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A distributed algorithm is presented that realizes mutual exclusion among N nodes in a computer 
network. The algorithm requires at most N message exchanges for one mutual exclusion invocation. 
Accordingly, the delay to invoke mutual exclusion is smaller than in an algorithm of Ricart and 
Agrawala, which requires 2*(N - 1) message exchanges per invocation. A drawback of the algorithm 
is that the sequence numbers contained in the messages are unbounded. It is shown that this problem 
can be overcome by slightly increasing the number of message exchanges. 

Categories and Subject Descriptors: C.2.4 [Computer Systems Organization]: Computer-Com- 
munication Networks-distributed systems; D.4.1 [Operating Systems]: Process Management- 
mutual exclusion 
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1. INTRODUCTION 

Consider a computer network consisting of N nodes. The nodes have no memory 
in common, and can communicate only by exchanging messages. The communi- 
cation delay is totally unpredictable, and messages are not guaranteed to be 
delivered in the same order in which they are sent. The problem is to design a 
distributed algorithm that realizes a mutual exclusion requirement that, at any 
moment, at most one node may stay in its critical section. 

Ricart and Agrawala [l] presented a distributed algorithm that works as 
follows. A node i attempting to enter the critical section sends a REQUEST 
message to all other nodes. The message contains a sequence number and the 
node identifier i, which are used to define a priority order among requests. A 
node j, receiving a REQUEST message of node i, sends a REPLY message to 
node i immediately, if either j is not requesting or the request of i has priority 
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over j’s. Otherwise, node j defers the reply until after j’s request is granted. Node 
i enters its critical section when it receives a REPLY message from all other 
nodes. 

The algorithm requires 2*(N - 1) message exchanges for each mutual exclusion 
invocation. It is claimed that: (1) this number is the optimal if “nodes act 
independently and concurrently” in a “symmetrical, fully distributed” algorithm; 
and (2) the algorithm achieves a minimal possible delay, assuming first that “no 
information is available bounding transmission time delays or giving actual 
transit times”, and second that “no node possesses the critical section resource 
when it has not been requested”. 

2. A NEW ALGORITHM 

The basic idea in our algorithm is to transfer the privilege for entering the critical 
sections by using a single PRIVILEGE message. Initially node 1 has the privilege. 
A node requesting the privilege sends a REQUEST message to all other nodes. 
A node receiving a PRIVILEGE message is allowed to enter its critical section 
repeatedly, until the node sends PRIVILEGE to some other node. 

A request message of node j has the form REQUEST( j, n) where j is the node 
identifier and n (n = 1, 2 . . .) is a sequence number which indicates that node j 
is now requesting its (n + 1)st critical section invocation. Each node has an array 
RN of size N for recording the largest sequence number ever received from each 
one of the other nodes. If REQUEST(j, n) is received by node i, then node i 
updates RN by RN[j] := max(RN[j], n). (N o d e i uses RN[i] to generate its own 
sequence numbers.) 

The PRIVILEGE message has the form PRIVILEGE(Q, LN) where Q is a 
queue of requesting nodes and LN is an array of size N such that, LN[j] is the 
sequence number of the request of node j granted most recently, When node i 
finishes executing its critical section, the array LN, contained in the last PRIV- 
ILEGE message received by node i, is updated by LN[i] := RN[i], to indicate 
that the current request of node i has been granted. Next, all node identifiers j, 
such that RN[j] = LN[j] + 1 (i.e., node j is requesting), is appended to Q provided 
that j is not already in Q. When these updates are complete, if Q is not empty 
then PRIVILEGE(tail(Q), LN) is sent to the node found at the front of Q. If Q 
is empty then node i retains the privilege until a requesting node is found by 
arrivals of REQUEST messages. 

