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Abstract 

A.n efficient use of a Distributed Heterogeneous Supercomputing System (DHSS) 
requhes a thorough understanding of applications and their intelligent scheduling 
within the system. In this paper we present a general management framework for 
the DHSS, by introducing an application characterization technique, called Code 
Flow Graph (CFG) and Code Interaction Graph (CIG). These models are based on 
code profiling and andyticd benchmarking and provide a detailed archiitectural- 
dependent characterization of DHSS applications. A generd cost function is pre- 
sented that is based on the execution and 1/0 overheads associated with applica- 
tions. An optimd scheduler tries to minimize this cost; the design of which is an 
NP-complete problem. We describe how network caching can help to  reduce the 
com1)lexity of scheduling in a DHSS. 

Keyword~s: Heterogeneous Supercomputing, Code Profiling, Benchmarking, Task Flow 

Graph, Task Intercative Graph, Scheduling, Mapping. 



1 Introduction 

The concept of Distributed Heterogeneous Supercomputing System( D:F[SS ) has been 

introduced quite recently [5, 61, with the objective to achieve a super-linear speedup 

using current supercomputing technology. For such a system, multiple heterogeneous 

supercomputers are interconnected over high speed networks to provide iz computation- 

ally powerful environment to solve many engineering and scientific problems which are 

intractable on a single supercomputing system. A DHSS is also expected. to outperform 

a homogc:neous supercomputing system (HSS) because no matter how powerful a single 

machine or a set of homogeneous machines might be, HSS cannot satisfy tlhe diverse char- 

acteristics of program codes efficiently [$]. Specially, ill-matched codes can degrade the 

overall performance of these systems. Building a suite of heterogeneous supercomputers 

with existing machines having diverse computational characteristics can provide a signif- 

icantly more effective environment for solving complex problems. However, an efficient 

use of such a system requires a thorough understanding of characteristics of applications, 

machine architectures and their operational features. 

A number of DHSS's have been proposed recently, with a few of them already pro- 

totyped. The most noticeable are the five gigabit network testbeds, namely; Aurora, 

Blanca, ( h a ,  Nectar and Vistanet [7]. The functional concept behind Casa and Nectar 

testbeds resembles more closely to a DHSS. However, these testbeds are focused to solve 

a specific set of applications and cannot manage resources for a wide variety of appli- 

cations. The future DHSS, on the other hand, are expected to serve a large variety of 

users developing diverse applications and codes which are expected to ]run concurrent- 

ly on val.ious machines within DHSS. One of the major requirements for future DHSS, 



therefore, is to manage applications and find a suitable match between the codes1 of 

these applications and machines. Another concept that is closely related to DHSS is 

"superconc~irrency~ [5] ,  which is targeted to achieve maximum performance for a suit of 

heterogeneous machines. In order to achieve this objective, a code is assigned to the best 

matching machine using information about the code profiling and analytical benchmark- 

ing. This concept has been proposed for Distributed Intelligent Network System DINS 

[5] .  However, DINS has limited utility since it does not evaluate the overall structures 

of applications and 110 characteristics which are crucial to achieve a true "supercon- 

currency". With the latency across gigabit networks becoming virtually negligible, the 

I/O bottle~lecks for data exchange as well as data conversion overhead among different 

machines c>an be significantly high, thus resulting in high communication overhead and 

hence limiting the overall performance of a DHSS 

In order to handle these issues, an integrated approach for managing a 1)HSS is need- 

ed, which can allow management of both computational and network resources effectively 

by adapting to the needs of applications and providing a true "superconcurrentn envi- 

ronment. One such system, which we call Distributed Heterogeneous Supercomputing 

Management System (DHSMS), is suggested in this paper. Basically, through DHSMS 

we describt? a framework for the management of DHSS by proposing an application char- 

acterizatioin technique based on code profiling and computation and I/O benchmarking. 

We discuss how 110 benchmarking can be used to perform data caching over the network 

in order to reduce application management complexity. 

