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Abstract We consider the problem of learning a high-dimensional but low-rankmatrix from
a large-scale dataset distributed over several machines, where low-rankness is enforced by
a convex trace norm constraint. We propose DFW- Trace, a distributed Frank–Wolfe algo-
rithm which leverages the low-rank structure of its updates to achieve efficiency in time,
memory and communication usage. The step at the heart of DFW- Trace is solved approx-
imately using a distributed version of the power method. We provide a theoretical analysis
of the convergence of DFW- Trace, showing that we can ensure sublinear convergence
in expectation to an optimal solution with few power iterations per epoch. We implement
DFW- Trace in the Apache Spark distributed programming framework and validate the
usefulness of our approach on synthetic and real data, including the ImageNet dataset with
high-dimensional features extracted from a deep neural network.

Keywords Frank–Wolfe algorithm · Low-rank learning · Trace norm · Distributed
optimization · Multi-task learning · Multinomial logistic regression

1 Introduction

Learning low-rank matrices is a problem of great importance in machine learning, statistics
and computer vision. Since rankminimization is known to be NP-hard, a principled approach
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consists in solving a convex relaxation of the problem where the rank is replaced by the trace
norm (also known as the nuclear norm) of the matrix. This strategy is supported by a range
of theoretical results showing that when the ground truth matrix is truly low-rank, one can
recover it exactly (or accurately) from limited samples and under mild conditions (see Bach
2008; Candès and Recht 2009; Candès and Tao 2010; Recht 2011; Gross et al. 2010; Gross
2011; Koltchinskii et al. 2011; Bhojanapalli et al. 2016). Trace norm minimization has led
to many successful applications, such as collaborative filtering and recommender systems
(Koren et al. 2009), multi-task learning (Argyriou et al. 2008; Pong et al. 2010), multi-class
andmulti-label classification (Goldberg et al. 2010; Cabral et al. 2011; Harchaoui et al. 2012),
robust PCA (Cabral et al. 2013), phase retrieval (Candes et al. 2015) and video denoising (Ji
et al. 2010).

We consider the following generic formulation of the problem:

min
W∈Rd×m

F (W ) =
n∑

i=1

fi (W ) s.t. ‖W‖∗ ≤ μ, (1)

where the fi ’s are differentiable with Lipschitz-continuous gradient, ‖W‖∗ = ∑
k σk(W ) is

the trace norm of W (the sum of its singular values), and μ > 0 is a regularization parameter
(typically tuned by cross-validation). In a machine learning context, an important class of
problems considers fi (W ) to be a loss value which is small (resp. large) when W fits well
(resp. poorly) the i-th data point (see Sect. 2.3 for concrete examples).1 In this work, we
focus on the large-scale scenario where the quantities involved in (1) are large: typically, the
matrix dimensions d and m are both in the thousands or above, and the number of functions
(data points) n is in the millions or more.

Various approaches havebeenproposed to solve the trace normminimizationproblem (1).2

One can rely on reformulations as semi-definite programs and use out-of-the-shelf solvers
such as SDPT3 (Toh et al. 1999) or SeDuMi (Sturm 1999), but this does not scale beyond
small-size problems. To overcome this limitation, first-order methods like Singular Value
Thresholding (Cai et al. 2010), Fixed Point Continuation algorithms (Ma et al. 2011) and
more generally projected/proximal gradient algorithms (Parikh and Boyd 2013) have been
proposed. These approaches have two important drawbacks preventing their use when the
matrix dimensions d andm are both very large: they require computing a costly (approximate)
SVD at each iteration, and their memory complexity is O(dm). In this context, Frank–Wolfe
(also known as conditional gradient) algorithms (Frank andWolfe 1956) provide a significant
reduction in computational and memory complexity: they only need to compute the leading
eigenvector at each iteration, and they maintain compact low-rank iterates throughout the
optimization (Hazan 2008; Jaggi et al. 2010; Jaggi 2013; Harchaoui et al. 2015). However,
as all first-order algorithms, Frank–Wolfe requires computing the gradient of the objective
function at each iteration, which requires a full pass over the dataset and becomes a bottleneck
when n is large.

The goal of this paper is to propose a distributed version of the Frank–Wolfe algorithm in
order to alleviate the cost of gradient computation when solving problem (1). We focus on
the Bulk Synchronous Parallel (BSP) model with a master node connected to a set of slaves
(workers), each of theworkers having access to a subset of the fi ’s (typically corresponding to
a subset of training points). Our contributions are three-fold. First, we proposeDFW- Trace,

1 More general cases can be addressed, such as pairwise loss functions fi, j corresponding to pairs of data
points.
2 Some methods consider an equivalent formulation where the trace norm appears as a penalization term in
the objective function rather than as a constraint.
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a Frank–Wolfe algorithm relying on a distributed power method to approximately compute
the leading eigenvector with communication cost of O(d + m) per pass over the dataset
(epoch). This dramatically improves upon the O(dm) cost incurred by a naive distributed
approach. Second, we prove the sublinear convergence of DFW- Trace to an optimal solu-
tion in expectation, quantifying the number of power iterations needed at each epoch. This
result guarantees that DFW- Trace can find low-rank matrices with small approximation
error using few power iterations per epoch. Lastly, we provide a modular implementation
of our approach in the Apache Spark programming framework (Zaharia et al. 2010) which
can be readily deployed on commodity and commercial clusters. We evaluate the practi-
cal performance of DFW- Trace by applying it to multi-task regression and multi-class
classification tasks on synthetic and real-world datasets, including the ImageNet database
(Deng et al. 2009) with high-dimensional features generated by a deep neural network. The
results confirm thatDFW- Trace has fast convergence and outperforms competingmethods.
While distributed FW algorithms have been proposed for other classes of problems (Bellet
et al. 2015; Moharrer and Ioannidis 2017;Wang et al. 2016), to the best of our knowledge our
work is the first to propose, analyze and experiment with a distributed Frank–Wolfe algorithm
designed specifically for trace norm minimization.