The algorithm, Algorithm A, is shown in Figure 1. Each node executes proce- 
dures Pl and P2. Pl is called when a node attempts to enter the critical section. 
P2 is executed indivisibly whenever a REQUEST message arrives. Initially, the 
Boolean variable HavePrivilege is true only in node 1. “in(Q, j)” is a predicate 
for testing if a node identifier j is in a queue Q. “append(Q, j)” inserts j at the 
rear of Q. “head(Q)” is the element at the front of Q. “tail(Q)” is the new value 
of Q after head(Q) is removed. 

Algorithm A is deadlock free and starvation free. Critical sections are granted 
in a first-come-first-served manner to some extent. It requires, at most, N 
message exchanges per one mutual exclusion invocation; (N - 1) REQUEST 
messages and one PRIVILEGE message, or no message at all if the node having 
the privilege happens to be the only requesting node. 
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const 1: Integer; (* the identifier of this node *) 
var HavePrivilege, Requesting:bool; 
j, n: integer; 
Q: queue of integer; 
RN, LN: array[l . . N] of integer; 
(* The initial values of the variables are: 

HavePrivilege = true in node 1, false in all other nodes; 
Requesting = false; 
Q = empty; 
RN[j] = -1, j = 1,2, . . . , N; 
LN[j] = -1, j = 1,2,. . . , N; *) 

procedure Pl; 
begin 

Requesting := true; 
if not HavePrivilege then 

begin 
RN[I] := RN[Z] + 1; 
for all j in 11, 2, . . . , NJ - {Z) do 

Send REQUEST(1, RN[I]) to node j; 
Wait until PRIVILEGE(Q, LN) is received; 
HavePrivilege := true 

end, 

Critical Section; 

LN[Z] := RN[Z]; 
for all j in 11, 2, . . . , N) - [I) do 

if not in(Q, j) and (RN[jJ = LN[j] + 1) then Q := append(Q, j); 
if Q f empty then 

begin 
HavePrivilege := false; 
Send PRIVILEGE(tail(Q), LN) to node head(Q) 

end; 
Requesting := false 

end, 

procedure P2; (* REQUEST(j, n) is received; P2 is indivisible *) 
begin 

RN[j] := max(RN[j], n); 
if HavePrivilege and not Requesting and (RN[j] = LN[j] + 1) then 

begin 
HavePrivilege := false; 
Send PRIVILEGE(Q, LN) to node j 

end 
end, 

Fig. 1. Algorithm A. 

Assuming that no information is available on transmission delays, a time 
bound inherent in any distributed mutual exclusion algorithms is: 

The privilege to enter the critical section cannot be transferred in less than a 
one-way trip communication time. 

As is discussed in [2], attaining this bound requires that a requesting node sends 
at least one message (e.g., request message) containing the information that the 
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node is requesting. A time bound associated with such notification of request is: 

A request of a node cannot be recognized by other nodes in less than a one-way 
trip communication time. 

Algorithm A attains the first bound since the PRIVILEGE message is sent 
directly to the next node. The second bound is attained since a requesting node 
sends a REQUEST message to all other nodes simultaneously. In this sense 
Algorithm A achieves a minimal possible delay. Apparently Algorithm A performs 
better than Ricart and Agrawala’s algorithm in which a requesting node must 
complete a round-trip communication with all other nodes. 

3. A MODIFICATION 

Algorithm A can be modified so that the sequence numbers will be bounded. If 
each node generates the sequence numbers by RN[i] := RN[i] + 1 mod L, where 
L 2 2 is a fixed integer, then a nonrequesting node may erroneously be regarded 
as requesting. This is because the communication delay is totally unpredictable, 
and therefore, old requests and more recent requests of a node having close 
sequence numbers may exist in the system simultaneously. The following method 
can be used to avoid this problem. 

When node i receives L messages REQUEST(j, lz), 0 5 k : L - 1, issued 
successively by node j, node i sends a REPLY message to node j. Node j, after 
finishing its Lth, 2*Lth. . . critical section invocation, can send the PRIVILEGE 
message only when it receives a REPLY message from all other nodes. This 
ensures that all REQUEST messages of node j in the “previous round” have been 
received by all other nodes, and hence these old messages will not be mixed up 
with message that node j issues in the “new round”. 

