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A Distributed Networked Approach for Fault
Detection of Large-Scale Systems

Francesca Boem, Riccardo M. G. Ferrari, Christodoulos Keliris, Member, IEEE ,
Thomas Parisini, Fellow, IEEE , and Marios M. Polycarpou, Fellow, IEEE

Abstract—Networked systems present some key new
challenges in the development of fault-diagnosis architec-
tures. This paper proposes a novel distributed networked
fault detection methodology for large-scale interconnected
systems. The proposed formulation incorporates a syn-
chronization methodology with a filtering approach in order
to reduce the effect of measurement noise and time delays
on the fault detection performance. The proposed approach
allows the monitoring of multirate systems, where asyn-
chronous and delayed measurements are available. This
is achieved through the development of a virtual sensor
scheme with a model-based resynchronization algorithm
and a delay compensation strategy for distributed fault–
diagnostic units. The monitoring architecture exploits an
adaptive approximator with learning capabilities for han-
dling uncertainties in the interconnection dynamics. A
consensus-based estimator with time-varying weights is
introduced, for improving fault detectability in the case of
variables shared among more than one subsystem. Fur-
thermore, time-varying threshold functions are designed to
prevent false-positive alarms. Analytical fault detectability
sufficient conditions are derived, and extensive simulation
results are presented to illustrate the effectiveness of the
distributed fault detection technique.

Index Terms—Distributed systems, fault detection,
large-scale systems, networked control systems.

I. INTRODUCTION AND STATE OF THE ART

THE growing scientific interest for networked and distrib-

uted systems is evident by the large number of works cited
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in surveys and books (see, for example, [1], [2]). As complexity

and interconnectedness increase, there is a higher risk of faulty

operation in one or more components/subsystems of the overall

system. In the presence of such faulty scenarios, it is difficult

to detect and isolate the fault, as well as to design methods

for bringing the system back to normal operation. Faults in

a low-level component may have a manageable impact on

system operation; on the other hand, high-level faults can have

significant consequences (for example, human safety, major

economic effects, and environmental impact) if not detected

and handled promptly. Therefore, there is a need to develop

fault detection tools in the context of large-scale, distributed,

and networked systems, which is the aim of this paper.

Recently there has been a growing interest toward distributed

architectures for the monitoring of large-scale and/or networked

systems (see [3]–[14]). For instance, some recent works on

monitoring and diagnosis of Cyber Physical Systems (CPSs)

deal with the detection of attacks against process control

systems [15] and cyberphysical attacks in power networks

[16]–[19]. In [20] and [21] distributed schemes to detect and iso-

late the attacks on networked control systems using observers

are developed. In [21], applications to power networks and

robotic formations are presented. All these works about cyber-

attacks consider linear system models. Another research topic

that has attracted significant interest recently is the design of

fault detection methods for multiagent systems (see as example

[22]–[24]).

In this paper, the distributed fault-diagnosis approach pre-

sented in [4] and [5] for nonlinear systems is generalized to ad-

dress issues emerging when considering networked diagnosis

systems. In particular, when dealing with communication net-

works, one of the main issues is the presence of delays and

packet dropouts that degrade performance and could be a source

of instability, misdetection, and false alarms. Delays and packet

losses in the communication networks are dealt with in this

paper. While there is an extensive literature addressing this

issue in the control framework (see, for example, [25]–[29], and

the references cited therein), much less literature is available in

the case of fault diagnosis, especially for large-scale systems.

In particular, only the decentralized fault-diagnosis problem is

considered (see, for example, [30]–[33], in which fault detection

and isolation schemes for networked systems are addressed).

An exception is [34] and the references cited therein, dealing

with discrete-event systems. Despite these results, the design of

fault-diagnosis schemes specifically for distributed and large-

scale systems is still a challenging task, and the issues deriving

from networked architectures are not taken into account. Some

works consider the problem of monitoring networked control

systems, where delays and packet dropouts are induced in

0018-9286 © 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
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the communication between controller, actuators and sensors

[35], [36]. Instead, here we consider distributed fault detection

architectures. Moreover, dealing with a networked architecture,

the possibility to have multirate systems and asynchronous

measurements is considered. Also in this case, while the lit-

erature addressing this topic in the control field is increasing

(see [37] and [38] as example), in the distributed fault diagnosis

these issues still have not been addressed (see [39] for the

centralized case).

In the following we provide the main aspects of the prob-

lem formulation, the research objectives and the proposed

methodology.

A. Problem Formulation

In previous works, a distributed approach to fault diagnosis

(FD) for large-scale systems has been developed, both in the

continuous-time [4] and in the discrete-time [5] frameworks. In

the following, a brief summary of this methodology is given for

the readers’ convenience and for the sake of completeness. De-

tails can be found in [4] and [5]. The limitations of the existing

monitoring architectures in networked scenarios in terms of

detectability are illustrated, and some solutions are presented.

A nonlinear uncertain large-scale system, composed of N
interconnected subsystems, is considered. Its monolithic model

is described by

ẋ(t) = f (x(t), u(t)) + η (x(t), u(t)) + φ (x(t), u(t), t) (1)

where x ∈ R
nx

and u ∈ R
nu

are the state and the control input

of the system, respectively, f : Rnx

× R
nu

�→ R
nx

models the

nominal dynamics, η : Rnx

× R
nu

�→ R
nx

represents the mod-

eling uncertainty, and φ : Rnx

× R
nu

× R �→ R
nx

describes

the effects on system dynamics due to any deviation from the

nominal model, which take place for t ≥ T0, where T0 denotes

the unknown fault occurrence time (i.e., φ(x(t), u(t), t)=0, for

t < T0). The following well-posedness assumption is needed.

Assumption 1: The state variables x and control variables

u are uniformly bounded before and after the occurrence of a

fault, that is, there exists a compact region R ⊂ R
nx

× R
nu

such that (x(t), u(t)) ∈ R, ∀ t ≥ 0. �

The state variables are measured by ny sensors, whose

outputs are described by the following equation:

m(t) = Gx(t) + w(t) (2)

where m ∈ R
ny

is a vector collecting the measurements of

the components of the state vector x, w ∈ R
ny

denotes the

vector of the measurement noise, and G is a full-rank ny × nx

matrix having one single element equal to 1 for each row,

representing the state component measured by each sensor. We

assume that each state component is measured at least by one

sensor, that is, ny ≥ nx. It is worth noting that—under suitable

additional assumptions (see [6] and [40])—the generalization to

the input/output case could be carried out, but this is outside the

scope of this paper.

Assumption 2: For each ith measurement m(i), with i =
1, . . . , ny being the vector component index, the measurement

uncertainty term w(i) is an unstructured and unknown function

of time, but it is bounded by a known positive time-function

w̄(i)(t) such that |w(i)(t)| ≤ w̄(i)(t), i = 1, . . . , ny, t ≥ 0. �

Fig. 1. Example of the proposed multilayer fault detection architecture.
The system state variables (represented by light blue circles on the
left) are measured by the sensor layer (center). The measurements are
represented by green circles, while the actual sensors by small squares.
Each subsystem (colored dotted boundaries) is described by its local
variables and its local measurements. The sensors communicate their
measurements to the LFDs by means of the first-level communication
network. The second-level communication network (right) allows the
diagnosers to communicate with each other exchanging information.

As illustrated in [4] and [5], a structural graph can be as-

sociated with system (1), and a formal (possibly overlapping)

decomposition of the graph can be defined to identify N sub-

systems. More specifically, in case that more than one sensor is

available to measure a given state variable x(i), it might be use-

ful to devise a decomposition with overlapping subsystems such

that the variable x(i) is “shared” among these subsystems and

each sensor measuring x(i) belongs to a different subsystem

(see left side of Fig. 1). In this paper, we are not dealing with the

problem of finding an optimal way of decomposing the system

(see [41]); hence, the decomposition is assumed to be known

a priori. Moreover, we assume that the existing decomposition

implies the allocation of the sensors: each nonshared variable

is measured exactly by one sensor; shared variables are mea-

sured by a number of sensors equal to the number of sharing

subsystems. Each sensor is allocated to one subsystem.

