allocation and a transmission structure, the flow

rate on each wireless link, which is denoted by fij , can be

determined, and the transmission energy consumed on each

link is equal to eij · fij . The objective of our optimization

is to minimize the total transmission energy consumed in the

network, i.e.,

Minimize

∑

(i,j)∈E

eij · fij . (5)

In addition to transmission energy, the objective can be mod-

ified to optimize other metrics of interest with the structure

[link cost] × [data size]. A similar optimization objective can

be found in [3].

D. Flow Conservation Constraints

For each sensor node i ∈ SN , the total outgoing traffic flows

must equal to the sum of the incoming traffic flows and the

nonnegative data transmission rate allocated to node Ri, i.e.,

∑

j:(i,j)∈E

fij −
∑

j:(j,i)∈E

fji = Ri ∀i ∈ SN . (6)

These constraints enforce lossless transmission, which implies

that no data packet will be discarded by any intermediate sensor

node. In this paper, the sensor nodes utilize Slepian–Wolf cod-

ing to exploit data correlation. As a result, all the data packets

generated by the sensor nodes contain independent data, and

they must be received by the sink nodes.

E. Channel Contention Constraints

To generate solutions that are supported by the wireless

shared medium, we introduce channel contention constraints

in our formulation. The purpose of these constraints is to

model the location-dependent contention that exists among the

competing data flows. To accomplish this task, we need to

identify when a transmission is successfully received by its

intended recipient. In the literature, there exists two models

for packet transmission in wireless networks [4]. They are

generally referred to as the protocol model and the physical

model, and they are presented as follows.

• Protocol Model: This model determines if a packet trans-

mission is successful by considering the spatial location

of the nodes. A packet transmission from node i to j is

successful if, for all node k with dkj < (1 + △)dij , node

k is not transmitting. The quantity △ > 0 specifies a guard

zone. In this paper, the interference range is assumed to be

identical to the transmission range. Thus, △ = 0.

• Physical Model: This model is related to the physical layer

and considers the signal power received at the receiver

node. A packet transmission from node i to node j is suc-

cessful if the signal-to-interference ratio (SIR) is greater

than a threshold SIRij ≥ SIRthresh.

In this paper, we focus on the protocol model of packet

transmission. Based on the protocol model, any link originating

from node k will interfere with link (i, j) if dkj < (1 + △)dij .

Utilizing this model, we derive Ψij for each link (i, j) ∈ E as

the cluster of links that cannot transmit as long as link (i, j)
is active. Here, the notation of cluster is treated as a basic

resource unit as compared to individual links in traditional

wireline networks. In wireline networks, data flows compete

for the capacity of individual links. However, in the case of

sensor networks, the capacity of a wireless link is interre-

lated with other wireless links in its vicinity. Consequently,

data flows compete for the capacity of individual clusters,

which is equivalent to the capacity of the wireless shared

medium. A flow vector [fij ]∀(i,j)∈E is supported by the wireless

shared medium if the following channel contention constraints

hold [12]:

fij +
∑

(p,q)∈Ψij

fpq ≤ C ∀(i, j) ∈ E (7)

where C is defined as the maximum rate supported by the

wireless shared medium.

Note that in the equation above, fij and any instances of

fpq are not necessarily same-time flows. To illustrate this, let

link (i, j) and link (p, q) be two interfering links. If fij and

fpq are both 10 kb/s, and the capacity of the shared medium is

20 kb/s, then the shared medium can support both fij and fpq by

transmitting the data in different time frames. Within a second,

the shared medium can transmit at 20 kb/s on link (i, j) for

0.5 s and at 20 kb/s on link (p, q) for the other 0.5 s. In sum-

mary, (7) states that the combined flow rates of the interfering

links cannot exceed the capacity of the shared medium, and it

does not imply that the interfering links are generating same-

time flows.
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In practice, there are various methods that can be employed

to construct the clusters [13]. For instance, if each node is

provided with its own location information, in coordinates or

in relation to the other nodes, then the clusters can be formed

by considering the protocol model. An alternative is for a

node to form local topology knowledge based on overheard

transmissions in its surroundings. The exact method used to

construct the clusters is beyond the scope of this paper.

In addition to the protocol model of packet transmission,

the channel contention constraints can be simply tailored to

adapt a particular Media Access Control (MAC) protocol by

adjusting the derivation of the clusters Ψij . For instance, in an

IEEE 802.11 MAC protocol based network, if link (i, j) is ac-

tive, then Ψij should include all links that are originating from

node k that satisfies dkj < (1 + △)dij or dki < (1 + △)dij .

The sending node i is also required to be free of interference

since it needs to receive the link layer acknowledgments from

the receiving node j.

F. Rate Admissibility Constraints

Due to data correlation, the data collected by nearby sensor

nodes are often redundant. Since transmitting redundant data

across the network consumes unnecessary energy and decreases

the useful throughput of the network, it is desirable to elim-

inate all redundancy. In the literature, there are many coding

schemes that can be employed to exploit the data correlation.

