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Abstract—To benefit from a location-based service, a person
must reveal her location to the service. However, knowing the
person’s location might allow the service to re-identify the person.
Location privacy based on k-anonymity addresses this threat by
cloaking the person’s location such that there are at least k − 1
other people within the cloaked area and by revealing only the
cloaked area to a location-based service. Previous research has
explored two ways of cloaking: First, have a central server that
knows everybody’s location determine the cloaked area. However,
this server needs to be trusted by all users and is a single point
of failure. Second, have users jointly determine the cloaked area.
However, this approach requires that all users trust each other,
which will likely not hold in practice. We propose a distributed
approach that does not have these drawbacks. Our approach
assumes that there are multiple servers, each deployed by a
different organization. A user’s location is known to only one
of the servers (e.g., to her cellphone provider), so there is no
single entity that knows everybody’s location. With the help of
cryptography, the servers and a user jointly determine whether
the k-anonymity property holds for the user’s area, without the
servers learning any additional information, not even whether the
property holds. A user learns whether the k-anonymity property
is satisfied and no other information. The evaluation of our
sample implementation shows that our distributed k-anonymity
protocol is sufficiently fast to be practical. Moreover, our protocol
integrates well with existing infrastructures for location-based
services, as opposed to the previous research.

I. INTRODUCTION

With the advance of location technologies, people can now
determine their location in various ways, for instance, with
GPS or based on nearby cellphone towers. These technologies
have led to the introduction of location-based services, which
allow people to get information relevant to their current loca-
tion. Location privacy is of utmost concern for such location-
based services, since knowing a person’s location can reveal
information about her activities or her interests.

In this paper, we focus on location-based services that
need to know only a person’s location, but not her identity.
For example, these can be services that provide road maps,
nearby places (e.g., restaurants or gas stations), or current
traffic conditions. As it turns out, even if a service learns only
a person’s location, it might still be able to re-identify the
person [1]. For example, the location could be associated with
the person (e.g., her home), or the location corresponds to a
place that is under physical surveillance by the location-based
service. Once a service has re-identified a person, the service
can literally connect the dots and build a detailed location
profile for this person (assuming the person uses the service

in a continuous way).
Location cloaking is a defence against re-identification.

It is based on the idea of sending coarse-grained location
information that covers multiple people to a location-based
service. In a naı̈ve approach, a user simply determines an
area of a static size (e.g., four city blocks) that contains her
current location and sends the area’s coordinates to the service.
The service returns information about the entire area, and the
user discards any irrelevant information. Unfortunately, this
approach could still allow re-identification. For example, in a
rural, less populated region, this kind of cloaking might well
result in an area that includes only one user.

Location cloaking based on k-anonymity does not have this
disadvantage. Here, a user’s current location is cloaked such
that there are at least k − 1 other users within the cloaked
area. A location-based service learns only the cloaked area,
which allows the user to remain anonymous within the set of
k users. Applying k-anonymity to location cloaking has been
studied extensively [1]–[13]. Traditionally, this approach has
been implemented with the help of a central trusted server [1]–
[4], [6], [9]–[13]. Here, users register their current location
with the trusted server. Whenever a user wants to access a
location-based service, she has the trusted server compute a
cloaked area that has the k-anonymity property. Then, the
trusted server contacts the location-based service on the user’s
behalf. The drawback of this approach is that the trusted
server knows everybody’s location. Users must trust it not to
leak their location information to unauthorized parties, maybe
inadvertently. In short, the trusted server is a single point of
failure. More recent research has proposed to get rid of the
trusted server and to have (nearby) users jointly compute a
cloaked area that has the k-anonymity property [5], [7], [8].
Then, the user (or, for increased privacy, another user on
her behalf) contacts the location-based service. The drawback
of this approach is that all previous solutions trust users to
implement the proposed solution faithfully and not to leak
location information learned during the computation. Whereas
this requirement might hold in a closed environment, where
users know each other, it will be difficult to satisfy in more
open environments.

Another drawback of both the centralized and the distributed
approach is that neither of them integrates well with existing
infrastructures for location-based services. Namely, many ex-
isting location-based services are targeted at cellphone users,
since the operator of a cellphone network knows the current
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location of its customers and can provide this information to
a location-based service. However, there is no single entity
that knows the location of all cellphone users across all
cellphone networks, as required by the centralized approach.
The distributed approach fails to take advantage of the already
existing location information that an operator has about its
customers.

We propose a solution that requires neither a single trusted
server nor trust in all users of the system and that integrates
well with existing infrastructures. Namely, we have multiple
servers, each deployed by a different organization (e.g., an
operator of a cellphone network) and each knowing the loca-
tion of only a subset of users (e.g., the operator’s customers),
with the subsets being disjoint. When a user wants to access a
location-based service, she cloaks her location and asks each
server for the number of people in the cloaked area. In a
naı̈ve solution, the servers simply give her these numbers, she
sums them up and, if the sum is at least k, she accesses the
location-based service. However, this approach has the flaw
that it might allow the user to track people. For example, if
the user learns that there is only a single person in an area and
nobody in the surrounding areas, the user can likely follow the
path of the person when the person leaves the area and enters
one of the surrounding areas. As soon as the person enters
an area that is associated with her identity or that is under
surveillance by the user, the user can re-identify the person.
In general, sophisticated data-mining algorithms might allow
the tracking or re-identification of a person even if there are
multiple people in an area.