The Ith subsystem ΣI is modeled as

ΣI : ẋI(t) = fI (xI(t), uI(t)) + gI (xI(t), zI(t), uI(t))

+ φI (xI(t), zI(t), uI(t), t) (3)

where xI ∈ R
nx
I and uI ∈ R

nu
I are the local state and control

input vectors, and zI ∈ R
qI is the vector of the interconnection

variables, which are state variables of neighboring subsystems

that influence the Ith subsystem. The function gI : Rnx
I ×

R
qI × R

nu
I �→ R

nx
I represents the uncertain interconnection

between subsystems, considering also the local effects of the

modeling uncertainty function η, fI : Rnx
I × R

nu
I �→ R

nx
I mod-

els the local nominal healthy behavior. Finally, φI : Rnx
I ×

R
qI × R

nu
I × R �→ R

nx
I describes the local fault effects. In this

paper, we consider both process and actuator faults.

Each sensor is associated with exactly one subsystem (see

Fig. 1). The local sensor S
(i)
I associated with the Ith subsystem

provides a measurement m
(i)
I of the ith component of the local

Authorized licensed use limited to: TU Delft Library. Downloaded on December 01,2020 at 13:12:09 UTC from IEEE Xplore.  Restrictions apply. 
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state vector xI according to the output equation

S
(i)
I : m

(i)
I (t) = x

(i)
I (t) + w

(i)
I (t), i = 1, . . . , nxI (4)

where w
(i)
I denotes the noise affecting the ith sensor of the Ith

subsystem. It is worth noting that in the local model output (4),

there is a correspondence between sensors and state variables,

while this may be not true in the global model (2), since more

than one sensor may measure the same variable (see again

Fig. 1). We assume that the control input is available without

any error or delay.

Similarly to [5], each subsystem of the above decomposition

is monitored by a specific local fault diagnoser (LFD). Each

LFD receives from its local sensors the noisy state measure-

ments forming the vector mI = col(m
(i)
I , i = 1, . . . , nxI ) [see

(4)] and, from the J th neighboring LFD the noisy measure-

ments m
(i)
zI , i = 1, . . . , qI of the local state variables compo-

nents x
(i)
J that influence the Ith subsystem (i.e., the variables

x
(i)
J belonging to the interconnection vector zI).

Each LFD computes a local state estimate x̂I(t) based on the

local Ith model, by communicating the interconnection vari-

ables (and possibly other information) to neighboring LFDs.

The state estimator takes on a different structure depending on

whether the specific ith component x(i) of the state is shared

among more than one subsystem or not. In the former case,

a deterministic consensus procedure is designed to take advan-

tage of the availability of more than one sensor measuring the

same variable [4], [5].

The LFD implements a model-based fault detection method:

the local estimation error ǫI(t) = mI(t)− x̂I(t) is compared,

component-by-component, to a time-varying threshold ǭI(t),
suitably computed in order to guarantee the absence of false

alarms. Moreover, a filtering design [42] is introduced to reduce

the conservativeness of the detection thresholds, which is here

adapted in the current formulation under discrete time.

B. Objectives and Contributions

The existing approaches for distributed fault diagnosis of

nonlinear uncertain large-scale systems that we have previously

described are based on some underlying assumptions that may

restrict their applicability, namely:

1) global synchronization: subsystems, sensors, and LFDs

are assumed to share the same clock and sampling

frequency;

2) perfect information exchange: it is assumed that informa-

tion exchanged between LFDs and communicated from

the system to the LFDs is without any error nor delay, and

it is immediately available at any point of the diagnosis

system.

In several realistic contexts, 1) and 2) may not hold, and

as a consequence: i) some faults may become undetectable

due to the fact that LFDs make detection decisions based on

outdated information; ii) delays in information exchange may

cause longer detection times; and iii) the lack of accurate and

timely information may cause false alarms.

In this paper, the distributed fault-diagnosis methodology

presented in [4] and [5] is extended to address the above-

Fig. 2. Example of a two-LFD architecture. The internal structure of
each LFD is shown, composed of two buffers (the measurements buffer
and the diagnosis buffer) to collect the information received, respec-
tively, by the local sensors and neighboring LFDs, the Virtual Sensor
(processing the received measurements), and the Fault Detection unit,
responsible for the monitoring analysis. The communicated information
between LFDs is represented.

mentioned limitations. More specifically:

a) a multilayer distributed fault-diagnosis architecture is

proposed consisting of three layers (the system layer, the

sensor layer, and the diagnosis level; see Fig. 1); this

facilitates the investigation of the relationships between

the different elements that compose networked systems;

b) a delay compensation strategy is devised to address

delays and packet losses in the communication network

between the LFDs (see [43] for some preliminary results)

using timestamps and a buffer, called diagnosis buffer

(see Fig. 2);

c) a model-based resynchronization algorithm is embedded

in the diagnosis procedure; this algorithm is based on

virtual sensors implemented in the LFDs and on the use

of a measurements buffer (see Fig. 2);

d) the filtering-based design recently proposed in [9] and [42]

is modified and integrated into the proposed distributed

fault-diagnosis methodology thus enhancing fault detec-

tion robustness and facilitating less conservative condi-

tions for fault-detectability.

In Fig. 2, an example of a two LFDs architecture is presented to

provide more insight into the structure of the proposed scheme.

The paper is organized as follows. In Section II, the dis-

tributed fault detection architecture is described enhancing the

presence of a physical system (which is being diagnosed for

faults), of the sensors (which are made of a physical part

interacting with the system to be diagnosed) and of a compu-

tational (cyber) part able to take process measurements and

exchange information with other sensors of the network to

synchronize with each other) and of the local diagnosers (which

are computational-systems as well and able to make model-

based estimation and exchange information with each other). In

Section IV, the distributed fault detection algorithm is presented

also detailing the resynchronization scheme, the time-varying

consensus mechanism, and the delay compensation strategy.

In Section V sufficient conditions for fault detectability are

presented that characterize the class of detectable faults, and

Authorized licensed use limited to: TU Delft Library. Downloaded on December 01,2020 at 13:12:09 UTC from IEEE Xplore.  Restrictions apply. 
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in Section VI simulation results illustrating the effectiveness of

the fault-diagnosis scheme are presented. Finally, Section VII

reports some concluding remarks.

II. THREE-LAYER FAULT-DIAGNOSIS ARCHITECTURE

The proposed distributed fault-detection architecture is made

of three layers: the system layer, the sensor layer, and the

diagnosis layer. In Fig. 1, this layout is shown in a pictorial

way. These three layers are briefly described next.

The system layer refers to the large-scale system to be

monitored. It is described by the continuous-time state (1) and

the output (2).

The sensor layer consists of the available sensors taking mea-

surements m
(i)
I (t) in continuous-time [see (4)] and sampling

and sending such measurements to the Ith LFD at time instants

t
(i)
sI that are not necessarily equally spaced in time. As we do

not assume that the measurements delivered by the sensors

are synchronized with each other, each measurement is labeled

with a timestamp (TS) [44] to indicate the time instant t
(i)
sI at

which the measurements are taken by sensor S
(i)
I in the time

coordinate t.
The communication between the sensors and the LFDs is

achieved through the first-level communication network (see

Fig. 1). This network can introduce delays and packet losses, for

instance because of collision between different sensors trying

to communicate at the same time. Therefore, measurements

communicated from the sensors to LFDs may be received at

any time instant.

The diagnosis layer consists of the previously introduced

LFDs providing a distributed fault-diagnosis procedure. The

structure of each LFD is shown in Fig. 2. As previously

mentioned, each LFD receives the measurements from specific

sensors with the aim to provide local fault-diagnosis decisions.

The LFDs operate in a discrete-time synchronous time frame

k ∈ Z which turns out to be more convenient for handling any

communications delays, as will be seen in the next sections.

For the sake of simplicity, the sampling time of the discrete

time frame is assumed to be unitary and the reference time is

common, that is, the origin of the discrete-time axis is the same

as that of the continuous-time axis. Therefore, the operation of

the LFDs is based on the local discrete-time models, which are

the discrete-time version of local models (3)

xI(k + 1) = fI (xI(k), uI(k)) + gI (xI(k), zI(k), uI(k))

+ φI (xI(k), zI(k), uI(k), k) (5)

where φI describes the local discretized fault effects, occurring

at some discrete-time k0 (that is, φI(xI(k), zI(k), uI(k), k) =
0, k < k0). Each LFD exchanges information with neighboring

LFDs by means of the second-level communication network

(see right side of Figs. 1 and 2). As we will see in the

following, the exchanged information consists in the resynchro-

nized interconnection variables vJ and a vector that we denote

II,J , collecting some variables needed for fault detection pur-

poses in the case of shared variables (as will be explained

in Section IV).