The rest of this paper is organized as follows. Section 2 introduces some background on
the (centralized) Frank–Wolfe algorithm and its specialization to trace norm minimization,
and reviews some applications. After presenting some baseline approaches for the distributed
setting, Sect. 3 describes our algorithm DFW- Trace and its convergence analysis, as well
as some implementation details. Section 4 discusses some related work, and Sect. 5 presents
the experimental results.

2 Background

We review the centralized Frank–Wolfe algorithm in Sect. 2.1 and its specialization to trace
norm minimization in Sect. 2.2. We then present some applications to multi-task learning
and multi-class classification in Sect. 2.3.

2.1 Frank–Wolfe algorithm

The original Frank–Wolfe (FW) algorithm dates back from the 1950s and was originally
designed for quadratic programming (Frank and Wolfe 1956). The scope of the algorithm
was then extended to sparse greedy approximation (Clarkson 2010) and semi-definite pro-
gramming (Hazan 2008). Recently, Jaggi (2013) generalized the algorithm further to tackle
the following generic problem:

min
W∈D F (W ) , (2)

where F is convex and continuously differentiable, and the feasible domain D is a compact
convex subset of some Hilbert space with inner product 〈·, ·〉.

Algorithm 1 shows the generic formulation of the FW algorithm applied to (2). At each
iteration t , the algorithm finds the feasible point S∗ ∈ D which minimizes the linearization of
F at the current iterate W t . The next iterate W t+1 is then obtained by a convex combination
of W t and S∗, with a relative weight given by the step size γ t . By convexity ofD, this ensures
that W t+1 is feasible. The algorithm converges in O(1/t), as shown by the following result
from Jaggi (2013).
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Algorithm 1 Centralized Frank–Wolfe algorithm to solve (2)

Input: Initial point W 0 ∈ D, number of iterations T
for t = 0, . . . , T − 1 do

S∗ ← argminS∈D〈S, ∇F(W t )〉 
 solve linear subproblem
γ t ← 2

t+2 (or determined by line search) 
 step size

W t+1 ← (1 − γ t )W t + γ t S∗ 
 update
end for
Output: W T

Theorem 1 (Jaggi 2013) Let CF be the curvature constant of F.3 For each t ≥ 1, the iterate
W t ∈ D generated by Algorithm 1 satisfies F(W t ) − F(W ∗) ≤ 2CF

t+2 , where W ∗ ∈ D is an
optimal solution to (2).

Remark 1 There exist several variants of the FW algorithm, for which faster rates can some-
times be derived under additional assumptions. We refer to Jaggi (2013), and Lacoste-Julien
and Jaggi (2015) for details.

From the algorithmic point of view, the main step in Algorithm 1 is to solve the linear
subproblem over the domain D. By the linearity of the subproblem, a solution always lies
at an extremal point of D, hence FW can be seen as a greedy algorithm whose iterates are
convex combinations of extremal points (adding a new one at each iteration). When these
extremal points have some specific structure (e.g., sparsity, low-rankness), the iterates inherit
this structure and the linear subproblem can sometimes be solved very efficiently. This is the
case for the trace norm constraint, our focus in this paper.

2.2 Specialization to trace norm minimization

The FW algorithm applied to the trace norm minimization problem (1) must solve the fol-
lowing subproblem:

S∗ ∈ argmin
‖S‖∗≤μ

〈S,∇F(W t )〉, (3)

where W t ∈ R
d×m is the iterate at time t and S ∈ R

d×m . The trace norm ball is the convex
hull of the rank-1 matrices, so there must exist a rank-1 solution to (3). This solution can
be shown to be equal to −μu1v

�
1 , where u1 and v1 are the unit left and right top singular

vectors of the gradient matrix ∇F(W t ) (Jaggi 2013). Finding the top singular vectors of
a matrix is much more efficient than computing the full SVD. This gives FW a significant
computational advantage over projected and proximal gradient descent approaches when the
matrix dimensions are large. Furthermore, assuming that W 0 is initialized to the zero matrix,
W t can be stored in a compact form as a convex combination of t rank-1 matrices, which
requires O(t (d + m)) memory instead of O(dm) to store a full rank matrix. As implied by
Theorem 1, FW is thus guaranteed to find a rank-t whose approximation error is O(1/t) for
any t ≥ 1. In practice, when the ground truth matrix is indeed low-rank, FW can typically
recover a very accurate solution after t  min(d, m) steps.

We note that in the special case where the matrix W is square (d = m) and constrained
to be symmetric, the gradient ∇F(W t ) can always be written as a symmetric matrix, and
the solution to the linear subproblem has a simpler representation based on the leading
eigenvector of the gradient, see Jaggi (2013).

3 This constant is bounded above by L diam(D)2, where L is the Lipschitz constant of the gradient of F (see
Jaggi 2013).
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2.3 Applications

We describe here two tasks where trace norm minimization has been successfully applied,
which we will use to evaluate our method in Sect. 5.
Multi-task least square regression This is an instance of multi-task learning (Caruana 1997),
where one aims to jointly learn m related tasks. Formally, let X ∈ R

n×d be the feature matrix
(n training points in d-dimensional space) and Y ∈ R

n×m be the response matrix (each
column corresponding to a task). The objective function aims to minimize the residuals of
all tasks simultaneously:

F(W ) = 1

2
‖X W − Y‖2F = 1

2

n∑

i=1

m∑

j=1

(xT
i w j − yi j )

2, (4)

where ‖ · ‖F is the Frobenius norm. Using a trace norm constraint on W allows to couple the
tasks together by making the task predictors share a common subspace, which is a standard
approach to multi-task learning (see e.g., Argyriou et al. 2008; Pong et al. 2010).
Multinomial logistic regression Consider a classification problem with m classes. Let X ∈
R

n×d be the feature matrix and y ∈ {1, . . . , m}n the label vector. Multinomial logistic
regression minimizes the negative log-likelihood function:

F(W ) =
∑

i

log
(
1+

∑

l �=yi

exp(wT
l xi −wT

yi
xi )

)
=

∑

i

(
−wT

yi
xi +log

∑

l

exp(wT
l xi )

)
. (5)

The motivation for using the trace norm is that multi-class problems with a large number
of categories usually exhibit low-rank embeddings of the classes (see Amit et al. 2007;
Harchaoui et al. 2012).