Our solution avoids this problem with the help of cryptogra-
phy and ensures that a user cannot learn the number of people
in an area reported by a server. The user can learn only whether
the sum of these numbers is at least k. Our contributions are:

• First, we introduce a distributed k-anonymity protocol
for location privacy in which a user collaborates with
multiple servers and a third party to learn whether there
are at least k people in her area. Nobody, not even the
servers and the third party, can learn the total number of
people in the area.

• Second, we present a protocol that prevents users from
registering multiple times with different servers and hence
from skewing the total number of users in an area.

• Third, we present a sample implementation of our pro-
tocol. In its evaluation, we demonstrate that our protocol
can be implemented efficiently.

A preliminary overview of our architecture appeared in a
workshop paper [14]. The workshop paper misses the key
components of the architecture and omits the evaluation and
security analysis of the architecture.

The rest of this paper is organized as follows: In Sec-
tion II, we discuss related work in the area of k-anonymity
and location privacy. In Section III, we present our system
and threat model. We introduce our distributed k-anonymity
protocol for location privacy in Section IV. In Section V, we
present our defence against multiple registrations. We give a

security analysis in Section VI and evaluate our architecture
in Section VII.

II. RELATED WORK

Samarati and Sweeney [15] propose k-anonymity to enable
the release of person-specific information from a database
while maintaining individuals’ privacy. Previous research has
applied k-anonymity to the release of location information that
occurs when a user queries a location-based service. We first
discuss related work that is based on a central trusted server,
then we review distributed approaches.

Gruteser and Grunwald [1] introduce location privacy based
on k-anonymity. A trusted “location anonymizer” cloaks a
user’s location by subdividing space into quadrants until it
finds a quadrant that contains the query issuer and fewer than
k − 1 other users. The parent quadrant becomes the cloaked
area. Gedik and Liu [6] let users have personalized values of
k, and the cloaked area corresponds to the minimum bounding
rectangle of k users. Mokbel et al. [12] observe that this
approach can leak information about a user’s location (e.g.,
some users will be on the boundary of the rectangle). They
use a balanced quadtree that is traversed bottom-up for better
performance until a quadrant with at least k users is found.
In our approach, we choose the bottom-up strategy and allow
users to personalize k.

Beresford [3] finds that, if a location-based service is
familiar with the cloaking algorithm and knows the locations
of all users within the cloaked area, the service could infer the
identity of the query issuer from the shape of the cloaked area.
Namely, this happens when the cloaked area generated for the
query issuer is different from the cloaked areas that would
have been generated for the other users in the cloaked area.
Kalnis et al. [9] and Bettini et al. [4] later re-discover this
finding. Kalnis et al. and Mascetti and Bettini [11] present
(centralized) cloaking algorithms that are not susceptible to
this attack. In our approach, we leave it up to a user to decide
what kind of cloaking algorithm to use. She can use either an
algorithm similar to Mokbel et al.’s algorithm that does not
necessarily guarantee her privacy, but is easy to compute, or
an algorithm similar to Mascetti and Bettini’s that is robust in
terms of privacy, but more expensive.

Chow et al. [5] propose the first distributed approach for
location k-anonymity. A user who wants to access a location-
based service broadcasts a message with Bluetooth or WiFi.
Nearby users respond to this message with their current
location. If the number of responses is smaller than k − 1,
the user repeats the process, but has the nearby users forward
the message, maybe iteratively. The user then computes her
cloaked location and, for increased privacy, asks a nearby user
to send her query for the cloaked location to the location-based
service. Ghinita et al. [7] show that this approach often fails
to achieve location privacy, since the query issuer tends to be
in the center of the cloaked area. The same authors [8] later
show that their earlier approach can be slow and propose an
approach based on a distributed hash table. Here, a user’s 2-D
location is mapped to a 1-D position, used as index in the hash
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table, such that two users who are nearby in 2-D are likely also
close in 1-D. A user’s 1-D position leaks information about
her 2-D location. A user knows the positions of the two users
that immediately follow and precede her in the 1-D sequence.
Furthermore, for robustness reasons, a user also needs to know
the positions of log2(n) other users, where n is the number
of users. In summary, the proposed distributed approaches for
location k-anonymity have the drawback that nodes can learn
location information about other nodes, so the nodes have to
trust each other [8].

Kapadia et al. [10] propose “statistical k-anonymity”. They
assume the global availability of statistical data about the
number of people who are present in an area with high
probability at a particular time of the day. When a user wants
to access a location-based service, she independently decides
based on this data whether her area is likely to be visited by
at least k people. The drawbacks of this approach are that
there remains a chance that fewer than k people are actually
in the area and the requirement of extensive data collection
(across different communication technologies and providers
and during different times of the day, days of the week,...)
to compute the provided statistical data, which raises privacy
issues of its own. Our approach is always accurate and requires
no such data collection.

Zhong et al. [16] study a scenario where database records
are horizontally distributed among different sites. They present
an algorithm that allows a data miner to learn the sensitive part
of a record only if there are least k − 1 other records, maybe
at different sites, whose non-sensitive part is identical to the
non-sensitive part of the record in question. The data miner
(i.e., the user in our problem setting) always learns the overall
number of records that have a particular non-sensitive part,
which makes the algorithm inapplicable to our problem.

k-anonymity is not the only approach that has been sug-
gested for location privacy. Another option are pseudonyms,
where a user assumes a pseudonym when contacting a
location-based service. Previous work (e.g., by Beresford
and Stajano [17] or by Jiang et al. [18]) has explored the
challenges of pseudonym-based approaches, such as changing
pseudonyms in an unlinkable way. k-anonymity-based and
pseudonym-based approaches for location privacy complement
each other; the former one is attractive for scenarios where a
location is associated with a particular person, the other one
for scenarios where locations are public and visited by many
people.