In summary, two different and not reliable communication

networks are considered in this paper: the first-level commu-

nication network allows each LFD to communicate with its

local sensors, and the second-level communication network al-

lows the communication between different LFDs for detection

purposes. Both these communication networks may be subject

to delays and packet losses. Given the different nature of the

networks (the first is local, while the second is connecting

different subsystems, which may be geographically apart), in

the next section we provide two different strategies to man-

age communication issues: a resynchronization method for the

first-level communication network and a delay compensation

strategy for the second-level communication network.

III. RESYNCHRONIZATION AT DIAGNOSIS LEVEL

Let us consider a state variable x
(i)
I (t); as mentioned be-

fore, at time t = t
(i)
sI the sensor S

(i)
I takes the measurement

m
(i)
I (t

(i)
sI ) and sends it to the Ith LFD with a timestamp t

(i)
sI .

The Ith diagnoser receives the measurement sent by S
(i)
I at time

t
(i)
aI > t

(i)
sI . Since the LFDs run the distributed fault-diagnosis

algorithm with respect to a discrete-time framework associated

with an integer k [see (5)], an online resynchronization pro-

cedure has to be carried out at the diagnosis level. Moreover,

the possible time-varying delays and packet losses introduced

by the communication networks between the local sensors

and the corresponding LFDs have to be addressed, since they

may affect the fault-diagnosis decision. Note that the classical

discrete-time FD architecture assumes that quantities sampled

at exactly time k are used to compute quantities related to time

k + 1. Unfortunately, the LFDs may receive measurements

associated with time instants different from k, because of

transmission delays and because of the arbitrary sampling time

instants of the sensors. The availability of the timestamp t
(i)
sI

enables each LFD to implement a set of local virtual sensors

by which the resynchronization of the measurements received

at the diagnosis level is implemented. We assume that sensors

and diagnosers share the same clock at the local level.1

Specifically, each LFD collects the most recent sensors mea-

surements in a buffer and computes a projection m̂
(i)
I (k|t

(i)
sI ) of

these latest available measurements m
(i)
I (t

(i)
sI ), i = 1, . . . , nx

I ,

to the discrete time instant2 k ≥ t
(i)
aI > t

(i)
sI , by integrating the

local nominal model on the time interval [t
(i)
sI , k].

Remark 1: Let us note that measurements may be related

to and could be received also before time k − 1, without any

assumption on the delay length, thus allowing the presence of

measurements packets losses. Moreover, thanks to the use of the

timestamps and the buffers, “out-of-sequence” packets can be

managed. The same measurement could be used by the virtual

sensor more than once to obtain more than one projections

related to different discrete time instants.

1As example, this could be obtained in accordance with the IEEE 1588-
2002 standard (“Standard for a Precision Clock Synchronization Protocol for
Networked Measurement and Control Systems”), where each diagnoser can be
selected as a synchronization master for the sensors that communicate with it.

2Recall that the sampling time of the diagnosers is supposed to be unitary
for simplicity.
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Fig. 3. Resynchronization procedure needed to manage delays and
packet losses in the communication networks between each LFD and its
local sensors. A single LFD is considered whose local model depends
on three variables, which are measured by three different sensors. The
clock signals of each layer involved are shown.

The projected measurement m̂
(i)
I (k|t

(i)
sI ) can be computed

by noticing that, under healthy mode of behavior, the local

nominal model (3) for the state component i at any time t > t
(i)
sI

can be rewritten as

x
(i)
I (t) = x

(i)
I

(
t
(i)
sI

)
+

t∫

t
(i)
sI

[
f
(i)
I (xI(τ), uI(τ))

+ g
(i)
I (xI(τ), zI(τ), uI(τ))

]
dτ.

Hence, the LFD implements a virtual sensor that generates an

estimate of the measurement at discrete-time k given by

m̂
(i)
I

(
k
∣∣∣t(i)sI

)
= m

(i)
I

(
t
(i)
sI

)
+

k∫

t
(i)
sI

[
f
(i)
I

(
m̂I

(
τ
∣∣∣t(i)sI

)
, uI(τ)

)

+ ĝ
(i)
I

(
m̂I

(
τ
∣∣∣t(i)sI

)
, m̂zI

(
τ
∣∣∣t(i)sI

)
, uI(τ)

)]
dτ (6)

where ĝI characterizes an adaptive approximator designed to

learn the unknown interconnection function gI [45] and m̂zI

are the projections of the measured interconnection variables

mzI . An example enhancing the resynchronization procedure

for one LFD monitoring a subsystem with three state variables

is illustrated in Fig. 3.

Remark 2: It is worth noting that the discrete-time index k ∈
Z represents kind of a “virtual timestamp” (vTS) computed by

the LFDs after the resynchronization task and communicated in

the second-level communication network between LFDs. This

will be exploited in Section IV.

Remark 3: Although in (6), for analysis purposes, ĝI repre-

sents the output of a continuous-time adaptive approximator, for

implementation reasons, a suitable discrete-time approximator

will be used, designed as explained in Section IV-B.

The above-described projection and resynchronization pro-

cedure gives rise to an additional source of measurement uncer-

tainty: the virtual measurement error, which is defined as

ξ
(i)
I (k) � m̂

(i)
I

(
k
∣∣∣t(i)sI

)
− x

(i)
I (k).

For the sake of analysis, it is worth noting that, due to synchro-

nization and measurement noise, the virtual measurement error

is given by

ξ
(i)
I (k)=m

(i)
I

(
t
(i)
sI

)
−x

(i)
I

(
t
(i)
sI

)

+

k∫

t
(i)
sI

[
∆synchf

(i)
I (τ)+∆synchg

(i)
I (τ)

]
dτ

=w
(i)
I

(
t
(i)
sI

)
+

k∫

t
(i)
sI

[
∆synchf

(i)
I (τ)+∆synchg

(i)
I (τ)

]
dτ (7)

where

∆synchf
(i)
I (τ)�f

(i)
I

(
m̂I

(
τ
∣∣∣t(i)sI

)
, uI(τ)

)
−f

(i)
I (xI(τ), uI(τ))

∆synchg
(i)
I (τ)� ĝ

(i)
I

(
m̂I

(
τ
∣∣∣t(i)sI

)
, m̂zI

(
τ
∣∣∣t(i)sI

)
, uI(τ)

)

− g
(i)
I (xI(τ), zI(τ), uI(τ)) .

For notational convenience, we now collect the projected mea-

surements m̂
(i)
I (k|t

(i)
sI ) in a vector, which, in the following, we

denote as yI(k), with k being its vTS:

yI(k) = col
{
m̂

(i)
I

(
k
∣∣∣t(i)sI

)
, i = 1, . . . , nx

I

}
.

Therefore, it is as if the virtual sensor implemented by the

LFDs takes uncertain local measurements yI of the state xI ,

according to

yI(k) = xI(k) + ξI(k)

where ξI is the unknown virtual measurement error (7). More-

over, in place of the interconnection variables z, only the vector

vI(k) = zI(k) + ςI(k)

is available for diagnosis, where ςI is composed by the compo-

nents of ξJ affecting the relevant components of yJ (as before,

J refers to a neighboring subsystem). For simplicity, we assume

here that the control signal uI is available to the diagnoser

without any delays or other uncertainty.

The virtual measuring errors ξI and ςI are unstructured and

unknown. For fault detection, it is not necessary to compute

them, but, for each i = 1, . . . , nx
I and h = 1, . . . , qI , it is possi-

ble to compute a bound for their components using (7)∣∣∣ξ(i)I (k)
∣∣∣ ≤ ξ̄

(i)
I (k),

∣∣∣ς(h)I (k)
∣∣∣ ≤ ς̄

(h)
I (k)

where

ξ̄
(i)
I (k) = w̄

(i)
I

(
t
(i)
sI

)
+

k∫

t
(i)
sI

∆̄synchf
(i)
I (τ) + ∆̄synchg

(i)
I (τ)dτ

(8)

is a positive function and w̄
(i)
I is the one defined in Assumption 2.

Moreover:

∆̄synchf
(i)
I (τ)= max

xI∈R
xI

∣∣∣f (i)
I (m̂I(τ), uI(τ))−f

(i)
I (xI(τ), uI(τ))

∣∣∣

remembering that the set RxI is the domain of the state, and

∆̄synchg
(i)
I (τ) can be computed in an analogous way as in (31)
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(see Section IV-D). The bound ς̄I is computed with the same

procedure by the neighboring subsystems. In the next section,

the fault-diagnosis procedure is presented.