They can be generally divided into two categories, which are

distributed source coding and joint entropy coding with explicit

communication [3]. For coding with explicit communication,

the sensor nodes aggregate their data with the side information

received from other nodes. In this scenario, it is shown that the

optimal rate allocation can be simply determined since it only

relies on the side information, but building the optimal trans-

mission structure becomes NP-hard. In contrast, distributed

source coding allows each sensor node to generate independent

data packets assuming that the sensors have knowledge of

the global correlation structure. Although distributed source

coding requires increased coding complexity and knowledge

of the correlation structure, it is theoretically the most effi-

cient coding scheme. It can achieve maximum energy savings

for a lossless transmission since no redundant data are ever

transmitted. Moreover, it can be implemented in distributed

asynchronous network environments. Therefore, we employ

distributed source coding to solve the correlated data-gathering

problem.

We employ Slepian–Wolf coding as introduced in [14],

which is a fundamental research study in distributed source

coding. The Slepian–Wolf region specifies the minimum en-

coding rates that the sensor nodes must meet to transmit all

independent data to the sink nodes. It is satisfied when every

subset of sensor nodes encodes their collected data at a total rate

exceeding their joint entropy. In mathematical terms, we have

∑

i∈Y

Ri ≥ H(Y|YC), Y ⊆ SN (8)

where Y
C is the complement of Y, YC = SN − Y.

G. Exponential-Constraint Linear Programming Formulation

Combining the optimization objective with the introduced

constraints, the correlated data-gathering problem can be mod-

eled as an optimization problem, i.e.,

Minimize
∑

(i,j)∈E

eij · fij (9)

Subject to :
∑

j:(i,j)∈E

fij −
∑

j:(j,i)∈E

fji = Ri ∀i ∈ SN (10)

fij +
∑

(p,q)∈Ψij

fpq ≤ C ∀(i, j) ∈ E (11)

∑

i∈Y

Ri ≥ H(Y|YC), Y ⊆ SN (12)

fij ≥ 0 ∀(i, j) ∈ E (13)

Ri ≥ 0 ∀i ∈ SN . (14)

Since the rate admissibility constraints grow at an exponential

rate in relation to the number of nodes, this is an exponential-

constraint optimization formulation. In the following sections,

we introduce a linear reformulation of this problem through

localized Slepian–Wolf coding and further propose a price-

based framework to provide a solution that is distributed among

the individual sensor nodes.

III. LOCALIZED SLEPIAN–WOLF CODING

The exponential-constraint linear optimization formulations

are generally difficult to solve; hence, it is desirable to reduce

the number of constraints from the formulation. Moreover,

the rate admissibility constraints require each sensor node to

have knowledge of the global correlation structure. This poses

limitation on the scalability of our solution. In this paper, we

adopt an approximated version of Slepian–Wolf coding from

[15] to relax the rate admissibility constraints such that only

the local correlation information is required at each sensor

node. The approximation gives a definition for a neighborhood.

For each sensor node, its neighborhood contains other sensors

that are located in its surroundings. When a sensor node is

determining its data transmission rate, it considers its data

correlation with other sensors in its neighborhood instead of

the entire network. Based on the spatial data correlation model,

it is natural to assume that the sensors that are not in the

neighborhood contribute very little or nothing in reducing the

transmission rates. With a sufficient neighborhood size, this

approximation should have a performance comparable to the

global Slepian–Wolf coding. In this paper, we include the one-

hop neighbors of the sensor nodes in their neighborhoods.

Extending from the approximation, we present a local-

ized Slepian–Wolf coding scheme in Table I. This coding

scheme supports sensor networks with multiple sinks, and

it is amenable to distributed implementation. The localized

Slepian–Wolf coding scheme specifies that each sensor node i
should encode its data at a rate equal to the conditioned entropy.

The conditioning is performed only on Ni, which is a subset

of sensors within the neighborhood of sensor i that are closer
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TABLE I
LOCALIZED SLEPIAN–WOLF CODING

to sensor i’s destination sink node than sensor i itself. Instead

of the global correlation structure, the sensor nodes using this

coding scheme are only required to have knowledge of the

correlation structure within their neighborhood. As a result, the

localized Slepian–Wolf coding scheme overcomes the scalabil-

ity limitation imposed by global Slepian–Wolf coding.

The performance of the localized Slepian–Wolf coding

scheme depends on the transmission structure. The sensor

nodes must realize their destination sink nodes before they

can determine their achievable data transmission rates. If the

capacity of the network is unconstrained, then the sensor nodes

can simply determine their destination sink nodes based on

relative spatial information. The sink node that is located closest

to the sensor will be chosen as its destination sink node.

However, when capacity constraints exist, a sensor node may

not be able to transmit its collected data to its closest sink

node due to data congestion. To avoid data congestion, our

solution allows the sensor nodes to switch their destination

sink nodes during run time. Hence, the transmission structure

is dynamic as it is adjusted according to the rate allocation

and the data congestion experienced by the wireless links.

On the other hand, to accommodate the dynamic transmission

structure, the localized Slepian–Wolf coding scheme dynami-

cally determines the appropriate rate allocation during run time.

Consequently, our solution jointly optimizes the rate allocation

and the transmission structure, which are dependent upon each

other. We believe that this approach will provide substantial

improvements over the traditional approaches in solving the

correlated data-gathering problem.