III. SYSTEM AND THREAT MODEL

In this section, we present our system and threat model.

A. System Model

We present our system model in Figure 1. The figure omits
actual location-based services, which a user would access once
she learns that at least k − 1 other users are in her area,
likely via a proxy or an anonymous communication channel
to hide her identity from the service. A possible anonymous
communication channel is Tor [19], which lets a user hide her

City

Location Broker Secure Comparison Server

Coverage Area

Directory Server

Cells

User

Fig. 1. System model. A user registers her location (cell) with a location
broker, whose contact information is provided by the directory server. The
user can learn whether there are at least k registered users in her cell by
contacting all location brokers and one of the secure comparison servers.

IP address from a server by routing the user’s traffic through
a series of intermediate nodes of the user’s choice. These
intermediate nodes are computers maintained by individuals,
and each node knows only its immediate predecessor and
successor node.

For scalability reasons, there are multiple coverage areas,
where a coverage area corresponds to the area covered by
a particular instantiation of our system (e.g., a city or a
province). A coverage area is divided into a well-known grid of
equally sized, square cells. The width of a cell is chosen such
that, for most cells, there is a realistic chance that multiple
users can be located in the cell. For example, a cell could
have a width of 100 meters. Moreover, there are four kinds
of parties: location brokers, users, secure comparison servers,
and a directory server. (Whereas there are solutions that do not
require secure comparison servers, they are much less efficient
than the one proposed here [20].)

A location broker keeps track of the current location (i.e.,
the current cell) of a subset of the users in the coverage area.
There are multiple location brokers, each keeping track of the
location of a different subset of users, with the intersection of
any two subsets being empty. Each broker is maintained by a
different organization. For example, the operator of a cellphone
network could maintain a location broker that keeps track of
the location of the operator’s customers in the coverage area.
A location broker does not necessarily provide coverage for
all cells in the coverage area. For example, whereas a broker
maintained by a cellphone network operator would likely cover
most cells, a broker operated by the provider of a WiFi network
might provide coverage only for a small subset of the cells.

Users carry a mobile device (e.g., a cellphone or a laptop)
with them that can locate itself (e.g., using GPS or nearby WiFi
base stations). A user registers her current location (i.e., her
current cell) with exactly one of the location brokers, where
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she can choose with which one. Likely, if the provider of the
communication service exploited by the user’s device runs a
location broker, the user will (maybe implicitly) register her
location with this broker, since the provider already knows
or at least has an estimate of the user’s location. We assume
that users always register their location with a broker. This
assumption is also made in the earlier work. More registrations
will lead to smaller cloaked areas, which in turn will increase
the quality of service obtained from a location-based service
and will give users an incentive to register. If a location
broker is run by the provider of the user’s communication
service, registering her location continuously does not lead
to additional loss of privacy for the user, since the provider
already has this information.

A secure comparison server interacts with a user to let
the user learn whether there are at least k users who have
registered the user’s current cell as their location across all
location brokers. (See Section IV for the detailed protocol.)
Each secure comparison server is maintained by a different
organization. An organization can maintain both a location
broker and a secure comparison server. A secure comparison
server provides coverage for the entire coverage area.

The directory server publishes contact information for the
location brokers and for the secure comparison servers in the
coverage area. Moreover, it publishes coverage information for
location brokers, that is, which broker provides coverage for
which cells in the coverage area. This way, users can choose a
location broker to register with and a secure comparison server
to interact with.

B. Threat Model

In our threat model, the location brokers and the secure
comparison servers are honest-but-curious, that is, they hon-
estly follow our protocol, but are curious about learning
location information. We discuss malicious brokers and servers
in Section VI-B.

A location broker can learn the location (i.e., cell) of users
who register their location with this particular broker. Accord-
ingly, a broker can learn the number of users in a cell that
have registered this cell as their location with this particular
broker. However, a location broker should not learn the total
number of users in a cell that have registered this cell as
their location across all location brokers. Knowing this number
makes possible tracking attacks, similar to the one presented
in Section I. Similarly, a location broker should not learn the
location of users who register their location with any other
location broker. We assume that the organizations that run the
location brokers do not collude with each other. Legal means
(e.g., privacy laws or a contract between a user and a location
broker) can enforce this assumption. Technical enforcement
means make less sense here, since today’s cellphone network
operators know their customers’ location and could potentially
share this information with each other. For the same reason,
we assume that location brokers do not collude with users.

A secure comparison server should learn neither a user’s
location nor the total number of registered users in a cell. This

implies that the server should not learn the individual number
for a location broker, either (except using back channels if a
secure comparison server is run by the same organization as
a location broker). A secure comparison server might collude
with other secure comparison servers to learn additional infor-
mation. Due to the same reason given above, we assume that
secure comparison servers do not collude with location brokers
(except in the implicit case where a broker and a server are
run by the same organization, here it can learn at most the
location and number of users registered with this broker).

A user should learn only her own location and whether the
number of people in her cell (or superset of cells) is at least
k, where k is a value of her choice. A user carries only one
mobile device with her, and the device faithfully reports its
location to a broker. A user cannot register multiple times with
a single broker at the same time, since the broker authenticates
the user’s device. All these assumptions are also made in the
earlier work. (We discuss weaker ones in Section VI-C.) A
user might still try to register multiple times with different
brokers at the same time. This could let other users erroneously
conclude that k-anonymity holds. Finally, a user might collude
with a secure comparison server to learn the number of people
in her cell (or superset of cells).