IV. DISTRIBUTED FAULT DETECTION METHODOLOGY

For fault detection purposes, each LFD communicates with

neighboring LFDs. It is assumed that the inter-LFD commu-

nication is carried over a packet-switched network, which we

call the second-level communication network, possibly subject

to packet delays and losses. In order to manage delays in this

network, the data packets are timestamped, with the virtual

timestamp, which contains the time instant the virtual measure-

ments are referred to. In this layer, we assume to have perfect

clock synchronization between the LFDs. In this way, all the

devices of the monitoring architecture can share the same clock,

that is, they know the reference time, and the use of timestamps

can be valid.

Furthermore, we propose to provide each LFD with a buffer

to collect the variables sent by neighbors. In the following,

we denote with the superscript “b” the most recent value of a

variable (or of a communicated function value) in the corre-

sponding buffer of a given LFD; for example, vbI denotes the

most recent value of the measured interconnection vector vI
contained in the buffer of the Ith LFD, while [fI(·)]

b denotes

the most recent value of the function [fI(·)] in the buffer.

Each LFD computes a nonlinear adaptive estimate x̃I of

the associated monitored subsystem state xI . The local esti-

mator, called fault detection approximation estimator (FDAE),

is based on the local discrete-time nominal model (5). In

this paper, differently from [5], to dampen the effect of the

virtual measurement error ξI(k), each measured variable y
(i)
I =

x
(i)
I + ξ

(i)
I is filtered by H(z), where H(z) is a pth order,

asymptotically stable filter with proper transfer function

H(z) =
z(d1z

−1 + d2z
−2 + · · ·+ dpz

−p)

c0 + c1z−1 + · · ·+ cpz−p
. (9)

Generally, each measured variable y
(i)
I (k) can be filtered by a

different filter with the exception of shared variables where for

each shared variable the same filters must be used. In this paper,

without loss of generality, we consider H(z) to be the same

for all the output variables, in order to simplify notation and

presentation. The filter H(z) can be written as H(z) = zHp(z).
The filters H(z) and Hp(z) (with impulse responses h(k) and

hp(k) respectively) are asymptotically stable and hence BIBO

stable. Therefore, for bounded virtual measurement error ξI(k),

the filtered virtual measurement error3 ΞI(k) � H(z)[ξI(k)] is

bounded as follows:

∣∣∣Ξ(i)
I (k)

∣∣∣ ≤ Ξ̄
(i)
I (k) i = 1, . . . , nx

I (10)

where Ξ̄
(i)
I are bounding functions that can be computed as

Ξ̄
(i)
I � H̄(z)[ξ̄

(i)
I ], being H̄(z) a filter with impulse response

h̄(k) = |h(k)| and using (8). Note that we denote with capital

letters the filtered signals.

3For notational convenience, in the paper we use the shorthand H(z)[ξ(k)]
to denote Z−1{H(z)Ξ(z)}.

A. Fault Detection Estimation and Residual Generation

In this subsection we present a method for computing the

local state estimate x̃I for fault detection purposes. In the case

of a nonshared state component i, the local estimation x̃
(i)
I is

given by

x̃
(i)
I (k + 1) = f

(i)
I (yI(k), uI(k))

+ ĝ
(i)
I

(
yI(k), v

b
I(k), uI(k), ϑ̂I(k)

)
(11)

where ĝI is the output of an adaptive approximator designed in

Section IV-B to learn the unknown interconnection function gI ,

ϑ̂I ∈ Θ̂I denotes its adjustable parameters vector, and tb is the

virtual timestamp of the most recent information received vbI in

the buffer at time k.

In the case that a state variable x(s) of the global model (1) is

shared among more than one LFD J ∈ Os (being Os the set of

the subsystems sharing x(s)), the estimation can be computed

using a consensus approach (see [5]). We denote with sJ the

local index of the global variable s, that is4 x(s) = x
(sJ )
J , ∀ J ∈

Os. For the Ith subsystem, the local estimation x̃
(sI )
I is given by

x̃
(sI )
I (k + 1) =

∑

J∈Os

W (I,J)
s

[
f
(sJ )
J (yJ(k), uJ(k))

+ ĝ
(sJ )
J

(
yJ(k), v

b
J (k), uJ(k), ϑ̂J (k)

)]b
(12)

with initial condition x̃
(sI )
I (0) = y

(sI )
I (0). Each J th LFD com-

municates to neighboring LFDs sharing variable s the lo-

cal value of the function f
(sJ )
J (yJ(k), uJ (k)) + ĝ

(sJ )
J (yJ(k),

vbJ(k), uJ(k), ϑ̂J (k)) (this consists in the first part of vector

II,J , together with some information needed to compute the

thresholds). In this way, it is not necessary for the local diag-

nosers to know the other subsystems models. The terms W
(I,J)
s

are the components of a stochastic matrix Ws (the values of

each row add up to 1). In Section IV-E, the definition of the

weight matrix Ws in order to improve detectability capabilities

is given. It is worth noting that the formulation of (12) includes

the case of a nonshared variable component i [see (11)], since,

in this case Oi = {I} and hence index J is simply equivalent

to I , with W
(I,I)
i = 1, by definition.

We now explain the residual generation: the local estimation

residual error rI(k) is defined as

rI(k) � YI(k)− ŶI(k) (13)

where we obtain the filtered output YI(k) by locally filtering

the measurement output signal yI(k)

YI(k) � H(z) [yI(k)] (14)

and the output estimates as

ŶI(k) � H(z) [x̃I(k)] . (15)

4For example, consider the case shown in Fig. 1: subsystems Σ1 and Σ2

share the state variable x(2) while subsystems Σ2 and Σ3 share the state

variable x(4). Thus, x(2) = x
(2)
1 = x

(1)
2 and x(4) = x

(3)
2 = x

(1)
3 .
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The residual constitutes the basis of the fault detection scheme.

It can be compared, component by component, to a suitable

adaptive detection threshold r̄I ∈ R
nx
I , thus generating a local

fault decision attesting the status of the subsystem: healthy or

faulty. A fault in the overall system is said to be detected when

|r
(i)
I (k)| > r̄

(i)
I (k), for at least one component i in any Ith LFD.

We now analyze the filtered measurements and estimates

YI(k) = H(z) [yI(k)] = H(z) [xI(k) + ξI(k)]

= Hp(z) [z [xI(k)]] + ΞI(k). (16)

In the absence of any faults (i.e., φI(xI(k), zI(k), uI(k), k) =
0), (16) becomes

YI(k) = Hp(z) [xI(k + 1) + z [xI(0)δ(k)]] + ΞI(k)

= Hp(z) [fI (xI(k), uI(k)) + gI (xI(k), zI(k), uI(k))]

+ h(k)xI(0) + ΞI(k) (17)

where δ(k) denotes the discrete-time unit-impulse sequence.

The filtered output estimation model for YI , denoted by ŶI ,

can be analyzed from the estimate provided by (12) as follows:

Ŷ
(sI )
I (k) =

∑

J∈Os

W (I,J)
s Hp(z)

[(
f
(sJ )
J (yJ(k), uJ (k))

+ ĝ
(sJ)
J

(
yJ(k), v

b
J (k), uJ(k), ϑ̂J (k)

))b
]
+h(k)y

(sI)
I (0). (18)

Therefore, the residual (13) is readily computable from (14)

and (15). The residual is analyzed in Section IV-D to obtain

a suitable adaptive detection threshold. Now, we design the

adaptive approximator ĝI , needed to compute the state estimate

(12) and hence (15).

B. Adaptive Approximator

Reducing the uncertainty on the interconnection function

enables improved detection thresholds which, in turn, results

in better detection capabilities. In this subsection, we consider

the design of a nonlinear adaptive approximator, exploiting the

variables available in the local buffers in each LFD to manage

communication delays (the details of the delay compensation

strategy are given in Section IV-C). The structure of the linear-

in-the-parameters nonlinear multivariable approximator is not

dealt with in this paper (nonlinear approximation schemes

like neural networks, fuzzy logic networks, wavelet networks,

spline functions, polynomials, etc. can be used).