The objective is to propose a general framework which is not restricted t;o any type or 

class of supercomputers rather it is applicable to any combination of such machines. The 

'We will use the terms code and task interchangeably in this paper. 



proposed DHSMS has some common base with DINS in that it seeks a good performance 

by efficiently managing (scheduling / mapping) application codes across a pool of avail- 

able mac:hines in order to achieve a super-linear speedup. However, it diifers from DINS 

in various aspects. For DHSMS, we propose a systematic methodology for both code pro- 

filing and analytical benchmarking and suggest a "Universal Set of Codes" (USC). The 

proposed. USC provides a comprehensive methodology to generate architecture-dependent 

code-profiles at varying levels of details. Second, as indicated above, I/O benchmark- 

ing is also taken into account while managing applications since we expect that I/O 

subsystems of machines can become bottlenecks in a DHSS. Furthermore, we describe 

how network caching of data communicated among machines can be used to increase 

the performance of a DHSS. Based on the proposed USC and I/O benchmarking, we 

propose two architecture-dependent characterizations of DHSS applications, which are 

called Code Flow Graph (CFG) and Code Interaction Graph (CIG). These graphs possess 

enough information about applications that is useful for their scheduling/mapping. 

This paper is organized as follows. In the next section, CFG and CIG are introduced. 

Section :3 describes an overall architecture of a DHSMS. In Section 4 we briefly describes 

an expe1:imental prototype of DHSMS, currently being developed. Section 5 concludes 

this paper. 

2 A Characterization of Applications for DHSS 

A distri'lbuted application consists of a set of tasks with certain relations among them. 

Tasks are the basic units handled by the proposed DHSMS. To run an application ef- 

ficiently., a DHSMS needs to analyze both computational and communicational require- 

ments of the application. Formally, an application can be modeled either as a Task Flow 



Graph (TFG) or a Task Interaction Graph (TIG) [I]. TFG is used to express explicit 

precedence relationships among the tasks of the application, while TIG is more suitable 

for representing distributed interactive tasks without explicit dependencies. Scheduling 

and mapping algorithms are used for TFG and TIG, respectively. Although both TFG 

and TIG are useful models, their use is limited only to homogeneous archi~tectures, since 

they are architecture-independent models and they do not carry any information about 

the behavior of tasks on heterogeneous systems. 

For a DHSS a more precise and general method for application characterization is 

needed, which should not only incorporate the information about the "degree of suit- 

ability" of a task to a specific machine, but also quantify the communication interaction 

among the tasks. This intercation is an important parameter since data needs to be 

exchanged among various machines which may have diverse 1 / 0  architectures with dras- 

tically different performance profiles. 

For tlie proposed DHSMS we introduce the notion of Code Flow Graph (CFG) 

and Code Interaction Graph (CIG) which solve these problems by provilding a detailed 

architecture-dependent task and 1 / 0  characterization. Code profiling is used to charac- 

terize tasks in order to identify those tasks which have the same computational behavior 

[5] ,  and to evaluate "degree of match" between the codes and machines. Very few code 

profiling methodologies, in the context of DHSS, have been proposed in literature [12]. 

However these methodologies have limitations in their applicability. Most of them are 

based on a rather simplistic and highly abstract view of parallelism. The detailed archi- 

tectural l~nowledge has not been taken into account in such methodologies. New code 

profiling methods are needed which can incorporate detailed architectural characteristics 

so that these profiles can be more accurate and used for making scheduling and mapping 



decisions intelligently as they can significantly impact the execution of applications [4]. 

However, (;here is a trade-off between the accuracy of the information generated by a 

profile and the complexity involved in generating it. 

For task scheduling/mapping, code profiling itself is not sufficient, rath.er, we require 

an estimat'e of the execution time of a code on a specific machine. For this purpose, we 

also need analytical benchmarking; a process used to estimate performanct: of a machine 

relative to a baseline system [5] .  Up to now, research on benchmarking has been focused 

on devising methodologies to measure the overall performance of each machine on a 

realistic application program which is composed of several tasks with different processing 

requirements. However since in a DHSS environment, an application is decomposed into 

multiple tiisks which run separately on different machines, it is important that analytical 

benchmarlking for a DHSS should be able to estimate the performance of a machine on 

each part of the application as well as the performance of the 1/0 subsystem the machine. 

Since, the ultimate objective is to combine both code profiles and benchmarks together, 

we must have a finite set of codes which can be used for both the purposes. One approach 

is to define a "Universal Set of Codes"(USC) which can be viewed as a ,,' standardized 

universal setn of benchmarking programs, that can also provide information (profiles) 

about the effect of architectural characteristics of the machine. We can then use codes 

from the USC for both generating code profiles and obtaining benchmarks which can 

then be used to estimate the execution time of a code on a specific machine. 