It is now possible to model the correlated data-gathering

problem as a linear programming formulation. The rate admis-

sibility constraints are relaxed, but the Slepian–Wolf region is

still satisfied. The sensor nodes are required to transmit at the

conditioned entropy specified by the localized Slepian–Wolf

coding scheme. The linear programming formulation, which is

also denoted as the primal problem, is expressed as follows:

Minimize
∑

(i,j)∈E

eij · fij (15)

Subject to :
∑

j:(i,j)∈E

fij −
∑

j:(j,i)∈E

fji = H(i|Ni) ∀i ∈ SN (16)

fij +
∑

(p,q)∈Ψij

fpq ≤ C ∀(i, j) ∈ E (17)

fij ≥ 0 ∀(i, j) ∈ E. (18)

IV. DISTRIBUTED SOLUTION: A

PRICE-BASED FRAMEWORK

Many algorithms have been proposed in the past literature

to solve linear optimization formulations, such as simplex,

ellipsoid, and interior point methods. These algorithms are

efficient in the sense that they can solve a large instance of

optimization formulations in a few seconds. However, they have

the disadvantage of being inherently centralized, which implies

that they are not applicable for distributed implementations. In

this section, we present our distributed solution to the proposed

linear optimization formulation. The formulation is relaxed

with Lagrangian dualization and then solved with the sub-

gradient algorithm. In addition, we discuss the asynchronous

network model that is utilized in this paper.

A. Lagrangian Dualization

With the localized Slepian–Wolf coding scheme, we are able

to determine the optimal rate allocation. Our next step toward

solving the linear programming formulation is to obtain the

optimal transmission structure given the rate allocation. This

part of the problem resembles a resource allocation problem,

where the goal is to allocate the limited capacity of the wire-

less shared medium to the data flows originating from sensor

nodes.

In the literature, Kelly et al. [18] and Low and Lapsley [19]

have shown that the price-based resource allocation strategy is

an efficient means to arbitrate resource allocation in wireline

networks. With price-based strategy, the prices are computed

as signals to indicate the relation between the supplies and

demands of a resource. In these works, each wireless link is

treated as a basic resource unit. A shadow price is associated

with each wireless link to reflect the relation between the

traffic load of the link and its bandwidth capacity. Based on

the notation of maximal cliques, Xue et al. [20] extend the

price-based resource allocation framework to respect the unique

characteristic of location-dependent contention in wireless

ad hoc networks.

In this paper, the notation of clusters as defined in Section II

is utilized as the basic resource unit. Each cluster is associated

with a shadow price, and the signals compete for the capacity

of the clusters. The transmission structure is determined in

response to the price signals such that the aggregated price

paid by the data flows is minimized. It is shown from pre-

vious works that at equilibrium, such a price-based resource

allocation strategy can achieve a global optimum, which leads

to the optimal utilization of the resource. To solve the linear
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programming formulation with a price-based strategy, we first

relax the channel contention constraints (7) with Lagrangian

dualization and obtain the Lagrangian dual problem as

Maximize LS(β), Subject to: β ≥ 0. (19)

By associating price signals or Lagrangian multipliers βij

with the channel contention constraints, the Lagrangian dual

problem is evaluated via the Lagrangian subproblem LS(β) as

Minimize

∑

(i,j)∈E

eij · fij + βij ·



fij +
∑

(p,q)∈Ψij

fpq − C



 (20)

Subject to :
∑

j:(i,j)∈E

fij −
∑

j:(j,i)∈E

fji = H(i|Ni) ∀i ∈ SN (21)

fij ≥ 0 ∀(i, j) ∈ E. (22)

Here, we introduce a new notation Φij as the set of clusters

that link (i, j) belongs to. Recall that Ψpq refers to the cluster

of links that cannot transmit when link (p, q) is active. For any

link (i, j) that interferes with link (p, q), link (i, j) belongs to

the cluster of link (p, q). Thus, for any link (i, j) and (p, q),
(p, q) ∈ Φij if and only if (i, j) ∈ Ψpq. Then the Lagrangian

subproblem can be remodeled using this notation as

Minimize

∑

(i,j)∈E

fij



eij + βij +
∑

(p,q)∈Φij

βpq



 − βijC (23)

Subject to:
∑

j:(i,j)∈E

fij −
∑

j:(j,i)∈E

fji = H(i|Ni) ∀i ∈ SN (24)

fij ≥ 0 ∀(i, j) ∈ E. (25)

The objective function of the remodeled Lagrangian subprob-

lem specifies that the weight of each link is equal to the sum

of its energy and capacity cost. Moreover, the capacity cost is

equal to its Lagrangian multiplier of the link plus the sum of

the Lagrangian multipliers in Φij . This is intuitive since when

link (i, j) is active, any link in the set Φij cannot transmit due

to interference. Thus, the actual cost for accessing link (i, j)
should equal to the total cost for accessing link (i, j) and all the

links in Φij .

Since the capacity constraints are relaxed, we observe that

the solution of the remodeled Lagrangian subproblem requires

each sensor node to transmit its data along the shortest path

that leads to its nearest sink node. As a result, the Lagrangian

subproblem can be solved with any distributed shortest path

algorithm, such as the well-known Bellman–Ford approach.

Recall from the localized Slepian–Wolf coding scheme that a

sensor node will coencode with another sensor node only if

they have identical nearest sink node. Consequently, for any

solution generated by the Lagrangian subproblem, data flows

due to sensor nodes that have coencoded with each other will

be absorbed by an identical sink node.