3 Distributed Frank–Wolfe for trace norm minimization

We now consider a distributed master/slave architecture with N slaves (workers). The master
node is connected to all workers and acts mainly as an aggregator, while most of the com-
putation is done on the workers. The individual functions f1, . . . , fn in the objective (1) are
partitioned across workers, so that all workers can collectively compute all functions but each
worker can only compute its own subset. Recall that in a typical machine learning scenario,
each function fi corresponds to the loss function computed on the i-th data point (as in the
examples of Sect. 2.3). We will thus often refer to these functions as data points. Formally, let
I j ⊆ {1, . . . , n} be the set of indices assigned to worker j , where I1 ∪ · · · ∪ IN = {1, . . . , n}
and I1 ∩ · · · ∩ IN = ∅. We denote by Fj = ∑

i∈I j
fi the local function (dataset) associated

with each worker j , and by n j = |I j | the size of this local dataset.
We follow the Bulk Synchronous Parallel (BSP) computational model: each iteration

(epoch) alternates between parallel computation at the workers and communication with the
master (the latter serves as a synchronization barrier).

3.1 Baseline strategies

Before presenting our algorithm, we first introduce two baseline distributed FW strategies
(each with their own merits and drawbacks).
Naive DFW One can immediately see a naive way of running the centralized Frank–Wolfe
algorithm (Algorithm 1) in the distributed setting. Starting from a common initial point W 0,
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each worker j computes at each iteration t its local gradient ∇Fj (W t ) and sends it to the
master. The master then aggregates the messages to produce the full gradient ∇F(W t ) =∑N

j=1 Fj (W t ), solves the linear subproblem by computing the leading right/left singular
vectors of ∇F(W t ) and sends the solution back to the workers, who can form the next
iterate W t+1. Naive- DFW exactly mimics the behavior of the centralized FW algorithm,
but induces a communication cost of O(Ndm) per epoch as in many applications (such
as those presented in Sect. 2.3) the local gradients are dense matrices. In the large-scale
setting where the matrix dimensions d and m are both large, this cost dramatically limits the
efficiency of the algorithm.
Singular Vector AveragingApossible strategy to avoid this high communication cost is to ask
each worker j to send to the master the rank-1 solution to the local version of the subprob-
lem (3), in which they use their local gradient ∇Fj (W t ) as an estimate of the full gradient
∇F(W t ). This reduces the communication to a much more affordable cost of O(N (d +m)).
Note that averaging the rank-1 solutions would typically lead to a rank-N update, which
breaks the useful rank-1 property of FW and is undesirable when N is large. Instead, the
master averages the singular vectors (weighted proportionally to n j ), resolving the sign ambi-
guity by setting the largest entry of each singular vector to be positive and using appropriate
normalization, as mentioned for instance in Bro et al. (2008). We refer to this strategy as
Singular Vector Averaging (SVA). SVA is a reasonable heuristic when the individual func-
tions are partitioned across nodes uniformly at random: in this case the local gradients can
be seen as unbiased estimates of the full gradient. However the singular vector estimate itself
is biased (averaging between workers only reduces its variance), and for n fixed this bias
increases with the matrix dimensions d and m but also with the number of workers N (which
is not a desirable property in the distributed setting). It is also expected to perform badly on
arbitrary (non-uniform) partitions of functions across workers. Clearly, one cannot hope to
establish strong convergence guarantees for SVA.

3.2 Proposed approach

We now describe our proposed approach, referred to as DFW- Trace. We will see that
DFW- Trace achieves roughly the small communication cost of SVA while enjoying a
similar convergence rate as Naive- DFW (and hence centralized FW).
Algorithm The main idea of DFW- Trace (Algorithm 2) is to solve the linear subproblem
of FW approximately using a distributed version of the power method applied to the matrix
∇F(W t )�F(W t ). At each outer iteration (epoch) t , the workers first generate a common
random vector drawn uniformly on the unit sphere.4 Then, for K (t) iterations, the algorithm
alternates between the workers computingmatrix-vector products and themaster aggregating
the results. At the end of this procedure, workers hold the same approximate versions of the
left and right singular vectors of ∇F(W t ) and use them to generate the next iterate W t+1.

The communication cost of DFW- Trace per epoch is O(N K (t)(d + m)) (see Table 1
for a comparison with baselines). It is clear that as K (t) → ∞, DFW- Trace computes the
exact solution to the linear subproblems and hence has the same convergence guarantees as
centralized FW. However, we would like to set K (t)  min(d, m) to provide a significant
improvement over the O(Ndm) cost of the naive distributed algorithm. The purpose of our
analysis below is to show how to set K (t) to preserve the convergence rate of the centralized
algorithm.