Most of the benchmark programs are architecture-independent and cannot provide 

realistic and meaningful profiles about machines. This is due to the fact that such pro- 

grams might not map properly on the machine itself, and, instead of yielding benchmark 

profiles, t'hey can even result in a negative speedup, that is, a performance worse than a 



uniprocessor. For example, analyses have shown that if the standard mlolecular motion 

computation algorithm is executed on a supercomputer with multistage interconnection 

network, such as Butterfly System or on a shared bus interconnection system, such as 

Multimax, the speed up approaches zero as we increase the number of processors beyond 

a certain value [4]. It is, therefore, highly desirable that benchmark programs should 

be written based on the architectural features of machines. The proposed architecture- 

driven USC provides one such solution. 

There can be many ways to synthesis a USC. Our approach is hierarchical and it not 

only provides a systematic way of generating this set, but also providers a flexibility to 

the user to choose a subset of USC, in order to achieve the desired accuiracy in profiling 

and benchmarking. 

Similarly, for quantifying 110 overhead due to communication interaction among ma- 

chines, il, is desirable that machines in a DHSS should also be benchmarked for generating 

I/O pedormance profiles. These profiles can provide information about the timing delays 

in transfkrring data among machines. Such delays are caused by the architectural con- 

straints of the 110 subsystem. In Sections 2.2 and 2.3, we discuss these benchmarking 

issues in more detail. 

2.1 A Hierarchical Scheme for Generating USC 

The hierarchical scheme for generating USC is basically a detailed architectural charac- 

terization of supercomputers. At the highest level, one can select the type of 

parallelism for classifying architectures. At the second level, a further classification of 

these architectures can be carried out based on the finer architectural features such as 

organi~a~tion of the memory system, interconnection topology, etc. An innportant feature 
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of this structure is that the levels in the hierarchy are selected in such a way that the main 

features of the architecture being characterized at any level are related an'd they do impact 

the execution of a code. A similar approach has been used to characterize supercomput- 

ers for evaluating their performance [9]. The leaf nodes of this hierarchy correspond to 

the actual machine models present in a DHSS. As an example, Fig. 1 shows one such 

possible classification hierarchy. In this example, the first level is classified according 

to the type of parallelism of the machines, namely; SIMD, MIMD, VECTOR, etc. The 

second level further classifies these machine types into different categoiries according to 

their memory organization such as Shared Memory system, Distributed Memory System, 

Hierarclhical Memory System, etc. The detail and the complexity of information about 

architectural features increase as we go down the hierarchy. 

The proposed hierarchy can be used to generate a USC. This can be clone by assigning 

a code type to each node of the "hierarchical tree". The path from the root node to 

another node provides profile information (suitability of those architectural features which 

are given by the path) for the code associated with that node. A more detailed profile 

can be used to screen out machines which may have identical benchmarks. This screening 

can then provide a better estimate for the execution time. 

Based on this hierarchy we define a Code Profile Vector (CPV), c, for a given task 

t and far each level of the hierarchy. We assume that each level nodes are labeled from 

1 to C, where C is the number of nodes at that level. This vector is given as: 

4 : t - [ vo(t), ~ l ( t ) ,  vz(t).. vc(t) I 
The elements vi(t)'s of this CPV represent the degree of match that exists between 

the task t and the code associated with the i-th node present at the level for which the 

vector is being generated. Such a match is determined based on man:y factors such as 



the amount of parallelism present in the task, number of iterations of loclps etc. Note, 

the size Cof the CPV is the same as the size of the subset of codes of USC! at that level. 

For example, if a user selects the first level of hierarchy in Fig. 1, the length of the 

CPV is 7, corresponding to the type of processing parallelism, namely; SIMD, MIMD, 

VECTOR, SPECIAL, DATA FLOW, MIXED MODE. Similarly, if the user specifies 

a more detailed characterization, say up to level 2, then CPV will be of' length of 14, 

corresponding to the two cases cases of memory organization (distributed and shared), 

with each one in turn consisting of the seven cases of the first level. 