As shown later on in this subsection, adaptation of the

parameters ϑ̂I of the approximator is achieved through the

design of a dynamic state estimator which, in the general case

of shared variables, takes on the form

x̂
(sI )
I (k + 1)

= λ
(
x̂
(sI )
I (k)−y

(sI)
I (k)

)
+λ

∑

J∈Os

W (I,J)
s

[
x̂
b(sJ )
J (k)−x̂

(sI)
I (k)

]

+
∑

J∈Os

W (I,J)
s

[
f
(sJ )
J (yJ , uJ) + ĝ

(sJ )
J

(
yJ , v

b
J , uJ , ϑ̂J

)]b

(19)

where 0 < λ < 1 is a design parameter. Let us introduce the

estimation error

ǫI(k) � yI(k)− x̂I(k)

and let us analyze ǫI under healthy mode of behavior. By

assumption,
∑

J∈Os
W

(I,J)
s = 1 and the following holds for

shared variables, ∀J ∈ Os (see the model decomposition pro-

cedure outlined in [5]):

f (s)(x, u) + η(s)(x, u, k)

= f
(sJ )
J (xJ , uJ) + g

(sJ )
J (xJ , zJ , uJ)

=
∑

J∈Os

W (I,J)
s

[
f
(sJ )
J (xJ , uJ) + g

(sJ )
J (xJ , zJ , uJ)

]
.

Moreover, we can write
∑

J∈Os

W (I,J)
s

[
f
(sJ )
J (xJ , uJ) + g

(sJ )
J (xJ , zJ , uJ)

]

=
∑

J∈Os

W (I,J)
s

[
f
(sJ )
J (xJ , uJ) + g

(sJ )
J (xJ , zJ , uJ)

]b

thanks to the fact that only up-to-date information is used in

the consensus mechanism by using the time-varying consensus

matrix (see Section IV-C and E): in the case of delays, only the

updated information is used.

Owing to these considerations, we compute the sI th state

estimation error component, for the general form of (19), as

follows:

ǫ
(sI)
I (k + 1)

= y
(sI)
I (k + 1)− x̂

(sI )
I (k + 1)

=
∑

J∈Os

W (I,J)
s

[
λǫ

(sJ )
J +∆f

(sJ )
J +∆g

(sJ )
J − λξ

(sJ )
J

]b

+ λξ
(sI )
I (k) + ξ

(sI )
I (k + 1) (20)

where

∆f
(sJ )
J � f

(sJ )
J (xJ , uJ)− f

(sJ )
J (yJ , uJ)

∆g
(sJ )
J � g

(sJ )
J (xJ , zJ , uJ)− ĝ

(sJ )
J (yJ , v

b
J , uJ , ϑ̂J).

Let us introduce a compact formulation in vectorial form of

the state error (20) for the sake of analysis. Specifically, we

define for every sth state component the extended estimation

error vector ǫs,E , which is a column vector collecting the

estimation error vectors of the N sub-systems sharing the sth

state component: ǫs,E � col(ǫ
(sJ )
J : J ∈ Os). Notice that, if the

sth state component is not shared, the set is just made of a single

component. The dynamics of ǫs,E can be described as

ǫs,E(k + 1) = Ws [λǫs,E +∆fs,E +∆gs,E − λξs,E ]
b

+ λξs,E(k) + ξs,E(k + 1) (21)

where ∆fs,E is a column vector, collecting the values ∆f
(sJ )
J ,

for each J ∈ Os; ∆gs,E(k) and ξs,E are defined in an anal-

ogous way as ∆fs,E(k). From this equation, the following

learning law can be derived using Lyapunov stability methods

(see [46]) for every I ∈ 1, . . . , N :

ϑ̂I(k + 1) = PΘ̂I

[
ϑ̂I(k) + γIL

⊤
I [ǫI(k + 1)− λǫI(k)

]
(22)

where L⊤
I = ∂ĝI/∂ϑ̂I is the gradient matrix of the online

approximator with respect to its adjustable parameters and
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γI = μI/εI + ‖L⊤
I ‖

2
F , with PΘ̂I

being a projection operator re-

stricting ϑ̂I within Θ̂I [47], ‖ · ‖F denotes the Frobenius norm,

and εI > 0, 0 < μI < 2 are design constants that guarantee the

stability of the learning law [47].

C. Delay Compensation Strategy

Next, we analyze the properties of the fault detection es-

timator introduced in (Section IV-A), where the filtered mea-

surements are used; in particular, we explain how the estimator

manages delays and packet losses in the second-level commu-

nication network between diagnosers.

In order to compute (12) and (19), the generic J th diagnoser

communicates to the neighboring LFDs the current values of

the terms x̂
(sJ )
J , f

(sJ )
J + ĝ

(sJ )
J and vI . It is worth noting that

this information exchange between diagnosers can be affected

by time-varying delays and packet losses, and hence a com-

pensation strategy has to be devised.5 It is important to note

that a resynchronization strategy like the one used in the first-

level communication networks cannot be used in this case, since

here we consider data exchanged between different LFDs, and

each LFD, of course, does not know the model of neighboring

subsystems.

As in [43], thanks to the use of the virtual timestamps,

the most recent measurements and information are considered.

When a data packet arrives, its virtual timestamp vTS is com-

pared to tb, which is the virtual timestamp of the information

already in the buffer. If vTS > tb, then the novel data packet

takes its place in the buffer and tb ← vTS. At time tc, with

k < tc < k + 1, each LFD computes the estimates for the time

instant k + 1 using information referred to time k. A variable in

the buffer is up-to-date if tb = k. Should a delay or a packet loss

occur in the second-level communication network, we proceed

as follows.

• If some of the interconnection variables are not up-to-

date, that is tb < k, then the learning of the interconnec-

tion function gI (22) is temporarily paused. Anyway, not

up-to-date interconnection variables are used to compute

the local value of the interconnection function in the

state estimators (12) and (19), but this error is taken into

account in the computation of the detection threshold, as

will be seen in the following subsection.

• The summations in (12) and (19) are carried on only using

up-to-date terms.

In order to allow the implementation of this second strategy,

we adopt a time-varying weighting matrix Ws, able to exclude

from the summations in (12) and (19) the terms that are outdated

(see Section IV-E).

D. Detection Threshold

In order to define an appropriate threshold for the detection

of faults, we now analyze the dynamics of the output estimation

5The delay compensation strategy is derived without any assumption on
the delay length, thus eventually dealing with the problem of packet losses
and “out-of-sequence” packets. We assume that the communication network
between diagnosers is designed so to avoid pathological scenarios, such as, for
example, a situation in which the communication delay is always larger than
the sampling time.

error when the system is under healthy mode of behavior. Since,

from (17) we have

Y
(sI )
I (k) =

∑

J∈Os

W (I,J)
s

[
Hp(z)

[
f
(sJ )
J (xJ(k), uJ (k))

+ g
(sJ )
J (xJ (k), zJ(k), uJ(k))

]]
+ h(k)x

(sI )
I (0) + Ξ

(sI )
I (k)

(23)

we are able to compute the residual defined in (13) by using

(18) and (23)

r
(sI )
I (k) =

∑

J∈Os

W (I,J)
s

[
χ
(sJ )
J (k)

]b
− ξ

(sI )
I (0)h(k)+ Ξ

(sI )
I (k)

(24)

where the total uncertainty term χ
(sJ )
J (k) is defined as

χ
(sJ )
J (k) � Hp(z)

[
∆f

(sJ )
J (k) + ∆g

(sJ )
J (k)

]
. (25)

The interconnection function error ∆gI can be computed as the

sum of four different terms

∆gI = LI ϑ̃I + νI +∆ĝI +∆gτI . (26)

The first term takes into account the error due to the parameters’

estimation. This error can be characterized by introducing an

optimal weight vector [48] ϑ̂∗
I as follows:

ϑ̂∗
I�argmin

ϑ̂I

sup
xI ,zI ,uI

∥∥∥gI(xI , zI , uI)−ĝI(xI , zI , uI , ϑ̂I

∥∥∥ (27)

with ϑ̂I , xI , zI , uI taking values in their respective domains,

and by defining the parameter estimation error

ϑ̃I � ϑ̂∗
I − ϑ̂I .

The second term in (26) is the so-called minimum functional

approximation error νI , which describes the least possible

approximation error that can be obtained at time k if ϑ̂I were

optimally chosen

νI(k) � gI(xI , zI , uI)− ĝI

(
xI , zI , uI , ϑ̂

∗
I

)
.