The directory server should not learn any location infor-
mation about users. The server might misbehave, for example,
it might list a location broker multiple times as providing
coverage for a single cell, it might fail to vet location brokers
or secure comparison servers (see Section IV-D), or it might
try to track clients by providing them different information.

IV. DISTRIBUTED k-ANONYMITY PROTOCOL

In this section, we first give an overview of our distributed
k-anonymity protocol and then present its key components.

A. Overview

The goal of a user is to learn whether there are at least k
registered users (including herself) in the user’s query area,
where k is a value chosen by the user and where the query area
initially corresponds to the user’s current cell. If the user learns
that there are fewer than k users in this cell, she can enlarge
the query area to a superset of cells that contains the user’s
current cell and re-execute the protocol for the enlarged area.
This process can be repeated multiple times. As mentioned
in Section II, a user can choose between different types of
enlargement algorithms to determine the query area, which
lets her trade off between privacy and cost. A user registers
her current cell as her location with exactly one of the location
brokers, but there is no need for the user to register additional
cells when enlarging the query area.

To learn whether there are at least k users in her query
area, a user first needs to identify the location brokers that
provide coverage for (maybe parts of) the query area. The
user must not ask the directory server for a list of brokers that
provide this coverage, else the server could learn the user’s
location. Instead, the user should download the entire directory
(or recent changes to it) from the server on a regular basis,
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such as once a day. The directory is signed, which allows
retroactive detection of misbehaviour by the directory server.
Another option is to have multiple directory servers, where
users accept information only if it is signed by a threshold of
the servers, similar to the directory servers in Tor.

The user then executes our distributed k-anonymity protocol
with the relevant location brokers and one of the secure com-
parison servers, l. Our protocol uses the techniques of public-
key cryptography, but we require the cryptosystem to have
a special algebraic property: that it is additive homomorphic.
Here, given only EA(m1) and EA(m2), where EA(m) is an en-
cryption of message m under public key A, one can efficiently
compute EA(m1 +m2). There are several cryptosystems with
this property, such as the Paillier cryptosystem [21].

In our protocol, the user first asks each broker covering
the query area for the number of users who have registered
a cell in the query area as their current location with this
particular broker. A broker gives this number to the user such
that the user cannot learn it. Namely, if there are vj users in
the query area who have registered with broker j, broker j
encrypts vj with public key Cl of secure comparison server
l, as published by the directory server, and sends ECl

(vj) to
the user. Then, the user sums up the received numbers without
being able to learn the sum. In particular, the user calculates
ECl

(r+
∑

i vi) using the additive homomorphic property of the
encryption scheme, where r is a random number generated by
the user that will keep the total number of users hidden from
secure comparison server l. Finally, with the help of secure
comparison server l, the user determines whether this sum is
at least k (see Section IV-B).

Our protocol gracefully deals with crashes of a location
broker or of a secure comparison server. In the first case, the
user contacts the remaining brokers, which might still report
a sufficient number of registered users. To work around the
second case, we can let the user and the broker choose a set of
candidate secure comparison servers, instead of only a single
one. Over time, the directory server will learn of the crash of
a location broker or of a secure comparison server and will
remove it from the directory.

B. Defence against Collusion

After computing the encrypted sum of users in her query
area, the user, in cooperation with secure comparison server
l, determines whether this sum is at least k. The user could
simply send ECl

(r+
∑

i vi) and r+k to server l, which would
decrypt the first value, compare it to r + k, and inform the
user of the result. Since both the sum and k are obscured with
r, the server can learn neither of them. However, this solution
is flawed, because it might reveal the total number of users to
a secure comparison server and a location broker that are run
by the same organization. Assume that the location broker is
the only broker that covers the query area. Here, based on the
knowledge of

∑
i vi (where the sum covers only one broker),

the broker and the server can jointly determine r, which allows
them to compute k. In turn, once they know a user’s k, the
server and the broker can infer the total number of registered

people in any query area chosen by the user, as long as the
user’s choice of k is static and the query area is covered by
the broker. The coverage condition guarantees that the broker
will be contacted by the user and hence can learn the query
area. Otherwise, the server and the broker could learn only
the total number of people, but not for which query area. To
avoid these information leaks, we need to hide the user’s input
to the comparison, r + k, from the secure comparison server.
Moreover, we need to hide the result of the comparison from
the server, else the server could still infer r + k in case it is
found to be equal to r +

∑
i vi.

To execute the comparison in this way, we exploit the
Greater Than - Strong Conditional Oblivious Transfer (GT-
SCOT) protocol [22]. The protocol has two participants, a
receiver and a sender. The receiver and sender have private
inputs x and y, respectively. The sender has two secrets,
s0 ∈ DS and s1 ∈ DS , where DS is a subset of Zn. The
sender wants to send s0 to the receiver if x < y and s1

if x > y, but is oblivious about which secret is sent. In
short, the sender cannot learn whether x < y or x > y. The
protocol requires a semantically secure additive homomorphic
encryption scheme with large message domains, such as the
Paillier scheme. In the protocol, the receiver encrypts x bit
by bit with the receiver’s public key and sends the vector of
ciphertexts to the sender. The sender encrypts y bit by bit with
the receiver’s public key and finds the most significant bit that
is different in the two numbers without learning its position.
The sender then obliviously assigns s0 or s1 to that bit and
randomizes all other bits. Then, the sender permutes the vector
of encrypted values to prevent the receiver from learning the
position of that bit and sends the vector to the receiver. The
receiver decrypts the elements of the vector and stops when a
value in DS is found. For details of the GT-SCOT protocol,
we refer to our technical report [20].