In many cases, code profiling may need to be done on-line and hence it introduces 

a run-time overhead. A "detailed" profile may take into account all the important ar- 

chitectural characteristics of a machine, such as the type of parallelism, i~~terconnection 

scheme, niemory organization scheme, etc., as shown in Fig. 1. Generation of this profile 

requires analysis of the task features with respect to the architectural characteristics de- 

fined at the selected level in the hierarchy. Although such a profile provides very useful 

information for efficiently scheduling/mapping of a task via accurately matching it to a 

machine, it can only be generated at the cost of an increased overhead atssociated with 

the analysis of the task. A "coarse" profile, on the other hand, can be generated with a 

relatively low overhead by choosing only a few levels in the hierarchy. However, such a 

profile may not be accurate enough for scheduling/mapping tasks effectively. An exarn- 

ple of a coarse profile can be the one based on only the first level of the hierarchy that 

contains types of parallelism of processing, such as SIMD, MIMD, VECTOR, etc. How- 

ever, suclh a profile can ignore many other important features of machines constituting 

a DHSS. This "accuracy vs. complexity" trade-off depends on the level selected in the 

hierarchy. This selection can be a part of the user-specified processing requirements. 



Classification or ranking of code types as a code profiling tends to force discretization, 

ignoring the differences between actual code and the benchmark code, auch as the one 

belonging to the USC. This may result in an erratic performance estimation of code. To 

minimize this discretized error, we can use a continuous function v;(t) iss a measure of 

code profiling. Another important characteristics of using continuous fuinction is that it 

provides a method to measure suboptimal selection in case a best-matching machine is 

not available. A continuous code-profiling method is described in [12]. 

2.2 Computation Benchmarking 

We have already discussed that to accurately estimate the performance of a code on a 

certain machine, we need a standard set of codes based on architectural features, which 

both cocle profiling and benchmarking can use on a unified basis. Herle we describe a 

methodollogy of benchmarking based on this concept using the architecture-driven USC 

discussetl in the previous section. 

There exist a number of methodologies to benchmark parallel machines, such as Ker- 

nel, Pan!ial (Trace) Benchmarking, Synthetic Benchmarking, etc [2]. Also, some research 

results on the performance measures of benchmarking and combining several benchmark- 

ing results have been reported in [l 11. A number of codes for benchmarking the perfor- 

mance of parallel machines have been proposed. They include Dhrystone, Whetstone, etc 

[2]. In a DHSS environment, an application is decomposed into multiple tasks that run 

separately on different machines. It is, therefore, important that analytical benchmark- 

ing for a DHSS should be able t o  estimate the performance of a machine on each part of 

the application. Also, as we have already mentioned, a benchmark program must take 
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into account the architectural characteristics of machines. However, existing benchmark- 

ing programs are not specially designed to measure the architecture specific performance, 

rather their aim is to measure the overall performance of each machine under a simulated 

application environment. Some examples of such benchmarks can be fbund in Perfect 

Club [ l C I ] ,  although some benchmarks in this case also are still being developed. 

Formally, analytical benchmarking based on a code p can be defined by the following 

vector, which we call Analytical Benchmarking Vector (ABV) $(n). 
-, 

Bp(n8) = [g(n)],  j = 1..  . M. 

M is the number of machine models and g(n) ' s  represent the expected speedup ob- 

tained for machine model j, compared to the baseline serial machine. n is the size of par- 

allelism in p. It is important to mention that such a benchmarking should be conducted 

on each machine model and the benchmarking code should be the code of corresponding 

machine type from the proposed USC. 

An example of the benchmarking is illustrated in Fig. 2. In this figure, the ABV is 

based on the first level of hierarchy that consists of four machine types, namely; SIMD, 

MIMD, VECTOR, and SPECIAL. For the purpose of illustration, we represent machine 

models in the DHSS as Ej9s ,  where i identifies the machine type ancl j indicates the 

machine model for that type. For example, nCube, CM-5, Paragon XI'/S, etc., belong 

to the same class of machines, that is the MIMD. Figure 2(B) shows g ' s  as functions of 

the size of parallelism (n) which are obtained through the benchmarking code for each 

machine type. As shown, the ranking in speedup between machine models can change 

depending on the size of parallelism in benchmarking code [5]. Figure 2(A) shows an 

ABV, for a task S;, having a parallelism of size vo, that results from code profiling. The 

values bll, and b2 correspond to machines of type 1 (i=l) ,  b3, bq, and b5 corresponds to 



machines l,o types 2 (i=2), etc. By dividing the expected execution time, si of the task 

i on the baseline system, by the values of these benchmarks and corresponding vi's, we 

can get th'e estimated execution time on each machine. This is discussed in Section 2.4. 