4 This can be done without communication: for instance, the workers can agree on a common random seed
before running the algorithm.
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Algorithm 2 Our distributed algorithm DFW- Trace to solve (1)

1: Input: Initial point W 0 ∈ D, number of iterations T
2: for t = 0, . . . , T − 1 do
3: Each worker j: ∇Fj (W t ) ← ∑

i∈I j
∇ fi (W t )

4: All workers: draw the same v0 ∈ R
m uniformly on unit sphere

5: for k = 0, . . . , K (t) − 1 do 
 distributed power method
6: Each worker j: send uk+1, j ← ∇Fj (W t )vk to master

7: Master: broadcast uk+1 ← (
∑N

j=1 uk+1, j )/‖
∑N

j=1 uk+1, j ‖
8: Each worker j: send vk+1, j ← ∇Fj (W t )�uk+1 to master

9: Master: broadcast vk+1 ← (
∑N

j=1 vk+1, j )/‖
∑N

j=1 vk+1, j ‖
10: end for
11: γ t ← 2

t+2 (or determined by line search) 
 step size

12: Each worker j: W t+1 ← (1 − γ t )W t − γ t μuK (t)v
�
K (t) 
 update

13: end for
14: Output: W T

Table 1 Communication cost per epoch of the various algorithms. K (t) is the number of power iterations
used by DFW- Trace

Algorithm Communication cost # communication rounds

Naive FW Ndm 1

Singular Vector Averaging N (d + m) 1

DFW- Trace 2N K (t)(d + m) 2K (t)

Remark 2 (Other network topologies) Since any connected graph can be logically repre-
sented as a star graph by choosing a center, our method virtually works on any network
(though it may incur additional communication). Depending on the topology, special care
can be taken to reduce the communication overhead. An interesting case is the rooted tree
network: we can adopt a hierarchical aggregation schemewhich has the same communication
cost of O(N K (t)(d + m)) as the star network but scales better to many workers by allowing
parallel aggregations.5 For a general graphwith M edges, O(M K (t)(d+m)) communication
is enough to broadcast the values to all workers so they can perform the aggregation locally.

Analysis Wewill establish that for some appropriate choices of K (t),DFW- Trace achieves
sublinear convergence in expectation, as defined below.

Definition 1 Let δ ≥ 0 be an accuracy parameter. We say that DFW- Trace converges
sublinearly in expectation if for each t ≥ 1, its iterate W t satisfies

E[F(W t )] − F(W ∗) ≤ 2CF
t+2 (1 + δ), (6)

where CF is the curvature constant of F .

We have the following result.

Theorem 2 (Convergence) Let F be a convex, differentiable function with curvature CF and
Lipschitz constant L w.r.t. the trace norm. For any accuracy parameter δ ≥ 0, the following
properties hold for DFW- Trace (Algorithm 2):

5 In Apache Spark, this is implemented in treeReduce and treeAggregate.
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1. If m ≥ 8 and for any t ≥ 0, K (t) ≥ 1 + �μL(t+2) lnm
δCF

�, then DFW- Trace converges
sublinearly in expectation.

2. For any t ≥ 0, let σ t
1 , σ t

2 be the largest and the second largest singular values of
∇F(W t ) and assume that σ t

1 has multiplicity 1 and there exists a constant β such that
σ t
2

σ t
1

< β < 1. If K (t) ≥ max(� ln(δCF )−ln[mμL(t+2)]
2 ln β

� + 1, K̃ ) where K̃ is a large enough

constant, DFW- Trace converges sublinearly in expectation.

Proof (Sketch) We briefly outline the main ingredients (see Appendix A for the detailed
proof). We first show that if the linear subproblem is approximately solved in expectation (to
sufficient accuracy), then the FW algorithm converges sublinearly in expectation. Relying on
results on the convergence of the power method (Kuczyński and Woźniakowski 1992) and
on the Lipschitzness of F , we then derive the above results on the number of power iterations
K (t) needed to ensure sufficient accuracy under different assumptions. ��

Theorem 2 characterizes the number of power iterations K (t) at each epoch t which is
sufficient to guarantee that DFW- Trace converges sublinearly in expectation to an optimal
solution. Note that there are two regimes. The first part of the theorem establishes that if
K (t) scales linearly in t , the expected output of DFW- Trace after t epochs is a rank-t
matrix with O(1/t) approximation error (as in centralized FW, see Theorem 1). In the large-
scale setting of interest, this implies that a good low-rank approximation can be achieved by
running the algorithm for t  min(d, m) iterations, andwith reasonable communication cost
since K (t) = O(t). Remarkably, this result holds without any assumption about the spectral
structure of the gradientmatrices.On the other hand, in the regimewhere the gradientmatrices
are “well-behaved” (in the sense that the ratio between their two largest singular values is
bounded away from 1), the second part of the theorem shows that a much lower number
of power iterations K (t) = O(log t) is sufficient to ensure the sublinear convergence in
expectation. In Sect. 5, we will see experimentally on several datasets that this is indeed
sufficient in practice to achieve convergence. We conclude this part with a few remarks
mentioning some additional results, for which we omit the details due to the lack of space.

Remark 3 (Convergence in probability) We can also establish the sublinear convergence of
DFW- Trace in probability (which is stronger than convergence in expectation). The results
are analogous to Theorem 1 but require K (t) to be quadratic in t for the first case, and linear
in t for the second case.

Remark 4 (Constant number of power iterations) If we take the number of power iterations to
be constant across epochs (i.e., K (t) = K for all t), DFW- Trace converges in expectation
to a neighborhood of the optimal solution whose size decreases with K . We can establish
this by combining results on the approximation error of the power method with Theorem 5.1
in Freund and Grigas (2016).

3.3 Implementation

Our algorithmDFW- Trace (Algorithm 2) can be implemented as a sequence of map-reduce
steps (Dean and Ghemawat 2008). This allows the computation to be massively parallelized
across the set of workers, while allowing a simple implementation and fast deployment on
commodity and commercial clusters via existing distributed programming frameworks (Dean
and Ghemawat 2008; Zaharia et al. 2010). Nonetheless, some special care is needed if one
wants to get an efficient implementation. In particular, it is key to leverage the fundamental
property of FW algorithms that the updates are rank-1. This structural property implies that
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it is much more efficient to compute the gradient in a recursive manner, rather than from
scratch using the current parameters. We use a notion of sufficient information to denote the
local quantities (maintained by each worker) that are sufficient to compute the updates. This
includes the local gradient (for the reason outlined above), and sometimes some quantities
precomputed from the local dataset. Depending on the objective function and the relative
size of the problem parameters n, m, d and N , the memory and/or time complexity may
be improved by storing (some of) the sufficient information in low-rank form. We refer the
reader to Appendix B for a concrete application of these ideas to the tasks of multi-task least
square regression and multinomial logistic regression used in our experiments.