Then, a term representing the error caused by the use of the

uncertain measurements instead of the actual values of the state

variables is defined

∆ĝI � ĝI(xI , zI , uI , ϑ̂I)− ĝI(yI , vI , uI , ϑ̂I).

Finally, the estimation error due to the use of delayed measure-

ments is taken into account by

∆gτI � ĝI(yI , vI , uI , ϑ̂I)− ĝI

(
yI , v

b
I , uI , ϑ̂I

)

where vI is the current measured variable and vbI is the value

in the buffer, which is “old” in the presence of delays. Clearly,

∆gτI = 0 when up-to-date measurements are used (in this case,

vbI = vI ).
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Using (26), the total uncertainty term χ
(sJ )
J (k) in (25) can be

rewritten as

χ
(sJ )
J (k) � Hp(z)

[
∆f

(sJ )
J (k) + L

(sJ )
J ϑ̃J (k) + ν

(sJ )
J (k)

+∆ĝ
(sJ )
J (k) + ∆g

τ(sJ)
J (k)

]
(28)

where L
(sJ )
J indicates the sJ th line of the matrix LJ . Using the

triangle inequality, (24) satisfies

∣∣∣r(sI)I (k)
∣∣∣≤

∣∣∣∣∣
∑

J∈Os

W (I,J)
s

[
χ
(sJ)
J (k)

]b
∣∣∣∣∣+

∣∣∣ξ(sI)I (0)h(k)
∣∣∣+

∣∣∣Ξ(sI)
I (k)

∣∣∣

≤
∑

J∈Os

W (I,J)
s

[∣∣∣χ(sJ)
J (k)

∣∣∣
]b
+ ξ̄

(sI)
I (0)|h(k)|+Ξ̄

(sI)
I (k).

(29)

From (28) and using again the triangle inequality, we obtain

∣∣∣χ(sJ)
J (k)

∣∣∣≤
∣∣∣Hp(z)

[
∆f

(sJ)
J (k) + ∆g

(sJ)
J (k)

]∣∣∣

≤

k∑

n=0

|hp(k−n)|
∣∣∣∆f

(sJ)
J (n)+L

(sJ)
J ϑ̃J(n)+ν

(sJ)
J (n)

+∆ĝ
(sJ)
J (n)+∆g

τ(sJ)
J (n)

∣∣∣

≤ χ̄
(sJ)
J (k)�H̄p(z)

[
∆̄f

(sJ)
J (k)+∆̄g

(sJ)
J (k)

]
(30)

where H̄p(z) is the transfer function with impulse response

h̄p(k) = |hp(k)|

∆̄f
(sJ )
J (k) � max∣∣∣ξ(sJ )

J

∣∣∣≤ξ̄
(sJ )

J

{∣∣∣∆f
(sJ )
J (k)

∣∣∣
}

∆̄g
(sJ )
I (k) �

∥∥∥L(sJ )
I

∥∥∥κI(ϑ̂I) + ν̄
(sJ )
I (k)

+ max
|ξI |≤ξ̄I (k)

max
|ςI |≤ς̄I(k)

∣∣∣∆ĝ
(sJ )
I (k)

∣∣∣

+ max
vI∈Rv

∣∣∣ĝ(sJ )I (yI , vI , uI , ϑ̂I)

− ĝ
(sJ )
I

(
yI , v

b
I(tb), uI , ϑ̂I

)∣∣∣ (31)

with ν̄I denoting a bound to the minimum functional approxi-

mation error, the function κI being such that κI(ϑ̂I)≥‖ϑ̃I‖ and

RvI ⊂ R
qI , where this last term represents a local domain of

the interconnection variable and is communicated by the neigh-

boring LFDs at k = 0. It is important to remark that RvI coin-

cides with the domain RxJ for subsystem J (Assumption 1).

Thanks to the way the threshold is designed from (29), it is

straightforward that it guarantees the absence of false alarms,

since the residual prior to the fault occurrence always satisfies

∣∣∣r(sI )I (k)
∣∣∣ ≤ r̄

(sI )
I (k)

where the detection threshold r̄
(sI )
I is defined as

r̄
(sI )
I (k)�

∑

J∈Os

W (I,J)
s

[
χ̄
(sJ )
J (k)

]b
+ ξ̄

(sI )
I (0) |h(k)|+Ξ̄

(sI)
I (k).

(32)

The threshold term χ̄
(sJ )
J is computed at node J , collected in

the information vector IJ,I , and sent to neighboring LFD I .

Remark 4: Notice that, even in the case of a conservative

bound ξ̄
(sI )
I , the second term ξ̄

(sI )
I |h(k)| affects the detection

threshold only during the initial portion of the transient (the

impulse response h(k) of the filter H(z) decays exponentially).

Moreover, the term Ξ̄
(sI )
I in (31) takes into account the uncer-

tainty due to the delays in the communication network between

LFDs. This term is instrumental to ensure the absence of false

alarms caused by these communication delays.

Remark 5: The terms ξ̄I(k) and ς̄I(k) are computed by the

LFDs at each time step after the resynchronization task [see (8)]

and are available to compute the fault detection threshold.

Remark 6: Admittedly, the bounds used in (30) and (31)

give rise to conservative thresholds but have the advantage

of guaranteeing the absence of false-positive alarms and of

being easily computable requiring a small amount of data to

be exchanged between the LFDs. In the presence of a priori

knowledge on the process to be monitored, a tighter bound

could be devised (for example, Lipschitz conditions on the local

models could be easily exploited to devise tighter detection

thresholds.

E. Time-Varying Consensus Mechanism

In this subsection, the consensus methodology concerning

shared state variables is modified in order to address the conser-

vativeness of the detection threshold (32). More specifically, the

consensus-weighting matrix Ws takes on the following time-

varying form:

W (I,J)
s =

⎧
⎨
⎩
1 if J = arg min

J∈Ob
s

[
χ̄
(sJ )
J (k)

]b

0 otherwise

(33)

where Ob
s is the time-varying set of subsystems sharing s at

time k for which the Ith LFD has up-to-date information in the

buffer. In intuitive terms, the time behavior (33) ensures that a

larger weight is assigned to the subsystem characterized by the

lowest threshold (hence, in rough terms, lowest uncertainty in

its measurements and in the local model and with the smallest

level of delays and packet losses).

It is important to remark that the consensus protocol uses

only up-to-date information. This means that at each step each

LFD uses only the information received from one LFD sharing

the considered variable, and this choice can change at each

step. It is possible that neighboring LFDs sharing the same

variable x(s) use different information for their threshold, since

the threshold term χ̄
(s)
J (k) depends on the reliability of the

communication links, in conjunction with the confidence that

each LFD has in its own measurements and estimates. In this

way, moreover, we can manage time delays and packet losses:

in fact, if the FDAE does not receive some consensus terms

from some neighboring LFDs, it simply considers and weights

only the up-to-date values. It is worth noting that this approach

can be used in any case, with or without delays, and in Section V

we demonstrate that it improves detectability.

In the following simple results, the boundedness of the

estimation error is addressed when the time-varying consensus

matrix (33) is used.

Authorized licensed use limited to: TU Delft Library. Downloaded on December 01,2020 at 13:12:09 UTC from IEEE Xplore.  Restrictions apply. 



BOEM et al.: DISTRIBUTED NETWORKED APPROACH FOR FAULT DETECTION OF LARGE-SCALE SYSTEMS 27

Proposition 4.1: The error dynamics (21), where the con-

sensus matrix is updated according to (33), is BIBO stable.

Proof: Since Ws is a stochastic matrix, its norm is identi-

cally equal to 1. Therefore, since 0<λ<1, ‖λWs(k)‖≤γ<1,

with 0 < γ < 1. Let us define

Us,E(k)=Ws[∆fs,E+∆gs,E−λξs,E ]
b+λξs,E(k)+ξs,E(k+1).

(34)

We have

‖ǫs,E(k + 1)‖

≤ ‖λW s(k)ǫs,E(k)‖ + ‖Us,E(k)‖

≤ ‖λW s(k)‖ ‖λW s(k − 1)‖ . . . ‖λW s(0)‖ ‖ǫs,E(0)‖

+

k∑

j=1

‖λW s(k)‖‖λW s(k−1)‖ . . . ‖λW s(j)‖ ‖Us,E(j)‖

≤ γk ‖ǫs,E(0)‖+
k∑

j=1

γk−j ‖Us,E(j)‖

≤
1

1− γ
sup
j≥1

‖Us,E(j)‖ .