2.3 110 Benchmarking 

For analyt'ical benchmarking of I/O subsystems of supercomputers, not much work has 

been done. The I/O overhead depends on many factors, such as the effective bandwidth 

of memory channels, topological characteristics of the I/O interconnectiorl network, the 

number and the speed of the I/O processors, etc. Accordingly, 110 benchmarking of 

a given architecture can be expressed as a performance function that depends on the 

amount of data being transferred through the I/O subsystem of the machine. For a 

typical I/O subsystem, this function can be given in the form of a perfo~hmance graph, 

as shown in Fig 3. Typically such a function shows a linearly increasing; latency time 

until it reaches a saturation point as shown in Fig. 3. This linear growth in the rate of 

latency is determined generally by a a single component; probably the slowest one in the 

I/O subsystem. However, beyond the saturation point the rate of growth in the latency 

can increase substantially due to the saturation and loading of various components. This 

saturation may be due to the higher contentions within communication interconnections, 

the physical limitation on the movement of disk heads, etc. 

Based on these functions, one possible method to specify I/O overhead for an appli- 

cation is to use a vector of length M, b;, which we call Communication Overhead Vector 

(COV). This vector is given as follows: 

Ji=[dji(ai), dz(ai), - a ,  d ~ ( a i ) ]  

The element dj(ai) represents the expected 110 overhead of machine model j, using 



its performance function d j  (Figure 3) evaluated for the communication cost a; associated 

with a link i of a TFG(T1G). We can represent communication overhead associated with 

the whole task graph in terms of these functions. For the machines constituting the DHSS, 

these functions need to be tabulated. It is important to mention that the communication 

cost a; between two tasks in TFG (TIG) generally represents an aggregated value. In 

reality, t:he exchange of data exchanged machines may be intermittent. Therefore, some 

sort of "stochastical performance profiles" may be more suitable. 

Data conversion is another critical factor that restricts the performance of a DHSS, 

because ,it is a run-time process and execution of tasks cannot continue until data con- 

version i13 completed. The overhead associated with this process depends on the amount 

of data bleing transferred and the data types used by the communicating machines. Also 

it depends on the efficiency of the conversion process for a specific data, type. We just 

assume conversion process only depends on the data size and its type. Accordingly, to 

handle data conversion cost, additional overhead can be added to I/O fu.nction. 

Using; both code profiling and analytical benchmarking, we now d.escribe how to 

generate a CFG/CIG. 

2.4 'The CFG and CIG 

Using a code profiling technique, such as the proposed USC, and analyticall benchmarking, 

we can generate a CFG and CIG from TFG and TIG, respectively. The overall process 

of generating a CFG (CIG) is illustrated in Fig. 4. Starting with a TFG (TIG), which 

describes the computation cost of each task on a baseline system and the communication 

cost in terms of amount of data transmitted among tasks, an intermediate code flow graph 

(ICFG) or code interaction graph (ICIG) is generated, using code-profiling information. 



Figurle 3: I/O Benchmarking. I/O Latency time vs. amount of data transferred. 



As mentioned earlier, as a result of profiling each task in the TFG (TIG) is assigned a 

code profiling vector (CPV), which depends on the level of the hierarchy selected by the 

user. 

The communication cost, in a ICFG (ICIG), represents the amount of data to be 

transferred among tasks and it stays the same as given in the original 'ICFG (TIG). The 

ICFG (ICIG) is then evaluated using benchmarks and is translated into the final CFG 

(CIG) . 'This transition consists of following steps. 

1. Eitch task in an ICFG (ICIG) is labeled with an estimated execution time vector 

= [el, . . , eM], where M is the number of different machine models, and ei describes 

the estimated execution time of a code on the machine model i. Its value is given as 

ei = s;/(vj . Q(n) ) ,  where s; represents the execution time on the baseline system. 

2. Ei~ch link in an ICFG (ICIG) is labeled with a COV di = [dl(ai), dz(ai), .., dM(ai)]. 

Ais mentioned earlier, an element dj(ai) of this vector describes the expected I/O 

overhead function of machine j, evaluated at the communication eost ai associated 

w:ith the link in the ICFG (ICIG), that is used by the machine j, after schedul- 

inglmapping of the application. The I/O overhead function dj(ai) as shown in Fig. 

3 is used for this purpose. At this time, any data conversion overhead can also be 

incorporated in dj(ai)'s. 

The resulting graph is a CFG (CIG) which carries detailed information about the 

machin'e-dependent execution and I/O performance of the tasks and daha communication 

associa1,ed with a TFG (TIG). This elaborated machine-dependent ch.aracterization of 

DHSS a~pplications is important for the DHSS to carry out its task management functions. 