B. Subgradient Algorithm

We now describe the subgradient algorithm, which is an

efficient iterative algorithm to solve the Lagrangian dual prob-

lem. The algorithm starts with a set of initial nonnegative

Lagrangian multipliers βij [0]. Since the Lagrangian multipliers

are price signals that reflect the congestion status of the clusters,

a possible choice for the initial Lagrangian multipliers can be

zeroes, assuming there is no data congestion in the network. In

this case, the initial shortest paths chosen by the sensor nodes

will be the minimum energy paths without any adjustments on

the link weights.

During each iteration k, given current Lagrangian multiplier

values βij [k], we solve the Lagrangian subproblem by finding

the shortest path from each sensor node to its nearest sink node,

where the weight of each link is equal to the sum of its energy

cost, its Lagrangian multiplier, and the Lagrangian multipliers

of the clusters to which this link belongs. Using the new primal

values fij [k] obtained from the Lagrangian subproblem, we

update the Lagrangian multipliers by

βij [k + 1]

= max



0, βij [k] + θ[k]



fij [k] +
∑

(p,q)∈Ψij

fpq[k] − C









(26)

where θ is a prescribed sequence of step sizes. The equation

above states that the Lagrangian multipliers vary depending

on the value of (fij +
∑

(p,q)∈Ψij
fpq − C), which represents

the amount of capacity violation within a cluster. When the

violation of a cluster is positive, there are data flows traveling

in the cluster that are not supported by the wireless shared

medium. The Lagrangian multiplier for the cluster then in-

creases according to the amount of violation to reflect the

congestion. Conversely, when the violation for a cluster is

negative, there is free bandwidth in the cluster that is not

utilized by the data flows. Therefore, the Lagrangian multiplier

for the cluster decreases to attract more data flows to occupy

the free bandwidth.

The selection of step sizes plays an important role in the

subgradient algorithm. If the step sizes are too small, then the

algorithm has a slow convergence speed. If the step sizes are

too large, then βij may oscillate around the optimal solution

and fail to converge. The convergence is guaranteed when θ
satisfied the following conditions [21], regardless of the values

of the initial Lagrangian multipliers:

θ[k] ≥ 0, lim
k→∞

θ[k] = 0, and

∞
∑

k=1

θ[k] = ∞. (27)
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TABLE II
OPTIMIZATION PHASE

C. Distributed Algorithm

Based on the localized Slepian–Wolf coding scheme and the

subgradient algorithm, we construct our distributed algorithm

to solve the correlated data-gathering problem. Each cluster and

wireless link is treated as an entity capable of processing, stor-

ing, and communicating information. In practice, each cluster

and wireless link (i, j) is delegated to its sender node i, and all

computations related to (i, j) will be executed on node i. The

algorithm is summarized in Table II. In this algorithm, the price

signals or the Lagrangian multipliers reflect the congestion

status of the network. In addition, they act as a link of communi-

cation between the two problem objectives. When the algorithm

converges, the generated solution will jointly optimize the rate

allocation and the transmission structure.

Referring to Table II, the optimization algorithm requires the

following control packets to be transmitted in each iteration.

1) Each cluster needs to have knowledge of the flow rates

for all links within the cluster.

2) Each link needs to have knowledge of the prices for all

clusters that are inherent to it.

3) Each sensor node needs to know, for the other sensor

nodes within its neighborhood, the identities and their

distances to their corresponding destination sink nodes.

Since the control packets introduced above are light weighted

(with either rate/price/identity/distance information), and they

are only communicated between local neighborhoods, the

overhead introduced by these control packets should not be

significant.

We now give an illustrative example to demonstrate the

convergence of the distributed algorithm. Fig. 1 illustrates a

random sensor network with 90 sensors and ten sinks, which

are represented by asterisks and circles, respectively. All the

nodes have a transmission range of 30 m, and the wireless links

are represented by dotted lines. The distributed algorithm is

Fig. 1. Random topology with 100 nodes.

executed for 500 iterations. The solid lines represent the links

chosen by the obtained transmission structure. The thickness

of each solid line indicates the amount of aggregated data

traveling on the link, while the sensor nodes transmit accord-

ing to the obtained rate allocation. Evidently, the distributed

algorithm minimizes the energy consumption by exploiting

data correlation. The sensor nodes that are distant from their

corresponding sinks are assigned with lower transmission rates.

For the duration of the experiment, the distributed algorithm

generates a sequence of solutions. The total energy consumed

by these solutions is recorded in Fig. 2. We observe from the

figure that after an initial spike, the algorithm rapidly converges

toward the optimal value within the first 50 iterations.
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Fig. 2. Convergence behavior of the distributed algorithm.

D. Asynchronous Network Model

Until now, we have assumed a synchronous implementation

for the iterative subgradient algorithm. In this case, the local

clocks on the nodes are synchronized such that all of the

nodes will simultaneously execute an iteration of the algorithm

at every time instance (t = 1, 2, 3, . . .). A bounded commu-

nication delay is assumed where price and rate updates will

arrive at their destinations before the next time instance. As

a result, each node is able to execute the algorithm based

on the most recent price and rate information. However, in

realistic ad hoc network environments, it is expensive in terms

of communication overhead to synchronize local clocks across

the entire network.