Based on the above principles, we developed an open-source Python implementation of
DFW- Trace using the Apache Spark framework (Zaharia et al. 2010).6 The package also
implements the baseline strategies of Sect. 3.1, and currently uses dense representations.
The code is modular and separates generic from task-specific components. In particular,
the generic DFW- Trace algorithm is implemented in PySpark (Spark’s Python API) in a
task-agnostic fashion. On the other hand, specific tasks (objective function, gradient, etc) are
implemented separately in pure Python code. This allows users to easily extend the package
by adding their own tasks of interest without requiring Spark knowledge. Specifically, the
task interface should implement several methods: stats (to initialize the sufficient infor-
mation), update (to update the sufficient information), and optionally linesearch (to
use linesearch instead of default step size) and loss (to compute the value of the objec-
tive function). In the current version, we provide such interface for multi-task least square
regression and multinomial logistic regression.

4 Related work

There has been a recent surge of interest for the Frank–Wolfe algorithm and its variants in the
machine learning community. The renewed popularity of this classic algorithm, introduced
by Frank andWolfe (1956), can be largely attributed to the work of Clarkson (2010) andmore
recently Jaggi (2013). They generalized its scope and showed that its strong convergence guar-
antees, efficient greedy updates and sparse iterates are valuable to tackle high-dimensional
machine learning problems involving sparsity-inducing (non-smooth) regularization such as
the L1 norm and the trace norm. Subsequent work has extended the convergence results,
for instance proving faster rates under some additional assumptions (see Lacoste-Julien and
Jaggi 2015; Garber and Hazan 2015; Freund and Grigas 2016).

As first-order methods, FW algorithms rely on gradients. In machine learning, comput-
ing the gradient of the objective typically requires a full pass over the dataset. To alleviate
this computational cost on large datasets, some distributed versions of FW algorithms have
recently beenproposed for various problems.Bellet et al. (2015) introduced a communication-
efficient distributed FW algorithm for a class of problems under L1 norm and simplex
constraints, and provided an MPI-based implementation. Tran et al. (2015) extend the algo-
rithm to the Stale Synchronous Parallel (SSP) model. Moharrer and Ioannidis (2017) further
generalized the class of problemswhich can be considered (still under L1/simplex constraints)
and proposed an efficient and modular implementation in Apache Spark (similar to what we
propose in the present work for trace norm problems). Wang et al. (2016) proposed a paral-
lel and distributed version of the Block-Coordinate Frank–Wolfe algorithm (Lacoste-Julien
et al. 2013) for problemswith block-separable constraints. All thesemethods are designed for

6 https://github.com/WenjieZ/distributed-frank-wolfe.
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specific problem classes and do not apply to trace norm minimization. For general problems
(including trace norm minimization), Wai et al. (2017) recently introduced a decentralized
FW algorithm in which workers communicate over a network graph without master node.
The communication steps involve local averages of iterates and gradients between neighbor-
ing workers. In the master/slave distributed setting we consider, their algorithm essentially
reduces to the naive distributed FW described in Sect. 3.1 and hence suffers from the high
communication cost induced by transmitting gradients. In contrast to the above approaches,
our work proposes a communication-efficient distributed FW algorithm for trace norm min-
imization.

Another direction to scale up FW algorithms to large datasets is to consider stochastic
variants, where the gradient is replaced by an unbiased estimate computed on a mini-batch
of data points (Hazan and Kale 2012; Lan and Zhou 2016; Hazan and Luo 2016). The
price to pay is a slower theoretical convergence rate, and in practice some instability and
convergence issues have been observed (see e.g., Liu and Tsang 2017). The experimental
results of Moharrer and Ioannidis (2017) show that current stochastic FW approaches do not
match the performance of their distributed counterparts. Despite these limitations, this line of
work is largely complementary to ours: when the number of workers N is small compared to
the training set size n, each worker could compute an estimate of its local gradient to further
reduce the computational cost. We leave this for future work.

We conclude this section by mentioning that other kinds of distributed algorithms have
been proposed for special cases of our general problem (1). In particular, for the matrix
completion problem, Mackey et al. (2011) proposed a divide-and-conquer strategy, splitting
the input matrix into submatrices, solving each subproblem in parallel with an existingmatrix
completion algorithm, and then combining the results.

5 Experiments

In this section, we validate the proposed approach through experiments on two tasks: multi-
task least square regression and multinomial logistic regression (see Sect. 2.3). We use both
synthetic and real-world datasets.

5.1 Experimental setup

Environment We run our Spark implementation described in Sect. 3.3 on a cluster with 5
identical machines, with Spark 1.6 deployed in standalone mode. One machine serves as
the driver (master) and the other four as executors (workers). Each machine has 2 Intel
Xeon E5645 2.40GHz CPUs, each with 6 physical cores. Each physical core has 2 threads.
Therefore, we have 96 logical cores available as workers. The Spark cluster is configured to
use all 96 logical cores unless otherwise stated. Each machine has 64GB RAM: our Spark
deployment is configured to use 60GB, hence the executors use 240GB in total. The network
card has a speed of 1Gb/s. The BLAS version does not enable multi-threading.
Datasets For multi-task least square, we experiment on synthetic data generated as follows.
The ground truth W has rank 10 and trace norm equal to 1 (we thus set μ = 1 in the
experiments). This is obtained by multiplying two arbitrary orthogonal matrices and a sparse
diagonal matrix. X is generated randomly, with each coefficient following a Gaussian dis-
tribution, and we set Y = X W . We generate two versions of the dataset: a low-dimensional
dataset (n = 105 samples, d = 300 features and m = 300 tasks) and a higher dimensional
one (n = 105, d = 1000 and m = 1000). For multinomial logistic regression, we use a
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Fig. 1 Results for multi-task least square regression. Left: low-dimensional dataset (n = 105, d = 300 and
m = 300). Right: higher-dimensional dataset (n = 105, d = 1000 and m = 1000)