In the next section we now describe a framework for such management. 
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3 A. Framework for DHSMS 

Based on the concepts discussed in the previous sections, we now present ,an architecture 

for DHShfS that provides a framework to manage applications for a DHSS. The proposed 

DHSMS differs from existing experimental testbeds in a sense that it provides an appli- 

cation mimagement system which can accommodate different application characteristics 

and any :let of machine architectures. A DHSMS consists of a number of modules, each 

one in turn contains various components. The basic function of a DHSIMS is to select 

a proper set of modules to meet the computing needs for an application. Each module 

varies in its functional capability and complexity. These modules are discussed later in 

the follovring section. 

A DHYSMS manages the resources and application, and tries to satisfly their process- 

ing requirements, such as on-line, off-line, regularly-processed, etc., by making manage- 

ment decisions regarding their scheduling/mapping. A conceptual viable architecture of 

DHSMS is shown in Fig. 5. It consists of 7 modules, namely; Core, Distributed Operating 

System (:DOS), Task Analyzer, Task Coordinator, Code Profiler and Intermediate Graph 

Generato'r, Analytical Benchmarker, and Code Graph Generator (CGG). Each module 

takes a certain set of inputs and generates appropriate outputs. We now describe the 

detailed functionality of each module. 

CORE 

To satisf!, the processing requirements of various applications, this module selects a prop- 

er set of participating components from various other modules and determines the degree 

of accuracy and complexity of arriving at a scheduling/mapping decision. By selecting 

such components, it satisfies the task management objective which is to minimize the 



average total execution time of an application. For this purpose, it generates a list of 

choices for a specific processing requirement. Dynamic programming techniques or Look- 

up tables can be used to handle this problem. 

By implementing a Core as a module, that is independent of a DOS, existing DOS's can 

be integ:rated into a DHSMS. Examples of such module are Cronus Kernal, V-kernal, 

etc. This module also allows new local operating systems to be integrated into DHSMS 

without changing the local system or DHSMS itself. 

3.2 DOS 

DOS is the actual administrator, that manages resources and enables engagement of 

needed c:omponents. It performs many important functions, such as sup:porting commu- 

nication among machines, maintaining service-level protocol structures; including data 

type con~version, and handling some standard services such as managing file, directories, 

etc. Most of the existing classes of DOS's can be used for a. DHSMS, such as Intergrated 

Systems, Object-oriented Systems, Sever Pool Model Based Systems etc. 

3.3 'ksk  Analyzer 

This is one of the key modules in DHSMS. It accepts user applications in the form of 

source programs and converts them into graphical forms, such as TFG's or TIG's. These 

graphs are subsequently processed by other modules such as the Code Profiler and Inter- 

mediate Graph Generator, the Analytical Benchmarker, the Code Graph Generator, and 

the Task Scheduler. To resolve the problem of heterogeneity in program~ming languages, 

we assume that there exists a standard graphical model of a program that helps in gen- 

erating TFG's or TIG's. One such possible graphical 'language" is Intermediate Form 



1 (IF1). I.t is an acyclic graphical language, which can be used to represr:nt the flow of 

execution of a code [9]. An IF1 type of representation can be used to estimate the com- 

putation time and the communication overhead for the tasks present in the application 

at the compile time. For this purpose, we need some sort of application ,analyzing tool 

as a part of the compiler. One such tool has been implemented in Parall.el Assessment 

Window System (PAWS) [9], which can be used. 

Accortlingly, the Task-Analyzer is composed of two components, n.amely: Task- 

Preprocessor and TFG (TIG) Generator. It is the Task-preprocessor that converts an 

application into a graphical language. The TFG(T1G) Generator is the anforementioned 

application analyzing tool. 

3.4 Code Profiler and Intermediate Graph Generator 

The main. objective of this module is to implement a code-profiling funcztion and gen- 

erate CPIJ's for TFG's (TIG's). It accepts a TFG (TIG) from the Task Analyzer and 

generates an ICFG (ICIG) by assinging the CPV7s, that is G's, to each. node of TFG 

(TIG). A CPV is generated based on the subset of USC as explained in S.ection 2. After 

ass0ciatin.g such a vector with each code of TFG (TIG), the resulting ICFG (ICIG) can 

then be used for estimating the execution of time of each code of the original application. 