For k → ∞, the unforced system converges to zero and the

series converges to a bounded value (see results in [49]). More-

over, using results in [50] for unforced systems, we can state

that a system x(k + 1) = A(k)x(k), with A(k) ∈ conv(A1,
. . . , AN ), is exponentially stable if and only if ∃ a sufficiently

large integer q such that ‖Ai1Ai2 , . . . , Aiq‖ ≤ γ < 1, ∀ (i1,
. . . , iq) ∈ {1, . . . , N}q. In our case, therefore, we only need to

analyze matrix W s(k). Since each row of W s(k) has all null

elements except one equal to 1, the product W s(k)W s(k − 1),
. . . ,W s(0) is a stochastic matrix. Hence, since 0 < λ < 1,

we have ‖λt(W s(k)W s(k − 1), . . . ,W s(0))‖ < 1 and the hy-

pothesis is satisfied. Finally, since all the uncertain terms are

bounded, then the discrete-time system (21) is BIBO stable. �

F. Local Fault Detection Algorithm

Now, all the elements needed to implement the proposed

fault detection scheme are available. For the sake of clarity,

the implementation of the local fault detection methodology is

sketched in Algorithm 1.

Algorithm 1 Fault detection algorithm for the Ith LFD

Learning = ON

Initialize the estimate x̂I(0) = yI(0)
Initialize the estimate x̃I(0) = yI(0)
Compute the estimate x̂I(1) (19)

Compute the estimate x̃I(1) (12)

Set k = 1
while A fault is not detected do

Measurements yI(k) are acquired

Compute ǫI(k) = yI(k)− x̂I(k) (for learning)

Compute YI(k) (14), ŶI(k) (15)

Compute the residual rI(k) = YI(k)− ŶI(k)
Information from neighbors is acquired

Update consensus weights (33)

Compute the threshold r̄I(k) (32)

Compare |rI(k)| with r̄I(k)
if |rI(k)| > r̄I(k) then

A fault is detected

Learning = OFF

end if

if Some components i of vI(k) are not received then

Learning = OFF

else

Learning = ON

v
b(i)
I (k) = v

(i)
I (k)

end if

if Learning = ON then

Update ϑ̂I(k) (22)

else

ϑ̂I(k) = ϑ̂I(k − 1)
end if

Compute the novel estimate x̂I(k + 1) (19)

Compute the novel estimate x̃I(k + 1) (12)

k = k + 1
end while

V. DETECTABILITY CONDITIONS

In this section, we address some sufficient conditions for

detectability of faults by the proposed distributed networked

fault detection scheme, thus considering the behavior of the

fault detection algorithm in the case of a faulty system. We

assume that at an unknown time k0 a fault φ occurs. Let us

consider the general case of a variable shared among more than

one subsystem. The fault detectability analysis constitutes a

theoretical result that characterizes quantitatively (and implic-

itly) the class of faults detectable by the proposed scheme.

Theorem 5.1 (Fault Detectability): A fault in the Ith sub-

system occurring at time k = k0 is detectable at a certain time

k = kd if the fault function φ
(sI )
I (xI , zI , uI , kd) satisfies the

following inequality for some sI = 1, . . . , nx
I :

∣∣∣∣∣

kd∑

n=k0

hp(k − n)φ
(sI )
I (xI , zI , uI , n)

∣∣∣∣∣ > 2r̄
(sI )
I (kd). (35)

Proof: After fault occurrence, that is, for k > k0, (24)

becomes

r
(sI )
I (k)

=
∑

J∈Os

W (I,J)
s

[
χ
(sJ )
J (k)b +Hp(z)

[
φ
(sJ )
J (xJ , zJ , uJ , k)

]]

− ξ
(sI )
I (0)h(k) + Ξ

(sI )
I (k)

=
∑

J∈Os

W (I,J)
s

[
χ
(sJ )
J (k)

]b
− ξ

(sI )
I (0)h(k) + Ξ

(sI )
I (k)

+Hp(z)
[
φ
(sI )
I (xI , zI , uI , k)

]
. (36)

Using the triangle inequality, from (36) we can write

∣∣∣r(sI )I (k)
∣∣∣ ≥ −

∣∣∣∣∣
∑

J∈Os

W (I,J)
s

[
χ
(sJ )
J (k)

]b
∣∣∣∣∣−

∣∣∣ξ(sI )I (0)h(k)
∣∣∣

−
∣∣∣Ξ(sI )

I (k)
∣∣∣+

∣∣∣Hp(z)
[
φ
(sI )
I (xI , zI , uI , k)

]∣∣∣ (37)
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and by using a similar procedure as in the derivation of (32)

and (37) becomes
∣∣∣r(sI )I (k)

∣∣∣ ≥ −r̄
(sI )
I (k) +

∣∣∣Hp(z)
[
φ
(sI )
I (xI , zI , uI , k)

]∣∣∣ .
(38)

For fault detection at time k = kd, the inequality |r
(sI )
I (kd)| >

r̄
(sI )
I (kd) must hold for some i = 1, . . . , nx

I , so the final fault

detectability condition is obtained
∣∣∣Hp(z)

[
φ
(sI )
I (xI , zI , uI , kd)

]∣∣∣ > 2r̄
(sI )
I (kd).

This can be rewritten in the summation form (35) of the

theorem. �

This theorem provides a sufficient condition for the implicit

characterization of a class of faults that can be detected by the

proposed fault detection scheme. Based on this result, in (35)

it is easy to see that the lower the threshold is, the sooner the

fault will be detected. Therefore the use of filtering along with

the proposed time-varying consensus weighting matrix, able to

choose the lowest threshold components in the case of shared

variables, improves detectability. It is worth noting that this is

true in general, also in the case without delays. Besides, let us

note that the detectability condition represents the minimum

cumulative magnitude of the fault that can be detected under

a specific trajectory of the system. It is possible to study offline

this condition for representative trajectories of the system.

Remark 7: The use of filtering is of crucial importance

in order to derive tight detection thresholds that guarantee no

false alarms. As it can be seen in the detectability condition

given in (35), the detection of the fault depends on the filtered

fault function φI . As a result, the selection of the filter plays a

crucial role to the proposed scheme. A rigorous investigation

of the filtering impact (according to the poles’ location and

filters’ order) on the detection time under continuous time is

presented in [42].

VI. SIMULATION RESULTS

In this section, we present some simulation results in order

to illustrate the effectiveness of the proposed methods.

A. Simulation System

We consider a five-tank system [51], monitored by two LFDs

(see Fig. 4). The two LFDs monitor three tanks each and

share the third tank. The local nominal functions f1 and f2
describe the flows through the pipes linking tanks assigned to

the same LFD, while the interconnection terms g1 and g2 are

due to the flow between tanks 3 and 4 and between tanks 2

and 3, respectively. The monolithic system (see Fig. 4) is

decomposed into two overlapping subsystems. By using the for-

malism presented in [5], the decomposition is D = {Σ1,Σ2},

with index sets I1 = [1 2 3]⊤ and I2 = [3 4 5]⊤, representing

the state variables indices belonging to each subsystem. The

third tank is shared, and therefore the corresponding overlap

index set is O3 = {1, 2}. The tank levels are denoted by x
(i)
I ,

with I = {1, 2} and i = {1, 2, 3}, and are limited between 0

and 10 m. Two pumps are present, feeding the first and the fifth

tank with the following flows: u1 = 1.25 + 0.25 · sin(0.25 · k)
and u2 = 1.75 + 0.4 · cos(0.05 · k). The nominal tank sections

Fig. 4. Structure of the five-tank system.

are A = [1 1 1 1 1] m2, while the interconnecting pipe cross-

sections are nominally equal to Ap = [0.1 0.1 0.1 0.1 0.1] m2.

For each tank, there are connected drain pipes whose nominal

cross-section are Ad = [0.05 0.05 0.05 0.05 0.05] m2. All

the pipes outflow coefficients are unitary. By using balance

equations and Torricelli’s rule, we obtain the state equations

(for details about the dynamical equations of a multitank system

see as example [46]). The actual cross-sections used are affected

by random uncertainties no larger than 7.5% and 10% of the

nominal values, respectively for the tanks and for the pipes. The

tank initial levels and the outflow coefficients are affected by

uncertainties no larger than 15%. Furthermore the tank levels

measurementsmI are affected by measurement noisewI whose

components are upper bounded by w̄1 = [0.05 0.05 0.05] m

and w̄2 = [0.05 0.05 0.05] m. The virtual measurement errors

are computed online basing on the resynchronization process.