In asynchronous network environments, nodes with different

computation speeds will execute the iterative algorithm at vary-

ing paces. Consequently, the nodes may not always have the

most recent price or rate information due to delayed or out-of-

order updates. To accommodate these asynchronous updates,

we introduce the partial asynchronism model that will be

assumed in the practical implementation of our algorithm. The

partial asynchronism model makes the following assumption.

There exists a positive integer B such that, for every cluster

and wireless link (i, j), the time between consecutive updates is

bounded by B for both price and rate updates, and the one-way

communication delays between any two nodes are at most B
time instances.

The partial asynchronism model is first discussed in [17].

Later, it is adopted by Low and Lapsley [19] in wireline

networks and Xue et al. [20] in wireless networks. In [20],

a technique is proposed to improve the price-based resource

allocation strategy to accommodate the partial asynchronous

model. At time instance t, instead of the most recent informa-

tion, a node may only received a sequence of recent updates.

The concept of this technique is for the nodes to estimate

the most recent price and rate information by computing the

average of the sequence received from time t − B to t. To

improve the accuracy of the estimation, a moving average can

be utilized with a heavier weight assigned to the more recent

updates. From their work, it is shown that such a strategy will

converge the fastest when all the weight is assigned to the most

recently received update. Moreover, with a sufficiently small

step size θ, the strategy will converge to the global optimum

in asynchronous network environments. Since our optimization

formulation is solved with a price-based strategy, it is natural

for us to adapt this technique. In our implementation, each

node estimates the price and rate information based on the

most recently received update. In Section VI, we validate

via simulations that our algorithm converges in asynchronous

network environments.

V. IMPLEMENTATION ISSUES

The subgradient algorithm provides an efficient tool in ob-

taining a lower bound on linear programming formulations

(such as our primal problem) via solutions to the Lagrangian

dual problem. However, it has the disadvantage that an optimal

solution or even a feasible solution to the primal problem may

not be found. With such a subgradient optimization approach,

methods such as primal penalty functions and tangential ap-

proximation schemes have been proposed for directly obtain-

ing the primal solutions. These methods are not suitable for

our purpose because they either require the optimization to

be conducted in the joint primal-dual space or introduce a

significant additional computation overhead. In this section, we

propose two implementations of our distributed algorithm that

are aiming to overcome this problem. Moreover, we discuss

how the distributed algorithm can be extended to handle net-

work dynamics.

A. Implementation I: Primal Recovery

In [22], Sherali and Choi introduce a primal recovery al-

gorithm. The algorithm directly recovers the primal solutions

from the solutions to the Lagrangian dual problem generated by

the subgradient algorithm. We adapt this algorithm in our first

implementation. The primal recovery algorithm restricts the

step size strategy and specifies that the primal solutions should

equal to the convex combination of the solutions generated by

the Lagrangian subproblem. At iteration k of the subgradient

algorithm, we compose a primal solution f ∗
ij [k] via

f ∗
ij [k] =

k
∑

m=1

λk
mfij [m] (28)

where θ[k]’s are the step sizes, and λk
m’s are the convex combi-

nation weights given by

θ[k] =
a

b + ck
∀k, λk

m =
1

k
∀m = 1, . . . , k ∀k

(29)

where a, b, and c are positive constants. This step size strategy

also satisfies condition (27); hence, the convergence of the

subgradient algorithm is guaranteed. In the kth iteration, we can

calculate the adjusted flow vector f ∗
ij [k] by

f ∗
ij [k] =

k − 1

k
f ∗

ij [k − 1] +
1

k
fij [k]. (30)
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TABLE III
STATISTICS ON CAPACITY VIOLATION IN BITS

It is proven in [22] that when the conditions in (29) are met, any

accumulation point of the sequence f ∗
ij [k] generated via (28) is

feasible to the primal problem.

Although the primal recovery algorithm guarantees to gener-

ate feasible primal solutions, it has a major disadvantage. Since

the generated primal solution depends on the previous solu-

tions, the network must remain static. Any dynamics introduced

to the network such as sink mobility and duty schedules may

introduce obsolete links during the execution of the distributed

algorithm. If any one of the previous solutions contains the

obsolete links, then the generated primal solution becomes in-

valid. To accommodate these dynamics, we propose a heuristic

approach in our second implementation.

B. Implementation II: Capacity Reservation

Recall that the subgradient algorithm provides quick lower

bounds to linear programming formulations. In the context of

this paper, as the subgradient algorithm converges, it generates

a sequence of rate allocations and transmission structures as

solutions to the Lagrangian dual problem. However, some of

these solutions often violate the channel contention constraints,

which are imposed by the primal problem but relaxed in the

dual problem. To analyze this behavior, we conduct a simula-

tion study on sensor networks with 90 sensors and ten sinks.

The capacity of the wireless shared medium is set to 150 bits.

The distributed algorithm is executed for 1000 iterations on

50 random topologies. For each random topology, we record

the amount of capacity violation induced by the last solution

generated by the algorithm, and the statistics is presented in

Table III.

Evidently, the subgradient algorithm generates tight lower

bounds since the mean capacity violation is only a small frac-

tion of the capacity offered by the shared medium. Based on this

behavior, we observe that with high probability, the distributed

algorithm can generate primal feasible solutions by reserving

a suitable amount of capacity in advance. To reserve capacity,

the distributed algorithm can be executed with the knowledge

that the shared medium can only support a fraction (e.g., 90%)

of its actual capacity. Although this implementation does not

guarantee primal feasible solutions, it does not introduce any

additional computational complexity into the algorithm.