3.5 A.nalyt ical Benchmarker 

This modlule is composed of a computation benchmarker and 1 / 0  benchnnarker. A com- 

putation benchmark estimates the performance (speedup) of ever machine present in the 

DHSS, described in Section 2. For providing information on 1 / 0  benchmarking, it 



uses I/O performance profiles which can be stored in Look-Up tables. Upon requests 

from the: CGG, it provides benchmark values of a code and I/O data transfer profiles for 

the selected machines in the DHSS. 

3.6 Code Graph Generator 

The output of the Code Profiler and Intermediate Graph Generator is a m  ICFG (ICIG) 

which is, accepted by this module in order to produce a CFG (CIG) by assigning an 
+ 

estimated execution time vector E; to each code of the ICFG (ICIG). As mentioned earlier 

in Section 2, such an estimation is obtained by combining a CPV ( g . )  and analytical 

benchmark vector (ABV) &. Also the estimated I/O overhead vector, dj, is assinged 

to each link. Both gj and 5, are obtained from the Analytical Benchmarker. The 

final CFG (CIG) contains sufficient information about the estimated exlecution and I/O 

performance of the application on the machines of the DHSS. These estimates are then 

used by the Task Coordinator to make the scheduling/mapping decision. 

3.7 Task Coordinator 

As indicated above, the purpose of this module is to make scheduling/mapping decisions 

for applications represented as a CFG or a CIG which is the produced by Code Graph 

Generator. By using the values of l?;'s and $,j's associated in the graph, tasks are 

assingedl to various machines in a manner so as to optimize some cost fu:nctions, which is 

generally the total execution time of applications and involves elements of l?;'s and 6,)j's. 

Since, we are dealing with two models, CFG and CIG, scheduling is more appropriate for 

a CFG, while mapping is used for a CIG. We now briefly describe the two components 

of this rnodule, namely; the Scheduler and the Mapper. 

Scheduler consists of a set of scheduling algorithms with varying complexity and 



accuracy in scheduling decision. Most of scheduling algorithms used in homogeneous 

systems can be modified to handle DHSS scheduling environment. As me:ntioned above, 

the criteri.a for scheduling is to minimize the total execution time of an application. We 

now briefl.y describe a general formulation of a possible cost function. This function is 

based on the assumption that computation and the I/O are done in a seqluence without 

any overlz~pping and data conversion only can starts once data transfer is completed (this 

assumption will not be valid when network caching is employed, as discussed later in the 

section). The estimated execution time pi for a code i on a machine j is given as: 

where ei irepresents the estimated execution time of code i on the machine model j and d, 

is the I/O overhead calculated by adding I/O latency with some data convcsrsion overhead 

associated with that machine. Then the total cost of running an application, CTotalr is 

the total execution time of a TFG and can is given by the length of the critical path in 

the TFG. 

Let A: be the set of all the paths from START to STOP of the application graph. The 

total execution time including computation time and 1 / 0  overhead, therefore, becomes 

the total sum of pi along the critical path. In other words, 

The objective of the Scheduler is to minimize CTotal by matching each code with a 

suitable machine from the pool of available machines. Since, there is a limited num- 

ber of machines available, intelligent assignment for the best performance is required. 
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For scheduling, the performance of the 1 /0  subsystems of these machines must also be 

weighed, as expressed by the cost, CTotal. The existence of precedence relationships a- 

mong codes in CFG imposes restriction on the order the way codes sholuld be executed. 

Such ordering is provided by various paths of the CFG. Various critical paths need to be 

evaluated to finalize the scheduling decision. 

For a CIG, a similar cost function can be formulated. The problem then becomes 

that of mapping, rather than scheduling, which is handled by the Mapper. 

As can be noted, minimizing CTolal is basically a dual optimization problem that re- 

quires not only the best match of codes with machines but also requires minimization of 

the I/O overhead for assuring a fast data exchange among machines. Such computation 

and 1 / 0  bottlenecks in a critical path of a CFG (CIG) needs to be ideintified and elimi- 

nated by assigning them to the "most suitable" machines; a problem which is NP-Hard 

[I]. Various heuristics approaches to handle scheduling and mapping call be used. In this 

paper vvre do not make any attempt to propose any new algorithm, rather we describe the 

concepi; of "network caching" and discuss how the overall scheduling/rnapping problem 

can be handled more efficiently by utilizing network resources in conjunction with the 

Task Coordinator module of the DHSMS. 