If s0 and s1 are already known to the receiver, the GT-
SCOT protocol simply allows the receiver to learn whether
x < y, x = y, or x > y. We exploit this observation in our
distributed k-anonymity protocol. Here, the user sends only
ECl

(r +
∑

i vi) to secure comparison server l. Then, the user
and the server run the GT-SCOT protocol. The server uses
r +

∑
i vi as the sender’s input, y, and the user uses r + k

as the receiver’s input, x. The GT-SCOT protocol guarantees
that the server will not learn r + k and the result of the
comparison. However, it allows the user to distinguish between
three cases (

∑
i vi < k,

∑
i vi = k, and

∑
i vi > k), whereas

k-anonymity does not distinguish between the equality and the
greater-than case. Also, telling a user that there are precisely
k people in the query area enables tracking attacks, similar
to the one outlined in Section I. To avoid the equality case,
we have the secure comparison server compute and compare
bit-by-bit encryptions of 2 ∗ (r +

∑
i vi) + 1 and 2 ∗ (r + k).

C. Defence against Binary Search

A flaw of our protocol is that, using binary search, a user
might still be able to learn the precise number of users in a
cell. Namely, the user could present ECl

(r +
∑

i vi) multiple
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∑
i (vi + ri)),∀i : EC′

l
(ri)

ECl
(vj + rj), EC′

l
(rj), l π(ÊU(δ)))

Fig. 2. Distributed k-anonymity protocol. U and Cl are the Paillier public key of the user and secure comparison server l, respectively. C′
l is the RSA public

key of secure comparison server l. EA(·) denotes regular Paillier encryption with public key A. ÊA(·) denotes bit-by-bit Paillier encryption with public key
A. EA(·) denotes RSA encryption with public key A. π(·) is a random permutation. δ is the result vector obliviously computed by secure comparison server
l while executing the GT-SCOT protocol. The ciphertexts EC′ (ri) also include an expiration date and are signed by location broker i (not shown).

times to the secure comparison server, maybe with a different
value of r each time. By adjusting the value of k in each run of
the GT-SCOT protocol, the user can perform a binary search
for the actual value of

∑
i vi.

To prevent this attack, we use expiring tickets. Instead
of sending ECl

(vj) to the user, a location broker sends
ECl

(vj + rj) and a ticket that contains EC′
l
(rj), where rj

is a random number changing with each request and EC′
l
(·)

is the RSA encryption function using RSA public key C ′
l of

the secure comparison server. A location broker also includes
an expiration date in the ticket and signs the ticket. A secure
comparison server will decrypt all EC′

l
(rj) and subtract

∑
i ri

from r +
∑

i (vi + ri). The server also remembers tickets
till their expiration date and refuses to re-use a ticket seen
previously. This way, the attack mentioned above will fail,
even if r is changed. Also, the user cannot use fresh tickets
with a previously presented encrypted sum, since the ri value
will be different, meaning the secure comparison server cannot
compute the correct input value for the GT-SCOT protocol
and the user cannot learn any useful information from this
operation. Similar to traditional k-anonymity approaches based
on a central trusted server, a location broker can limit the query
frequency of users.

Figure 2 illustrates our distributed k-anonymity protocol
based on the GT-SCOT protocol and expiring tickets.

D. Choice of Secure Comparison Server

Having multiple secure comparison servers distributes load
and avoids a single point of failure. Our distributed k-
anonymity protocol requires that we pick one of the secure
comparison servers at the beginning of a protocol run. Because
of possible collusion between a user and a secure comparison
server, which would allow the user to learn the total number of
registered users in her query area, we cannot let a user choose a
secure comparison server. Instead, we need to choose a server
such that, over time, the risk of a user working together with a
colluding server is limited by k/n, where n corresponds to the
number of secure comparison servers, with k of them colluding
with the user. Therefore, we cannot statically assign a secure
comparison server to a user, since we might be unlucky and
pick a colluding one. Moreover, a user might decide not to
trust servers maintained by particular organizations, and she
might refrain from using our system if we forced her to use

such a server all the time.
Another strategy is to have each location broker randomly

choose a secure comparison server for a query. However, this
strategy has two flaws: First, our protocol requires that all
brokers choose the same server, which will likely not be the
case here. Second, if a user is assigned to a non-colluding
server, she can repeat her query until a colluding server is
chosen. To address these flaws, we need an assignment scheme
that, within a particular time frame, has all brokers assign the
same server to a particular user. The length of the time frame
should be such that the impact of using a malicious server
within the entire duration of the time frame is limited (e.g.,
the time frame should be shorter than a day) and such that
if a user decides to perform an attack at a particular moment
in time, her expected waiting time till she is being assigned a
colluding server is so long that the attack environment (e.g.,
locations of users) will likely have significantly changed by
then (e.g., the time frame should be longer than a minute).