synthetic and a real dataset. The synthetic dataset has n = 105 samples, p = 1000 features
and m = 1000 classes. The generation of W and X is the same as above, with the label vector
y set to the one yielding the highest score for each point. The test set has 105 samples. Our
real-world dataset is ImageNet from ILSVRC2012 challenge (Deng et al. 2009; Russakovsky
et al. 2015), which has n = 1,281,167 training images in m = 1000 classes. We use the
learned features of dimension p = 2048 extracted from the deep neural network ResNet50
(He et al. 2016) provided by Keras.7 The validation set of the competition (50, 000 images)
serves as the test set.
Compared methodsWe compare the following algorithms:Naive- DFW, SVA (the baselines
described in Sect. 3.1) and three variants of our algorithm, DFW- Trace-1, DFW- Trace-2
and DFW- Trace-log (resp. using 1, 2 and O(log t) power iterations at step t). We have also
experimented with DFW- Trace with K (t) = O(t), but observed empirically that far fewer
power iterations are sufficient in practice to ensure good convergence. We have also used
SVA as a warm start to the power iterations withinDFW- Trace, which marginally improves
the performance of DFW- Trace. We do not show these variants on the figures for clarity.

5.2 Results

Multi-task least square For this task, we simply set the number of power iterations of DFW-
Trace-log to K (t) = �1+ log(t)�. All algorithms use line search. Figure 1 shows the results
for all methods on the low and high-dimensional versions of the dataset. The performance is
shownwith respect to the number of epochs and runtime, and for twometrics: the value of the
objective function and the estimation error (relative Frobenius distance between the currentW
and the ground truth). On this dataset, the estimation error behaves similarly as the objective
function. As expected, Naive- DFW performs the best with respect to the number of epochs
as it computes the exact solution to the linear subproblem. On the low-dimensional dataset
(left panel), it also provides the fastest decrease in objective/error. SVA also performs well
on this dataset. However, when the dimension grows (right panel) the accuracy of SVA drops

7 https://github.com/fchollet/keras
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Fig. 2 Results for multinomial logistic regression (synthetic data) for several values of μ. Left: μ = 10.
Middle: μ = 50. Right: μ = 100. The error stands for the top-5 misclassification rate

dramatically and Naive- DFW becomes much slower due to the increased communication
cost. This confirms that these baselines do not scale well with the matrix dimensions. On
the other hand, all variants of DFW- Trace perform much better than the baselines on the
higher-dimensional dataset. This gap is expected to widen as the matrix dimensions increase.
Remarkably, only 2 power iterations are sufficient to closely match the reduction in objective
function achieved by the exact solution on this task. One can see the influence of the number
of power iterations on the progress per epoch (notice for instance the clear break at iteration
10 when DFW- Trace-log switches from 1 to 2 power iterations), but this has a cost in
terms of runtime. Overall, all variants of DFW- Trace reduce the objective/error at roughly
the same speed. On a smaller scale version of the dataset, we verified that the gradients are
well-behaved in the sense of Theorem 2: the average ratio between the two largest singular
values over 100 epochs was found to be 0.86.
Multinomial logistic regression Here, all algorithms use a fixed step size as there is no
closed-form line search. As we observed empirically that this task requires a larger number
of FW iterations to converge, we set K (t) = �1 + 0.5 log(t)� for DFW- Trace-log so that
the number of power iterations does not exceed 2 as in the previous experiment. Figure 2
shows the results on the synthetic dataset for several values ofμ (the upper bound on the trace
norm). They are consistent with those obtained for multi-task least square. In particular, SVA
achieves converges to a suboptimal solution, while Naive- DFW converges fast in terms of
epochs but its runtime is larger than DFW- Trace. DFW- Trace-2 and DFW- Trace-log
perform well across all values ofμ: this confirms that very few power iterations are sufficient
to ensure good convergence. For more constrained problems (μ = 10), the error does not
align very well with the objective function and hence optimizing the subproblems to lower
accuracy with DFW- Trace-1 works best.
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Fig. 3 Results for multinomial logistic regression (ImageNet dataset). The error stands for the top-5 misclas-
sification rate

Fig. 4 Speed-ups with respect to the number of cores (ImageNet dataset). Left: time per epoch. Right:
objective value with respect to runtime for DFW- Trace-1

We now turn to the ImageNet dataset. The results for μ = 30 with 24 cores are shown
on Fig. 3.8 Again, the DFW- Trace variants clearly outperform Naive- DFW and SVA.
While DFW- Trace-2 and DFW- Trace-log reduce the objective value faster than DFW-
Trace-1, the latter reduces the error slightly faster. When run until convergence, all variants
converge to state-of-the-art top-5 misclassification rate with these features (around 0.13, on
par with the pre-trained deep neural net provided by Keras).

We conclude these experiments by investigating the speed-ups obtained when varying the
number of cores on the ImageNet dataset. As seen on the left panel of Fig. 4, the time per
epoch nicely decreases with the number of cores (with diminishing returns, as expected in
distributed computing). The right panel of Fig. 4 illustrates this effect on the convergence
speed for DFW- Trace-1.

8 The relative performance of the methods is the same for other values of μ. We omit these detailed results
due to the lack of space.
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6 Conclusion

In this work, we introduced a distributed Frank–Wolfe algorithm for learning high-
dimensional low-rank matrices from large-scale datasets. Our DFW- Trace algorithm is
communication-efficient, enjoys provable convergence rates and can be efficiently imple-
mented inmap-reduce operations.We implementedDFW- Trace as aPython toolbox relying
on the Apache Spark distributed programming framework, and showed that it performs well
on synthetic and real datasets.

In future work, we plan to investigate several directions. First, we would like to study
whether faster theoretical convergence can be achieved under additional assumptions. Sec-
ond, we wonder whether our algorithm can be deployed in GPUs and be used in neural
networks with back-propagated gradients. Finally, we hope to explore how to best combine
the ideas of distributed and stochastic Frank–Wolfe algorithms.