C. Handling Network Dynamics

With energy-saving mechanisms such as sink mobility and

duty schedules, the topology of a sensor network is inherently

dynamic. Wireless links maybe added or removed from the

topology. Moreover, since the energy cost of a wireless link is

a function of its distance, it can vary with the node movement.

One of the main design goals for the distributed algorithm is to

be compatible with these mechanisms and variations to achieve

higher energy savings. To this end, we propose an extension to

the algorithm for handling network dynamics.

In the distributed algorithm, each wireless link is treated as

two separate entities, i.e., a link and a cluster. For each wireless

link (i, j), its sender node maintains two lists, i.e., Ψij and Φij .

The first list Ψij contains the identities and rates of the links

that belong to cluster (i, j). In addition, the second list Φij

contains the identities and prices of the clusters to which link

(i, j) belongs. To handle network dynamics, these lists must be

updated as the topology changes.

We assume that the nodes are able to retrieve up-to-date

topology information within their transmission range. At the

beginning of each iteration, each participating node initiates

the distributed algorithm by determining if it has new, obsolete,

or modified links originating from itself. Afterwards, the nodes

execute the maintenance phase given in Table IV. Finally, the

nodes complete the iteration by executing the price and rate

updates given in Table II. The purpose of the maintenance phase

is to update the lists for the wireless links. It introduces several

light-weighted control packets, and they are exchanged between

the nodes and their local neighborhoods.

VI. PERFORMANCE EVALUATION

A. Simulation Environments

With the C++ programming language, we have implemented

the proposed distributed algorithm for solving the correlated

data-gathering problem. Our implementation includes both the

optimization phase and the maintenance phase presented in

Tables II and IV. The data packets, control packets, and update

packets are communicated between the participating nodes with

a round-robin scheduling algorithm. In practice, we expect that

the data packets can be scheduled with a weighted fair queueing

algorithm [23]. As a result, the sensors can achieve guaranteed

data transmission rates specified by the rate allocation.

In this section, we evaluate both implementations proposed

in Section V with extensive experimental results. The ex-

periments are conducted on a high-performance cluster with

50 dual-processor servers. Unless stated, the experiments are

performed on the random topology with 100 nodes presented

in Fig. 1. The transmission range and the interference range

are set to 30 m. The capacity of the wireless shared medium is

set to 150 bits. The correlation parameter W and the per node

distortion d is set to 0.99 and 0.01, respectively.

We study the distributed algorithm in three different simula-

tion environments. In the independent environment, we neglect

the effect of data correlation by substituting the localized

Slepian–Wolf coding scheme with an independent coding

scheme. In the synchronous environment, the participating

nodes simultaneously execute an iteration of the algorithm at

every time instance. The asynchronous environment is based on

the partial asynchronism model, which assumes the existence of

an integer B that bounds the time between consecutive updates.

To implement this environment, each sensor node maintains a

timer with a random integer value between 0 and B. The timer

decreases itself by 1 at every time instance. When the timer

reaches 0, the sensor node executes an iteration of the algorithm
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TABLE IV
MAINTENANCE PHASE

Fig. 3. Convergence speed in static networks. For each experiment, the horizontal bars indicate one standard deviation below and above the mean.

before resetting the timer. For experiments involving network

dynamics, we make a conservative estimation that the sensor

network is capable of executing two iterations of the algorithm

per second. This implies that the duration of a time instance is

equal to half of a second.

B. Convergence Speed

In our first study, we observe the convergence speed of the

algorithm with different numbers of participating nodes. To

this end, we generate five random sensor fields ranging from

100 to 500 nodes in increments of 100 nodes with 10% of the

nodes randomly chosen as sink nodes. The sensor field with

100 nodes has an area of 100 m × 100 m. We maintain a con-

stant node density by scaling the area of the other sensor fields.

This eliminates the effect caused by varying node density and

allows us to focus on the scalability of our algorithm. To attain

convergence, we let the algorithm run for 500 iterations, and

the optimum is taken as the minimum total energy consumption

achieved. For each experiment, the algorithm is executed in the

synchronous simulation environment on ten random topologies.

For both implementations, we plot the mean number of itera-

tions required to achieve 90% and 99% optimality in Fig. 3. The

horizontal bars indicate one standard deviation below and above

each mean. Supposing that the numbers approximately follow a

Gaussian distribution given by the Central Limit Theorem, each

interval includes about 70% of the observations.

The figure reveals that the convergence behaviors of the two

implementations are different. On average, the primal recovery

algorithm increases the convergence time by 50%, but the

standard deviations on the convergence time are smaller when

compared with the capacity reservation scheme. This is an

expected result since the primal recovery algorithm generates

a solution by averaging all the previous solutions obtained in

the subgradient algorithm. In contrast, the capacity reservation

scheme always utilizes the most current solution obtained in

the subgradient algorithm. As a result, it has a shorter conver-

gence time, but it is also heavily influenced by the fluctuations

introduced by the subgradient algorithm, which leads to larger

deviations. These convergence behaviors can be verified in

Fig. 4, where we plot the sequences of solutions generated by

the two implementations.
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Fig. 4. Convergence behavior in asynchronous network settings.