3.8 Network Caching 

Our objective is to propose a mechanism for utilizing underlying network resources, e- 

special.1.y its buffering capability at its various nodes in order to carry out execution of 

applica,tions efficiently. These buffers can be used to cache data which is exchanged a- 

mong machines during the life of the CFG (CIG). We expect that data caching among 

machines can compensate 1 / 0  bottlenecks and can reduce the data exchange and con- 



M 
buffer 2 

Figure 6: Data Buffering in Network 



version overhead. For this purpose, fast buffers can be provided at  e.ach node in the 

network. Since, the network may be operating at extremely high rate (in multi Giga 

bits/sec range), we can view these buffers as a large memory with fast access. Once two 

machines need to communicate, at the time a CFG/CIG is scheduled, some amount of 

these buffers can be set-aside and used by these machines. This process for two ma- 

chines is illustrated in Fig. 6. For example, when machine MI accesse:s data from the 

I/O subsystem of machine Me, some appropriate additional data can be brought out of 

M2's 110 subsystem and can be stored at  intermediate nodes after converting it into a 

format suitable for MI. Various existing data caching algorithms can be used for this 

purpose. Similarly, when M2 retrieves data from MI, the same caching process can be 

implemented. The size of the cache required between two machines deplends on the I/O 

performance of these machines, which depends on the amount of data transferred between 

them. Such size requirement can be estimated from the elements of the COV's in the 

CFG (CIG). We assume that the Task Coordinator can generate such requirements. As 

mentioned earlier, the scheduling/mapping problem can then be formulated with reduced 

comp1ex:ity. Using network caching, we now describe how this can be achieved. 

Starting with the CFG/CIG, the Task Coordinator carries out its sclheduling/mapping 

decision, based only on the estimated execution time vector Ei's. That is, only 

co.mputation time estimation is used in the cost function to find tlne best matched 

mitchines; no communication cost needs to be used. Equivalently, we can modified 

CFG (CIG) by dropping COV's. Any heuristic algorithm, such as the one given in 

[I], can be used for scheduling/mapping. 

Once the machines are selected, the corresponding di's of COV's are evaluated in 

order to find the I/O performance profiles for the selected machines that correspond 



to the communication costs associated with the links in CFG (CIG). Such an e- 

valu~ation can provide the total buffer size required to implement sufficient cache 

mernory in order to gain enough "delay compensation" to offset the 1/0 overhead. 

It is, known that the performance of an 1/0 subsystem can be improved by increas- 

ing the size of the cache in the system. An appropriate relation between the size 

of the network cache and the value of di7s needs to be explored. The interaction 

between the Task Coordinator and some network resource manager also needs to 

be investigated for this purpose. 

Fig. 7 summarizes the overall sequence of processing of an application through various 

modules (of DHSMS. 

4 Am Experimental Platform for DHSMS 

Currentlly, we are in the process of developing a DHSS platform by interconnecting a 

MasPar, an nCube and a Cprocessor system over TeraNet, which is a high speed optical 

network, that operates in 1 Gigabit/sec. The system is being implemented in the Parallel 

Processirig Laboratory of Purdue University. The objective of this platform is to provide 

a facility. to test and evaluate various DHSMS related concepts and results, similar to 

the ones presented in this paper. Specifically, we are in the process of developing a 

Task Analyzer, a Code Profiler and Intermediate Graph Generator, and an Analytical 

Benchmaker. For this purpose, we are planning to use the Parallel Assessment Window 

System (PAWS), which allows us to assess the performance of various supercomputers and 

provides a ranking of various machines for a given application. The majo:r components of 

PAWS are shown in Figure 8. This system has a number of capabilities which are needed 
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for the proposed DHSMS. Specifically, we are planning to  use its following features: 

It can generate a machine independent graphical representation of an application 

written in a high level language, which is IF1. This representation can be easily 

tra~nsformed to generate an equivalent TFG (TIG). 

It can also simulate execution of a code for a parallel machine, which can provide 

approximate benchmark results, although exact benchmarks can be obtained by 

explicitly running codes on the machine. 

Recently, we have proposed a mapping algorithm for heterogeneous systems [I]. We 

are planning to use a generalized version of this algorithm that is suitable for a DHSS 

environrnent by incorporating code profiling and benchmarking information. 

Presented in this paper is a general framework for a DHSMS, for which we have pro- 

posed an architecture-dependent code profiling and benchmarking scheme. The proposed 

methodolgy incorporates both computational and 110 overheads associated with appli- 

cations. We have also described how network caching can help schedul.ing applications 

in a DHSS. 
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