We now present our algorithm for choosing a secure com-
parison server. There is a sign-up server that randomly assigns
each user to one out of n groups when she signs up to
our system, where n corresponds to the number of secure
comparison servers. (The assignment can expire to deal with
new secure comparison servers.) The sign-up server could
be identical to the directory server. To determine the secure
comparison server to be used for encrypting the response to
a user’s query, each location broker executes a well-known,
deterministic function that maps the identity of the user’s
group to a secure comparison server. (Directly mapping the
user’s identity, instead of the identity of the user’s group, is
not an option because letting a broker know of a user’s identity
would make the user trackable and identifiable by a location
broker.) This mapping function is bijective and depends on
the current time. For example, the function can be defined as
f = (ep+ id) mod n. Here, time is split into epochs, with ep
indicating the current epoch (ep ≥ 0). Our suggested duration
of an epoch is one hour. id is the identity of a user’s group
(0 ≤ id < n), as reported by the user when sending her
query to the location broker. We can also design more complex
mapping functions, such as a function that changes the order
in which a group is mapped to a server over time.

To ensure that the group identity reported by a user is accu-
rate, we take advantage of cryptographic group signatures [23].
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In a group signature scheme, any member of a group can sign a
message without a signature verifier being able to infer which
member generated the signature. Only the group manager, that
is, the entity generating and distributing signing keys to group
members, can trace a signature to its issuer. In our scheme,
the group manager corresponds to the sign-up server. When
querying a location broker, a user creates a group signature to
prove membership in her group to the broker. This allows the
user to remain anonymous within her group while not being
able to claim membership in other groups.

In general, to minimize the risk of collusion, we do not let
random people deploy a secure comparison server. Instead, the
directory server should vet a server before listing it, similar to
the limited vetting done by a directory server in Tor.

V. LOCATION REGISTRATION

As mentioned in Section III-B, consistent with earlier work,
our threat model assumes that a location broker can detect
attempts by a user to register with the broker multiple times
in parallel. Having multiple location brokers, as it is the case
in our solution, introduces a new vulnerability. Namely, a user
could register multiple times, but each time with a different
location broker. This way, other users might be wrongly told
that their k-anonymity preference is satisfied. There are both
technical and non-technical controls for this vulnerability.
Charging money is an example of a non-technical control.
Namely, if location brokers are maintained by operators of
cellphone networks as a service to customers, a user would
would have to buy multiple cellphones and plans to register
in parallel with multiple brokers, which makes the attack
expensive. In the remainder, we present a technical control
that does not make any assumptions about the underlying
communication technology. Since we control the vulnerability,
our threat model for user behaviour can remain identical to the
threat model in the earlier work.

There are two naı̈ve approaches to prevent a user from
registering with different location brokers concurrently. In the
first one, a location broker contacts the other location brokers
whenever a user registers and inquires whether the user has
already registered with one of them. This approach raises
privacy concerns and is expensive in terms of performance.
The second approach has each broker keep records of its
registered users. Periodically, the brokers compare records and
try to detect misbehaving users. The main problems of this
approach are the privacy concerns raised by the record keeping
and by the comparison and that it is retroactive.

Our solution gets around these problems. It is based on e-
cash [24] and is outlined in Figure 3. E-cash allows a player
to withdraw a coin from the bank and to spend it with a
second player. The second player deposits the received coin
with the bank. In our solution, a user gets one (and only one)
coin from the bank. The role of the bank can be assumed
by the directory server. When a user registers with a location
broker, she spends her coin at the broker. Since the user has
only one coin, registering with another broker amounts to
double spending of the coin. The other broker detects this

Bank

User
Location

Broker
2) Spend Coin

1) Withdraw Coin

6) Deposit Coin

5) Spend Coin

4) Withdraw Coin

3) Deposit Coin

Fig. 3. Defence against multiple registrations based on e-cash. By being
given only one coin, a user can register only once. The user is returned her
coin when de-registering.

double spending when depositing the coin, either immediately
in case of an online e-cash scheme [24] or in a delayed way
in case of an offline scheme [25]. In the former case, the
broker will deny registration. In the later case, the bank will
learn the user’s identity and will ban her from the system (see
Section VI-C). Whenever a location broker deposits a user’s
(valid) coin, the broker also withdraws a fresh coin from the
bank. (Alternatively, since location brokers are not malicious,
the bank can periodically give a set of coins to the broker for
increased performance.) When the user wants to de-register,
she asks the broker to spend this coin by giving it to the user.
The user then deposits the coin and withdraws a fresh coin
from the bank, which she can later spend at another broker.

The benefits of our solution are that it does not require all
location brokers to be contacted for a registration and that
location brokers do not need to keep records of registered
users after their de-registration. Moreover, since e-cash is
anonymous, the bank cannot learn which user registers with
which location broker, and a location broker cannot learn a
user’s identity and where a user has registered previously.

In case a location broker crashes, a registered user will not
be able to register with a new broker. Here, we have the user
contact the bank with a proof of registration issued by the
broker. The bank will then issue a new coin to the user. When
the broker comes back up, it will re-synchronize with the bank.

VI. SECURITY ANALYSIS

In this section, we first review how our protocol defends
against the threats listed in Section III-B, where we assume
that location brokers and secure comparison servers are honest-
but-curious. In the remainder, we discuss how our architecture
can be extended to defend against malicious parties.