In general, we observe that the time needed to achieve 99%

optimality remains almost the same for networks with 200 to

500 nodes. Moreover, we notice that the algorithm can achieve

90% optimality in less than half of the time needed to achieve

99% optimality. Recall that for both implementations, the so-

lution generated in each iteration is primal feasible. Therefore,

when it is not necessary to achieve the true optimum, we can

obtain a near-optimal solution in a much shorter time. These

results exhibit the excellent scalability of our algorithm as the

network size increases.

C. Impact of Asynchronous Network Settings

With the asynchronous simulation environment, we evalu-

ate the convergence behavior of the distributed algorithm in

asynchronous network settings. The algorithm is executed for

500 iterations with different time bounds B = 1, 5, 10, 25. For

both implementations, the total energy consumption attained

at each iteration is recorded in Fig. 4. In all the experiments,

the algorithm converges toward an identical optimal solution.

This result indicates that our algorithm is able to achieve

convergence in asynchronous network settings. Moreover, we

conclude that the convergence speed of the algorithm is associ-

ated with the time bound B since a longer convergence time is

required when B is large.

D. Effect of Data Correlation

We investigate the effect of data correlation by comparing the

synchronous simulation environment against the independent

Fig. 5. Localized Slepian–Wolf coding versus independent coding. IC: inde-
pendent coding, I1: implementation I, and I2: implementation II.

simulation environment. For each simulation environment, we

execute the algorithm under three per node distortion values

d = 0.001, 0.01, and 0.1. As the correlation parameter W
varies from 0.9 to 0.9999, the minimum total energy con-

sumption achieved by the different simulation environments is

recorded in Fig. 5. Intuitively, the energy consumed at high

correlation (W = 0.9999) is much lower compared with the

energy consumed at low correlation (W = 0.9). Overall, the

two implementations achieve similar results, and the localized

Slepian–Wolf coding scheme outperforms the independent cod-

ing scheme in all the experiments. These results imply that

although the proposed algorithm utilizes only local information,

it can achieve significant energy savings for a wide range of data

correlation and distortion levels.

E. Adaptation to Sink Mobility

In this section, we study the impact of sink mobility over ran-

dom networks. Our aim is to seek the mobility threshold such

that the algorithm is not fast enough to remain at convergence.

Based on the random topology with 100 nodes, we introduce

sink mobility by simultaneously moving the ten sink nodes.

With periods of 50 and 100 s, the sink nodes move and remain

static between alternating periods. For each mobile period, the

sink nodes move in random directions with a specified average

speed. The algorithm is executed in the synchronous simulation

environment for 500 s. Fig. 6 plots the convergence behavior of

the algorithm for the different scenarios. From this figure, we

observe that the algorithm can achieve new convergence after

the network topology is modified. The results indicate that the

algorithm converges sufficiently well when the sink nodes move

at 0.1 m/s without pause. When the node speed increases to

0.5 and 1 m/s, there are larger fluctuations in the attained total

energy consumptions. A further increase in node speed may

result in insufficient convergence time. In addition, we observe

that the algorithm rapidly achieves and stays in convergence

once the topology remains static. Obviously, the algorithm can

support higher node speeds when the pause time increases.
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Fig. 6. Experiments with varying sink speeds and pause times.

Fig. 7. Two-state Markov chain.

F. Adaptation to Duty Schedules

To extend the network lifetime, it is essential to establish

the load balancing between sensor nodes with mechanisms

such as duty schedules. In our final study, we are interested in

examining the dynamic behavior of the distributed algorithm

triggered by sensor joins and departures. We model the duty

schedules as a two-state Markov chain, as shown in Fig. 7. The

state transition probabilities α and β are adjusted to emulate

different duty schedules. The experiments are performed in the

synchronous simulation environment for 300 s. In the first 100 s,

all the sensor nodes remain active. Afterwards, the sensors

switch their operating status based on the introduced duty

schedules.

The results of the experiments are summarized in Figs. 8

and 9. In Fig. 8, we adjust the summation of α and β with a

fixed transition ratio α/β of 5. The summation represents the

frequency of state transitions experienced by the network. Note

that the summation cannot be greater than 2 since each of the

transition probabilities cannot exceed 1. We observe that as the

frequency of state transitions increases, the topology of the net-

work changes more rapidly, which leads to larger fluctuations

in the attained total energy consumptions. Fig. 9 illustrates the

performance of the algorithm under different transition ratios

with a fixed summation of 0.01. We have avoided combinations

of transition ratio and summation that may lead to network

partition. For example, if the transition ratio is less than 1,

then the active sensor nodes are more likely to shut themselves

off than inactive sensor nodes turning themselves on. As the

number of inactive sensor nodes increases, a partition in the

sensor network would eventually occur. Moreover, we notice
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Fig. 8. Experiments with varying amount of state transitions.

Fig. 9. Experiments with different transition ratios.

that with a higher transition ratio, the network consumes more

energy since more sensor nodes are active.