In order to learn the interconnection functions of each sub-

system, which consist on the flows through pipes crossing a

subsystem boundary, each LFD is provided with adaptive ap-

proximators ĝI , implemented by RBF neural networks having

3 and 2 neurons respectively along the range of each input

dimension. Since the interconnection variables are z1 = x
(2)
2

and z2 = x
(2)
1 , the interconnection functions g1(x1, z1, u1) and

g2(x2, z2, u2) should be 5-input, 3-output functions. On the

other hand, because of the topology of the specific system, both

g1 and g2 have only one nonzero output component and depend

only on (x
(2)
2 , x

(3)
1 ) and (x

(2)
1 , x

(1)
2 ) respectively. Therefore,

the adaptive approximators ĝ1 and ĝ2 were realized with two

2-input, 1-output radial basis neural networks. The networks

to learn ĝ1 and ĝ2 are implemented with nine basis functions.

After suitable offline simulations, the parameter domains ΘI

were chosen to be hyperspheres with radii equal to [4 4] · Ts,

with Ts = 0.1 s being the sampling period. The learning rate

auxiliary coefficients for the interconnection adaptive approx-

imators were set to μ1,0 = 0.005, ε1,0 = 10−3, μ2,0 = 0.005,

ε2,0 = 10−3, while the learning filter constants were all set to

λ = 0.85. On the other hand, the detection filter is designed

having transfer function (1− λ)/(1 − λz−1). The different

sensor networks, each one measuring a single variable, have

different sampling rates. The measurement sampling periods

are [10 15 0.5 0.35 0.21 0.45 0.7], where the first two variables

are the inputs, while the offsets with respect to the diagnosers

clock are [0 0 0.1 0.25 0.13 0.15 0.07]. The measurements

signals are shown in Fig. 5, where the real signals, the sampled

measurements, and the projected signals are illustrated.

It is worth noting that the considered case includes a scenario

in which also the input signals are subject to noise and sam-

pling issues. The communication delays between diagnosers are
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Fig. 5. Measured and projected signals.

random and time-varying: the effects of the delay are shown in

Fig. 6 for the case of two sinusoidal signals as example. In the

first plot, the received timestamp is illustrated, while the second

figure shows the sinusoidal signals as they are received by the

other diagnosers.

B. Simulation Scenarios and Results

We present three different simulation scenarios. In the first

scenario, the considered fault function represents a leakage

(a circular hole with cross section equal to 0.15 times the nom-

inal tank section) in the third tank occurring at time k = 200 s.

The simulation results are shown in Fig. 7, where the detec-

tion residuals and the time-varying thresholds are represented.

It is possible to see that both the first and the second local

fault diagnosers are able to detect the fault occurring on the

third tank.

In particular, the fault is detected at time k = 200.5 s by LFD

1 and at k = 201.2 s by the second diagnoser. We compared

the obtained results to the case in which all the measurements

are synchronized and no communication delays are present,

which is an ideal case. The model and fault parameters are

the same used in the case with multirate measurements and

delayed communication. As it is possible to see in Table I,

in this ideal scenario, the first local fault diagnoser can detect

the fault at time k = 200.8 s, while the detection time of the

Fig. 6. Effect of the time-varying communication delays on transmitted
signals and timestamps.

TABLE I
DETECTION ANALYSIS FOR SCENARIO NUMBER 1

second LFD is k = 201.0. In Table I, another performance

index is reported, that is, the Maximum POst-detection Residual

to Threshold (MPORT) ratio. The reason for computing the

MPORT ratio is that it gives a quantitative indication on how

much the thresholds could increase, for instance for coping

with larger uncertainty sources, continuing to detect anyway

the fault. It could be defined, in other words, as an indicator of

the robustness of the threshold with respect to the uncertainties

sources. If it is high, the threshold should be able to detect the

fault even in presence of a larger uncertainty.

In this example, simulation results show that the introduction

of the resynchronization scheme and of the delay compensation

strategy allows to obtain fault detection even when the measure-

ments are nonsynchronized and the communication network is

not reliable. Moreover, the detection time is comparable to the

ideal case without delays.

In the second scenario, we consider the same system and the

same kind of fault, thus a leakage, but with varying hole radii.

The radii are chosen in order to correspond to hole sections

between 0.15 and 0.5 times the tank nominal section. The

differences with previous scenario are: the sampling time has

been lowered to 0.025 s in order to better appreciate the effect

of the fault magnitude on the detection time; the fault time has

been set equal to Tf = 15.1 s and the fault time evolution is

incipient instead of abrupt, with a time profile described by

β(k − k0) = 1− b−(k−k0), with b = 250 (see [5] for a defini-

tion of fault time profile). It is possible to see in Fig. 8, how the

detection time and the MPORT ratios change depending on the

different magnitude of the fault. This figure has been generated

by averaging the results of 30 simulations run for each hole

radius, with different random delays, packet losses, and model

uncertainties. The two LFDs are not always able to both detect

the fault, as for low values of the hole radius the fault is hidden

by the uncertainties due to measurement asynchronicity, delays,

and noise. In particular, the fault magnitude influences the

Authorized licensed use limited to: TU Delft Library. Downloaded on December 01,2020 at 13:12:09 UTC from IEEE Xplore.  Restrictions apply. 



30 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 62, NO. 1, JANUARY 2017

Fig. 7. Scenario no. 1: detection residuals and thresholds. The saw-tooth like behavior of the thresholds r̄
(1)
1 and r̄

(3)
2 is the effect of the virtual

measurement error bound growing between one actual measurement of the pump inflows and the following one. As they are quite scarce, happening
only every 10 and 15 s, this effect is noticeable.

detectability, with the detection time decreasing for larger fault

magnitudes. Instead, the MPORT ratio shows a clear and almost

linear, in this example, dependence on the fault magnitude. The

results obtained considering this scenario show thus the impor-

tance of the detectability analysis. The magnitude of the fault

is related to the possibility to detect the fault and to the robust-

ness of the detection.

Finally, in the third scenario, we consider the same five-tank

system and parameters as in the first scenario, but a different

fault, that is, an actuator fault. At time k = 150 s, a fault

on pump number 2 occurs, causing a reduction of the 35%

of the flow. We assume that the fault function has again an

incipient time profile β(k − k0) = 1− b−(k−k0), with b = 100.

Its development is thus quite smooth, and only tank 5 is affected

by the fault. We can see the results in Fig. 9 for the component

affected by the fault in LFD 2. For all the other components,

the residuals are lower than the corresponding thresholds. Also

in this scenario, the proposed fault detection architecture is

able to detect the fault even in the worst conditions (delayed

and asynchronous measurements). Due to the smoothness of

the fault time profile, with respect to the leakage case, now

the difference in the detection time between real and ideal

conditions is larger. In the ideal case, we detect the fault at

k = 186.8 s, 36 s after fault occurrence, with MPORT = 1.21,

while in the real case we have detection at 191.7 s, 41 s after

fault time, with MPORT = 1.16.

VII. CONCLUDING REMARKS

In this paper, a comprehensive architecture for the distributed

fault diagnosis of large-scale nonlinear uncertain systems in

a networked context has been presented. The proposed ap-

proach considers all the parts of the networked system: the

physical environment, the sensor level, the local diagnosers

layer, and the communication networks. The general distributed

diagnosis approach presented in [5] is generalized in order
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Fig. 8. Scenario no. 2: detection time and MPORT ratio versus leakage holes sections.

Fig. 9. Scenario no. 3: detection residuals and thresholds.

to address some of the issues emerging when designing dis-

tributed networked monitoring architectures. More specifically,

multirate variable sampling systems have been considered and

a model-based resynchronization mechanism has been pro-

posed to be implemented by each local fault-diagnosis unit.

Moreover, a delay compensation strategy is derived to face the

problem of delays and packet dropouts in the communication

networks. Finally, a general class of filters has been embed-

ded into the design of the residual and threshold signals in

order to filter measurement noise and derive less conservative

detection thresholds.

As a future work, we will investigate the multiple faults case

and the sensors faults scenario (see for example [52]–[54]).
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