A. Threat Analysis

In our protocol, location brokers do not interact with each
other, so they cannot learn the location of users in the query
area who are registered with other brokers, not even their
total number. Our architecture is based on e-cash and group
signatures, which allows users to remain anonymous to a
location broker. A user should not directly connect to a broker
during a registration or query operation. Information about this
connection (e.g., the user’s IP address) might allow the broker
to re-identify the user and to learn her location from her query
area. Instead, the user should communicate through a trusted
proxy or an anonymous communication channel (e.g., Tor). In
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practice, the location broker that a user registers with might
already know the user’s identity and might forbid anonymous
registrations. (E.g., an operator of a cellphone network often
knows the identity of its customers.) In this setup, the location
broker that a user registers with can serve as the trusted proxy
for contacting the other brokers during a query operation.
Despite the communication between these brokers and a user
being proxied, the brokers might be able to re-identify the user
based on her query area if the area is associated with the user
or under physical surveillance by a broker. To address this
threat, the user should query the brokers only if she knows
that there are at least k − 1 other people in the query area,
that is, we end up with a chicken-egg problem. Therefore, as
stated in Section III-A, we choose the width of a cell in our
architecture such that there is a realistic chance that multiple
users can be located in the cell, which makes this attack hard.

A secure comparison server learns no useful information
during a comparison operation, not even its outcome. A server
also gains no benefit from colluding with other secure com-
parison servers. To remain anonymous to a location broker,
a user should not directly connect to a secure comparison
server, since the tickets issued by the broker allow a secure
comparison server that is run by the same organization to link
a query and a comparison operation.

A user learns only whether the total number of users in her
query area is at least k. The expiring tickets prevent her from
learning the actual number of users with a binary search.

The directory server cannot learn any location information,
because users do not retrieve individual records for their
current cell from the server. The published directory is signed,
which prevents the directory server from misbehaving.

B. Malicious Servers or Brokers

Assume that a malicious secure comparison server fails to
correctly execute some of the steps in the GT-SCOT protocol.
While it is not possible for the server to learn the total number
of users, due to the randomness added by the user, the server
could misbehave with the intent to give the user the impression
that there are at least k registered users in an area, even if
this is not the case, or vice versa. We could address this
concern by adding zero-knowledge proofs to each step of
the protocol, proving that the step was executed faithfully.
For example, Groth [26] proposes an efficient scheme for
proving in zero-knowledge the correctness of a permutation
of homomorphic encryptions. As it turns out, this scheme
requires three additional rounds of interactions between the
prover and the verifier, which makes it expensive for mobile
devices. Therefore, in our scheme, we choose a retroactive
approach. We have a secure comparison server log the random
values used in its encryption and permutation operations.
Furthermore, the server has to sign all its generated messages
to achieve non-repudiation. If users suspect misbehaviour,
they, likely in collaboration with the directory server, can force
the secure comparison server to reveal the logged values and
its private key and can validate the server’s computations.

Similar to the secure comparison server, a malicious loca-
tion broker can misbehave while executing our protocol. In
particular, a broker can encrypt a value that is different from
the actual number of users registered in an area. It is possible
to ask a broker to keep a record of all its actions. However, this
record would have to include location registrations of users,
which is problematic in terms of privacy. We prefer a less
invasive approach. If users suspect misbehaviour by a location
broker (and misbehaviour by a secure comparison server can
be excluded, based on the above mechanism), they report the
set of location brokers from which they retrieved information
to the directory server. Over time, this will allow the directory
server to single out a particular location broker.

C. Malicious Users

Malicious users could report wrong locations to a location
broker during registration. As it turns out, a complete defence
against this attack is likely impossible. A determined attacker
can give her mobile device to another user or simply tamper
with the location reporting mechanism on her mobile device.
A user could also acquire multiple devices, maybe under
different identities, and use them to register multiple times.
As mentioned in our threat model (see Section III-B), these
threats are not new to our system; they also arise in previous
schemes. Let us outline some mechanisms that make these
attacks harder.

A location broker might be able to detect wrongly reported
locations. For example, if a broker is controlled by the operator
of a WiFi network, the operator can ensure that a reported
location is close to the WiFi access point from which the
registration request was sent. An operator of a cellphone
network can verify whether the reporting device is close to
a particular cellphone tower.

We can also exploit the sign-up process, as introduced
in Section V, to defend against malicious users. The sign-
up server can require physical identification, which reduces
the danger of a user signing up multiple times. However,
this approach makes the system more difficult to use. An
alternative is to ask the user for a credit card number, including
her name and billing address. This option becomes especially
attractive if the system charges its users in the first place.
Billing for the usage of our system itself can become a
mechanism for reducing misbehaviour, because an attacker
might not have the necessary resources for a large-scale attack.

VII. EVALUATION

In this section, we evaluate our distributed k-anonymity
protocol. We first examine the cost of contacting a location
broker, followed by the cost of contacting a secure comparison
server. In our evaluation, we focus on the cost of the homomor-
phic encryption operations and of the GT-SCOT protocol. To
the best of our knowledge, no measurement-based evaluation
of this protocol has been published, whereas there are such
evaluations of the other two cryptographic protocols used in
our architecture. For example, Belenkiy et al. [27] evaluate
e-cash and Cornelius et al. [28] evaluate group signatures.
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We implemented our protocol using the OpenSSL and
NTL [29] libraries. The key size for RSA and Paillier is 1024
bits. We deploy a location broker and a secure comparison
server on a 2.4 GHz Intel Xeon Dual Core running Linux
2.6.24. The user has a slow laptop (a ThinkPad T43 with a 2
GHz Intel Pentium M running Linux 2.6.22) to approximate
the capabilities of a modern smartphone. Communication
runs over WiFi and is protected against eavesdroppers with
TLS using AES128 in CBC mode with an ephemeral Diffie-
Hellman key exchange for forward secrecy.