Acknowledgements This work was partially supported by ANR Pamela (Grant ANR-16-CE23-0016-01)
and by a grant from CPER Nord-Pas de Calais/FEDER DATA Advanced data science and technologies 2015–
2020. The first author would like to thank Ludovic Denoyer, Hubert Naacke, Mohamed-Amine Baazizi, and
the engineers of LIP6 for their help during the deployment of the cluster.

Appendix A Proof of Theorem 2

Notice that our distributed version of the power method used in DFW- Trace (Algorithm 2,
lines 5–10) exactly corresponds to the serial power method applied to the full gradient
∇F(W t ). Hence DFW- Trace performs the same steps as a centralized Frank–Wolfe algo-
rithm that would use the power method to approximately solve the subproblems. We will
thus abstract away the details related to the distributed setting (e.g., how the data is split, how
parallel computation is organized): our analysis consists in characterizing the approximation
error incurred by the power method and showing that this error is small enough to ensure
that the Frank–Wolfe algorithm converges in expectation.

We start by establishing that if the linear subproblem is approximately solved in expecta-
tion (to sufficient accuracy), then the standard Frank–Wolfe algorithm converges sublinearly
in expectation (in the sense of Definition 1).

Lemma 1 Let δ ≥ 0 be an accuracy parameter. If at each step t ≥ 0, the linear subproblem
is approximately solved in expectation, i.e. we find a random variable Ŝ such that

〈E[Ŝ|W t ],∇F(W t )〉 ≤ min
S∈D〈S,∇F(W t )〉 + 1

2 δγ
t CF , (7)

then the Frank–Wolfe algorithm converges sublinearly in expectation.

Proof At any step t , given W t we set W t+1 = W t + γ t (Ŝ − W t ) with arbitrary step size
γ t ∈ [0, 1]. From the definition of the curvature constant CF (Jaggi 2013):

F(W t+1) ≤ F(W t ) + γ t 〈Ŝ − W t ,∇F(W t )〉 + (γ t )2

2 CF .
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We can now take conditional expectation on both sides and use (7) to get

E[F(W t+1)|W t ] ≤ F(W t ) + γ t 〈E[Ŝ|W t ] − W t ,∇F(W t )〉 + (γ t )2

2 CF

≤ F(W t ) + γ t
(
min
S∈D〈S − W t ,∇F(W t )〉

)
+ (γ t )2

2 CF (1 + δ)

≤ F(W t ) − γ t G(W t ) + (γ t )2C,

where we denote G(W ) := maxS∈D〈W − S,∇F(W )〉 and C := CF
2 (1 + δ). The function

G(W ) is known as the duality gap and satisfies F(W )− F(W ∗) ≤ G(W )—see Jaggi (2013)
for details. Denoting H(W ) := F(W ) − F(W ∗), we have

E[H(W t+1)|W t ] ≤ H(W t ) − γ t G(W t ) + (γ t )2C

≤ H(W t ) − γ t H(W t ) + (γ t )2C

= (1 − γ t )H(W t ) + (γ t )2C,

where we use the duality H(x) ≤ G(x).
We shall use induction over t to prove the sublinear convergence in expectation (6), i.e.,

we want to show that

E[H(W t )] ≤ 4C
t+2 , for t = 1, 2, . . .

We prove this for the default step size γ t = 2
t+2 (we can easily prove the same thing for

the line search variant, as the resulting iterates always achieve a lower objective than with
the default step size). For t = 1, we have γ 0 = 2

0+2 = 1. For any W ∈ D, we have

H(W ) ≤ CF
2 < C < 4

3C . This proves the case of t = 1. Consider now t ≥ 2, then

E[H(W t+1)] = E[E[H(W t+1)|W t ]] ≤ (1 − γ t )E[H(W t )] + (γ t )2C

≤
(
1 − 2

t+2

)
4C
t+2 +

(
2

t+2

)2
C.

Simply rearranging the terms gives

E[H(W t+1)] ≤ 4(t+1)C
(t+2)2

<
4(t+1)C

(t+1)(t+3) = 4C
t+3 .

This concludes the proof. ��
Based on Lemma 1, in order to prove Theorem 2 we need to quantify the number of power

method iterations needed to achieve the desired accuracy (7) for the linear subproblems. We
will rely on some results from Kuczyński and Woźniakowski (1992, Theorem 3.1 therein),
which we recall in the lemma below.

Lemma 2 (Kuczyński and Woźniakowski 1992) Let A ∈ R
m×m be any symmetric and

positive definite matrix, and b be a random vector chosen uniformly on the unit sphere (with
P the corresponding probability measure). Denote by λ1 the largest eigenvalue of A and
by ξ = ξ(A, b, K ) the estimate given by K power iterations. We define its average relative
error e(ξ) as

e(ξ) :=
∫

‖b‖=1

∣∣∣∣
ξ − λ1

λ1

∣∣∣∣ P(db).

Then for any K ≥ 2 and m ≥ 8, regardless of A, we have

e(ξ) ≤ α(m)
lnm

K − 1
,
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where π−1/2 ≤ α(m) ≤ 0.871 and, for large m, α(m) ≈ π−1/2 ≈ 0.564.
Moreover, if λ has multiplicity 1, denoting the second largest eigenvalue by λ2, then there

exists a constant K̃ , so that for any K > K̃ , we have

e(ξ) ≤ m

(
λ2

λ1

)K−1

.

We introduce a last technical lemma.

Lemma 3 If a differentiable function F is L-Lipschitz continuous w.r.t. the trace norm, then
for any matrix W , all singular values of ∇F(W ) are smaller than L.

Proof For any matrix W , the definition of L-Lipschitzness implies that

sup
ΔW �=0

|F(W + ΔW ) − F(W )|
‖ΔW‖∗

≤ L .

According to the mean value theorem, there exists a matrix X between W and W +ΔW such
that

sup
ΔW �=0

〈
∇F(X),

ΔW

‖ΔW‖∗

〉
≤ L .