VII. RELATED WORK

The problem of energy-efficient routing in sensor networks

has been investigated with mathematical optimization tech-

niques in research studies including [24]–[27]. Chang and

Tassiulas [24] have formulated a flow-based linear program-

ming formulation to maximize the network lifetime. In [25],

the optimization model minimizes the energy consumption and

takes into account the channel contention constraints associated

with the wireless shared medium. Ordonez and Krishnamachari

[26] propose another optimization formulation to maximize the

raw data arriving at the sink nodes subject to flow, fairness,

energy, and capacity constraints. Johansson et al. [27] study the

simultaneous routing and power allocation problem in wireless

data networks using optimization techniques. In [26] and [27],

the optimization problems utilize the physical model [4] of

packet transmission in wireless networks to model the channel

contention constraints. However, the resulting channel con-

tention constraints are nonconvex, which can lead to extremely

difficult optimization problems. In this paper, we represent the

channel contention as linear constraints based on the protocol

model [4]. More importantly, although all of the above existing

works generally save energy, they do not consider the additional

energy savings that can be achieved by exploiting the data

correlation among the sensor nodes.

The data aggregation was introduced by Krishnamachari et al.

[28] as an essential paradigm for wireless routing in sensor net-

works. The concept is to exploit the data correlation among the

sensor nodes by eliminating redundancy. Consequently, there

are fewer transmissions in the network, which thus save energy.

In [7], Kalpakis et al. have formulated the maximum-lifetime

data-gathering problem as a linear programming formulation

by taking data aggregation into consideration and presented

a polynomial-time algorithm to solve the problem. Although

this optimization framework yields satisfactory performance,

it makes the simplistic assumption of perfect data correlation,

where intermediate sensor nodes can aggregate any number of

incoming packets into a single packet. A perfect data correla-

tion can also be found in [6], which analyzes the performance

of data-centric routing schemes with in-network aggregation.

In [8], Goel and Estrin consider the joint treatment of data

aggregation and transmission structure. The problem of data

gathering is addressed by using concave nondecreasing cost

functions to model the aggregation function utilized by the

intermediate nodes. However, it also makes the assumption

of perfect data correlation. The aggregation performance of a
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node only depends on the number of nodes providing incoming

data, regardless of the correlation structure. The assumption of

perfect data correlation is not made in this paper since it is not

applicable in most application scenarios.

While this paper exploits the data correlation with

Slepian–Wolf coding, there are alternative approaches to take

advantage of the correlation structure. In [3] and [29], the

correlated data-gathering problem is considered with single-

input coding schemes. With single-input coding, the data com-

pression ratio at an intermediate node only depends on the

side information provided by one other node. Cristescu et al.

[3] prove that this optimization problem is NP-hard even in a

simplified network setting, where the data compression ratio at

the nodes does not depend on the quantity of side information

but only on its availability. Since single-input coding schemes

only consider data correlation among pairs of nodes, they will

not perform as well as source coding schemes, which consider

the joint data correlation of multiple nodes.

The multi-input coding schemes are often employed by rout-

ing schemes embedded with data aggregation, such as directed

diffusion [30], LEACH [31], and PEGASIS [32]. Directed

diffusion is a routing driven algorithm that emphasizes source

compression at each individual node, and data aggregation

opportunistically occurs when the routes intersect. In the model

of LEACH, the nodes are chosen as cluster heads, which are

then responsible for aggregating all the data generated in their

corresponding cluster into a single packet. Instead of clusters,

the PEGASIS algorithm finds chains of nodes, and the head

node of each chain aggregates data from other nodes in the

chain. Although the multi-input coding schemes can exploit

data correlation among multiple nodes, they require the par-

ticipating nodes to explicitly communicate with each other.

In contrast, the Slepian–Wolf coding schemes do not require

any explicit communication; hence, they can be applied in

asynchronous network settings where no timing assumptions

are made. In addition, these routing schemes do not incorporate

the effect of wireless interference in their design.

Other closely related works are the ones involving

Slepian–Wolf source coding. In [33], Barros and Servetto in-

troduce the sensor reach-back problem, which requires one

of the nodes in the network to receive enough information to

reproduce the entire field of observation. The Slepian–Wolf

coding is employed to meet the above requirement. This paper

inspires us to apply Slepian–Wolf coding in the correlated

data-gathering problem; hence, the sink nodes will be able to

receive all independent data from the sensor nodes. In [15],

Cristescu et al. address the correlated data-gathering problem

with Slepian–Wolf coding. However, since their formulation

does not consider the capacity and interference associated with

the wireless channels, their solution may not be supported by

the shared medium.

VIII. CONCLUSION

With the ability of distributed wireless sensing, the sensor

networks can be applied to a vast number of applications.

However, before we can recognize the full potential of sensor

networks, the problem of correlated data gathering must be

solved under realistic assumptions. We conclude this paper with

the belief that our proposed framework is an efficient means

to accomplish this task. In this paper, we have shown that in

the presence of capacity constraints, finding the optimal rate

allocation and finding the optimal transmission structure are

two dependent problems. By jointly optimizing both problems,

our approach minimizes the total transmission energy con-

sumed by the network. Furthermore, it exploits data correlation

among the sensor nodes and accounts for the effect of location-

dependent contention in the wireless channels. To ensure

scalability, our algorithm is amenable to distributed implemen-

tations, is applicable in asynchronous network settings, and

provides support for multisink sensor networks. To the best of

our knowledge, there does not exist any previous work that has

simultaneously considered the correlated data-gathering prob-

lem with data aggregation and wireless channel interference,

especially when a price-based strategy is employed to obtain a

distributed algorithm to solve the problem.
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