The modified algorithm, Algorithm B, is shown in Figure 2. RequestCount[j] 
records the number of REQUEST messages received from node j. When 
RequestCount [j] = L, a REPLY message is sent to node j. ReplyCount is used 
to count the number of REPLY messages received. Procedure P3 is invoked 
when REPLY arrives. 

Algorithm B requires at most L*N + (N - 1) message exchanges for L mutual 
exclusion invocations by a single node. The average number of message exchanges 
per invocation, N + (N - 1)/L, approaches N (the number of message exchanges 
in Algorithm A) as L becomes large, 

Algorithm B is faster and uses fewer messages than Ricart and Agrawala’s 
algorithm. The total number of information bits to be exchanged, however, is 
larger in Algorithm B. 

4. DISCUSSION 

If Algorithm A can be called symmetrical, then it is a counterexample to the 
claimed optimality of Ricart and Agrawala’s algorithm. Algorithm A satisfies all 
the requirements of Ricart and Agrawala’s algorithm, except the condition that 
“no node possesses the critical section resource when it has not been requested” 
(in Algorithm A a node retains the privilege even if no request exists). Whether 
such an algorithm can be called symmetrical is a problem of definition regarding 
the term. In any case, node identifiers will have to be used as a tiebreaker. To 
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const I: integer; (* the identifier of this node *) 
L: integer; 

var HavePrivilege, Requesting:bool; 
ReplyCount, j, n: integer; 
Q: queue of integer; 
RN, LN, RequestCount: array(1 . . N] of integer; 
(* The initial values of the variables are: 

HavePrivilege = true in node 1, false in all other nodes; 
Requesting = false; 
ReplyCount = 0; 
Q = empty; 
RN[j] = -1, j = 1,2,. . . , N, 
LN[jJ = -1, j = 1,2,. . . , N; 
RequestCount[j] = 0, j = 1, 2, . . . , N; *) 

procedure Pl; 
begin 

Requesting := true; 
if not HavePrivilege then 

begin 
RN[Z] := RN[Z] + 1 mod L 
foralljin(1,2,...,N)-(Z]do 

Send REQUEST(Z, RN[Z]) to node j; 
Wait until PRIVILEGE(Q, LN) is received; 
HavePrivilege := true 

end; 

Critical Section; 

LN[Z] := RN[Z]; 
if RN[Z] = L - 1 then (* end of a round of node Z *) 

begin 
Wait until ReplyCount = N - 1; 
ReplyCount := 0 

end; 
for all j in (1, 2, . . . , NI - (Zl do 

if not in(Q, j) and (RN[jJ = LN[j] + 1 mod L) then Q := append(Q, j); 
if Q f empty then 

begin 
HavePrivilege := false; 
Send PRIVILEGE(taiI(Q), LN) to node head(Q) 

end, 
Requesting := false 

end: 

procedure P2; (* REQUEST(j, n) is received; P2 is indivisible *) 
begin 

RequestCount[ j] := RequestCount[ j] + 1; 
if Request Count[j] = L then 

begin 
Send REPLY to node j; 
RequestCount[ j] := 0 

end, 
if RequestCount[ j] = 1 then RN] j] := n (* beginning of a new round of node j *) 

else RN[j] := max(RN[j], n); 
if HavePrivilege and not Requesting and (RN[j] = LN[jJ + 1 mod L) then 

begin 
HavePrivilege := false; 
Send PRIVILEGE(Q, LN) to node j 

end 
end; 

procedure P3; (* REPLY is received *) 
begin 

ReplyCount := ReplyCount + 1 
end; 

Fig. 2. Algorithm B. 
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summarize, symmetrical is not a well-understood or well-defined concept. A more 
fruitful approach, it seems, would be to evaluate algorithms in terms of the 
number of message exchanges, number of information bits exchanged, delay, and 
robustness to node or link failures. 
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