A. Location Broker

We examine the performance of querying a location broker
for the number of people in the query area and of adding
this number to an existing encrypted sum. In the experiment,
when a user connects to a location broker, the location broker
sends back a Paillier encrypted random value. The user then
performs a homomorphic addition. We repeat the experiment
ten times and report mean and standard deviation.

The overall delay experienced by the user is 39.9± 0.7 ms.
It takes 32.5 ± 0.7 ms to set up a TLS connection, which
includes client and server authentication. The server takes
7.4±0.0 ms to Paillier encrypt a random value. The cost of the
homomorphic addition operation by the user is negligible. In
summary, setting up the TLS connection is about four times as
expensive as the Paillier encryption operation. As mentioned
in Section VI-A, to hide her identity, a user might not directly
connect to a location broker. Here, the cost of encryption in
relation to the cost of connection setup becomes even smaller.

In practice, the user will likely contact multiple location
brokers. Apart from the addition operation, whose cost is
negligible, the brokers can be contacted in parallel. If this
is not feasible for the user’s device, the overall delay will be
linear in the number of location brokers. We envision that this
number is small (5-10 brokers) in most scenarios. This number
reflects the number of cellphone and WiFi network operators
providing coverage for the query area, which tends to be small.
In addition, there might be a small number of independently
operated location brokers.

The user also needs to Paillier encrypt the random value
that she will add to the encrypted sum of users reported by
the location brokers. This encryption takes 67.2± 0.5 ms. As
expected, the encryption operation is slower on the laptop than
on the server. However, as opposed to the other operations, this
encryption can occur offline. Moreover, the user can use an
encrypted value multiple times for a secure comparison server.

B. Secure Comparison Server

We evaluate the performance of the GT-SCOT protocol for
different bit lengths of the bit-by-bit homomorphic encryption
operation. We vary the bit length between 4 and 16 and
perform fifty runs for each configuration.

We present our results in Figure 4. The bottom graph shows
the cost of the sender side of the GT-SCOT protocol, which
varies between 66.3±0.3 ms for a bit length of 4 and 247.9±
0.9 ms for a bit length of 16. The middle graph corresponds to
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Fig. 4. Latency experienced by the secure comparison server and the user in
relationship to the bit length used in the GT-SCOT protocol. We show mean
and standard deviation.

the overall cost by the server. In addition to the sender side of
the GT-SCOT protocol, it also includes the cost of setting up
a TLS connection and Paillier decryption of the total number
of users. Finally, the top graph shows the overall latency, as
experienced by the user. It varies between 193.5±58.4 ms for a
bit length of 4 and 628.6±184.7 ms for a bit length of 16. The
overall latency corresponds to the overall cost by the server
plus the cost of the receiver side of the GT-SCOT protocol,
which takes 77.5± 47.7 ms for a bit length of 4 and 330.4±
179.6 ms for a bit length of 16. The standard deviation is large,
because the user decrypts the permuted result vector received
from the secure comparison server element by element and
stops as soon as she finds the server’s answer.

In our implementation, we let a user choose the bit length.
In practice, we expect that bit lengths between 8 and 12 will
be used mainly, depending on the number of location brokers
covering the query area and the maximum number of reported
users for the query area (which is different from the number
of registered users in the query area). If there are a bits in
total, we can support up to 2c location brokers and up to
2b−1 reported users per location broker per query area, where
a = b + c + 2. (This implies 0 ≤ k ≤ 2c ∗ (2b − 1).) A user
informs a broker of her choice of b; if there are more than 2b−1
registered users in the query area, the broker simply reports
2b − 1 users. (As stated in Section IV-A, each broker adds
a random value to its reported number. We can ignore these
values here, since they are subtracted by the secure comparison
server before running the GT-SCOT protocol. This will also
revert any wrap-arounds that might have occurred due to
choosing a large random value.) The two remaining bits leave
space for adding the random number r (0 ≤ r ≤ 2c∗(2b−1))1

chosen by the user to the total number of users, which requires
at most b+ c+1 bits, and for allowing the secure comparison
server to double the resulting sum to avoid the equality case.
For example, for a bit length of 8, we can support up to 8

1If r = 0 and ∀i : vi = 0, the secure comparison server can infer
these values. Similar for the maximum case. To lower the probability for
this scenario, the user can dynamically increase (decrease) her lower (upper)
bound for r and keep her choice secret.
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location brokers and 7 reported users per broker per query
area. Here, the overall latency experienced by the user is
330.0 ± 120.7 ms. For a bit length of 12, we can support
up to 16 location brokers and 63 reported users per broker per
query area. Here, the overall latency experienced by the user
is 481.2 ± 146.2 ms. In short, we expect the overall latency
to be noticeable, but tolerable.

The user also needs to perform a bit-by-bit encryption of
the sum of her privacy preference and of her chosen random
value. The cost of this operation varies between 210.4 ± 0.8
ms for a bit length of 3 and 864.4± 115.0 ms for a bit length
of 15. (The large variation is an artifact of using a bit length
of 15. The variation is small for a bit length of 16, which has a
larger mean. We are investigating this behaviour.) However, as
opposed to the other operations, this encryption can be done
offline. Moreover, the user can use an encrypted value multiple
times for a secure comparison server.

VIII. CONCLUSIONS AND FUTURE WORK

We have presented a protocol for location privacy based
on k-anonymity that needs neither a single trusted server nor
users to trust each other. Our sample implementation and its
evaluation have shown that the protocol is efficient.

In terms of future work, we are integrating our protocol into
a platform for location-based services, which will allow us to
gather more insights about the protocol’s usability in practice.
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