Denote the largest singular value of W by σ1(W ). Since the spectral norm is the dual norm
of the trace norm, we have σ1(∇F(X)) ≤ L . Letting ΔW → 0, we get σ1(∇F(W )) ≤ L .

��
Based on the above intermediary results, we can now prove Theorem 2. For any t ≥ 0,

denote At := ∇F(W t ). The largest eigenvalue of At � At is the square of the largest singular
value of At , denoted as σ t

1. We estimate (σ t
1)

2 as v�
K (t) At � AtvK (t), where vK (t) is the nor-

malized unit vector after K (t) power iterations.We also denote uK (t) := AtvK (t)/‖AtvK (t)‖.
According to Lemma 2, we have

E

∣∣∣∣∣
v�

K (t) At � AtvK (t) − (σ t
1)

2

(σ t
1)

2

∣∣∣∣∣ ≤ lnm

K (t) − 1
.

Therefore:

E

∣∣∣∣
‖AtvK (t)‖

σ t
1

− 1

∣∣∣∣ ≤ E

∣∣∣∣
‖AtvK (t)‖

σ t
1

− 1

∣∣∣∣

∣∣∣∣
‖AtvK (t)‖

σ t
1

+ 1

∣∣∣∣

= E

∣∣∣∣
‖AtvK (t)‖2

(σ t
1)

2
− 1

∣∣∣∣ ≤ lnm

K (t) − 1
.

Let K (t) = 1 + �μL(t+2) lnm
δCF

�, we get

E

∣∣∣∣
‖AtvK (t)‖

σ t
1

− 1

∣∣∣∣ ≤ 1

2

δγ t CF

μL
≤ 1

2

δγ t CF

μσ t
1

,

where the last inequality uses Lemma 3.
Removing the absolute sign and the denominator, we get

E[μ(σ t
1 − ‖AtvK (t)‖)] ≤ 1

2 δγ
t CF .
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Table 2 Time and memory complexity of DFW- Trace for the j-th worker on two tasks with dense vs.
low-rank representations for the sufficient information

Multi-task least square Multinomial logistic regression
Dense Low-rank Dense Low-rank

Init. O(n j (d
2 + md)) 0 O(n j d + md) 0

Power iter. O(md) O(n j (d + m)) O(md) O(n j (d + m))

Update O(d2 + md) O(n j (d + m)) O(n j md) O(n j (d + m))

Line search O(d2 + md) O(n j m) — —

Memory O(d2 + md) O(n j (d + m)) O(n j (d + m) + md) O(n j (d + m))

Rearranging the terms, we obtain

− μE‖AtvK (t)‖ ≤ −μσ t
1 + 1

2 δγ
t CF . (8)

On the other hand, we have

E‖AtvK (t)‖ = E

[
v�

K (t) At � AtvK (t)

‖AtvK (t)‖

]
= E[u�

K (t) AtvK (t)] = E

〈
uK (t)v

�
K (t), At

〉
, (9)

and
μσ t

1 = max‖S‖∗≤μ

〈
S, At 〉 . (10)

Replacing (9) and (10) into (8), we obtain (7). The first assertion of Theorem 2 thus holds
by application of Lemma 1. For the second assertion, the proof is nearly identical. Indeed,
by replacing lnm

K (t)−1 with mβ2K (t)−2, we get the desired result.

Appendix B Implementation details for two tasks

For the two tasks studied in this paper, we describe the sufficient information maintained
by workers and how to efficiently update it. Table 2 summarizes the per-worker time and
memory complexity of DFW- Trace depending on the representation used for the sufficient
information. Generally, the low-rank representation is more efficient when the number of
local data points n j < min(d, m).
Multi-task least square regression Recalling the multi-task regression formulation in (4), for
any worker j we will denote by X j the n j × d matrix representing the feature representation
of the data points held by j . Similarly, we use Y j to denote the n j × m response matrix
associatedwith these data points. The gradient of (4) is given by∇F(W ) = X�(X W −Y ). At
each step t , each worker j will store (X�

j Y j , X�
j X j , X�

j X j W t , W t ,∇Fj (W t )) as sufficient

information. The quantities X�
j Y j and X�

j X j are fixed and precomputed. Given W t , W t+1 =
(1−γ t )W t +γ t St is efficiently obtained by rescaling W t and adding the rank-1 matrix γ t St .
A similar update scheme is used for X�

j X j W t . Assuming W 0 is initialized to the zero matrix,

the local gradient is initialized as ∇Fj (W 0) = −X�
j Y j and can be efficiently updated using

the following formula:

∇Fj (W t+1) = X�
j (X j W t+1 − Y j ) = X�

j (X j [(1 − γ t )W t + γ t St ] − Y j )

= (1 − γ t )∇Fj (W t ) + γ t (X�
j X j St − X�

j Y j ).
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The same idea can be applied to perform line search, as the optimal step size at any step
t is given by the following closed-form formula:

γ t =
〈−∇ f (W t ), St − W t

〉
〈
X� X (St − W ), St − W

〉 .

Multinomial logistic regression We now turn to the multi-class classification problem (5). As
above, for a worker j we denote by X j its local n j × d feature matrix and by Y j ∈ R

n j the
associated labels. The gradient of (5) is given by∇F(W ) = X�(P − H), where P and H are

n × m matrices whose entries (i, l) are Pil = exp(wT
l xi )∑

k exp(w
T
k xi )

and Hil = I[yi = l] respectively.
The sufficient information storedbyworker j at each step t is (X j , X�

j H j , X j W t ,∇Fj (W t )).

X�
j H j is fixed and precomputed. Assuming that W 0 is the zero matrix, X j W t is initialized to

zero and easily updated through a low-rank update. The local gradient∇Fj (W t ) = X�
j Pj −

X�
j H j can then be obtained by applying the softmax operator on X j W t . Note that there is

no closed-form for the line search.
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