
1

A Distributed Protocol for Dynamic Address

Assignment in Mobile Ad Hoc Networks

Mansi Thoppian and Ravi Prakash

Abstract

A Mobile Ad hoc NETwork (MANET) is a group of mobile nodes that form a multi-hop wireless

network. The topology of the network can change randomly due to unpredictable mobility of nodes and

propagation characteristics. Previously, it was assumed that the nodes in the network were assigned IP

addresses a priori. This may not be feasible as nodes can enter and leave the network dynamically. A

dynamic IP address assignment protocol like DHCP requires centralized servers that may not be present

in MANETs. Hence, we propose a distributed protocol for dynamic IP address assignment to nodes in

MANETs. The proposed solution guarantees unique IP address assignment under a variety of network

conditions including message losses, network partitioning and merging. Simulation results show that

the protocol incurs low latency and communication overhead for an IP address assignment.

Index Terms

MANET, address allocation, IP-networks.

I. INTRODUCTION

M
OBILE ad hoc networks (MANETs) are multi-hop wireless networks of mobile nodes

without any fixed, or pre-existing infrastructure. Nodes within the wireless range of each

other can communicate directly. Nodes outside each other’s wireless range must communicate

indirectly, using a multi-hop route through other nodes in the network. This multi-hop route

may change if the network topology changes. Several routing protocols like DSR [5], CBR [6],

TORA [7], ZRP [8], DSDV [9], AODV [10], etc. have been proposed for MANETs.

This work is supported in part by NSF CAREER Grant # CCR-9796331

The authors are with the Department of Computer Science at The University of Texas at Dallas, Richardson, TX 75083.

Email: mansi, ravip@utdallas.edu



MANETs may operate in a stand-alone mode, or may have gateways to interconnect to a fixed

network. In the stand-alone mode, the network is spontaneously formed by nodes gathering at

a remote location with no network infrastructure. Such a network can also be formed when the

gateways to the external world fail or when all the existing network infrastructure goes down

due to natural/man-made disasters. In the presence of a gateway, a MANET is envisioned to

operate as a stub network connected to a fixed internetwork.

In most networks, including MANETs, each node needs a unique identifier to communicate.

It may be argued that the MAC address or the home IP address of the node should be sufficient

for this purpose. However, use of the MAC address as a unique identifier has the following

limitations:

1) MANET nodes are not restricted to using network interface cards (NICs) with a 48-bit

IEEE-assigned unique MAC address. In fact, the TCP/IP protocol stack should work on

a variety of data-link layer implementations. So, if this approach were to be employed,

specific implementations would be required for each type of hardware.

2) The uniqueness of a MAC address cannot always be guaranteed, as it is possible to change

the MAC address using commands like ifconfig.

3) There are known instances of multiple NIC cards from the same vendor having the same

MAC address [11] [12].

The home IP address of the mobile node may not be usable as a unique identifier at all times.

The home IP address may not be permanent, for example when the node acquires an IP address

during boot up through DHCP and releases it when it leaves the network. It is possible that two

nodes belonging to the same home network, at different times, may join the MANET with the

same home IP address. Moreover, even if a node owns a unique home IP address, it needs a

unique care-of IP address in the MANET if it is to be addressable from the Internet.

Static IP address assignment for MANET nodes is difficult as it needs to be done manually

with prior knowledge about the MANET’s current network configuration. Dynamic configura-

tion protocols like Dynamic Host Configuration Protocol (DHCP) [1] require the presence of

centralized servers. MANETs may not have such dedicated servers. Hence, centralized protocols

cannot be used to configure nodes in MANETs. In this paper we present a distributed protocol for

dynamic IP address assignment. The proposed solution is targeted towards the stand-alone mode

2



of operation. It may also be used in situations where the gateway only provides connectivity to

external network(s) with no support for IP address assignment. While we limit our examples to

IPv4, the proposed protocol is applicable to both IPv4 and IPv6 networks.

The remainder of the paper is organized as follows. Section II presents the related work.

Section III provides the basic idea of the protocol. The protocol messages and timers are discussed

in Sections IV and V, respectively. In Section VI, a detailed description of the protocol is provided

followed by a discussion of its correctness in Section VII. Simulation experiments and results

are presented in Section VIII, followed by conclusion in Section IX.

II. RELATED WORK

Cheshire et al. [13] describe a method for auto-configuration of the host by randomly choosing

a link-local address within the range 169.254.1.0 to 169.254.254.255. After selecting an address,

the host tests to see if the address is already in use by any other node. This approach focuses on

wired networks and ensures link-local uniqueness of the address. It is required that every node

in the network be within the communication range of every other node in the network, which

is not always possible in the case of MANETs. To extend the solution to MANETs, conflict

detection message(s) will have to be flooded throughout the network.

Perkins et al. [14] propose a solution for address auto-configuration in ad hoc networks.

An address is randomly chosen within the range 2048 to 65534 from the 169.254/16 address

block. A node floods Route Requests (RREQs) for the selected IP address. If no Route Reply

(RREP) is received within a timeout period, the node retries for RREQ RETRIES times. At

the end of all the retries, if no response is received, the chosen IP address is assumed to be

free. The node assigns itself that IP address. Here the latency is the timeout value multiplied

by RREQ RETRIES. This approach requires the routing protocol to have a “route discovery”

phase. It does not address the network partitioning issues.

IPv6 Stateless Autoconfiguration [15] specifies the steps a node takes to configure its interfaces

in IPv6. The steps include construction of link-local address, Duplicate Address Detection, and

construction of a site-local address. During Duplicate Address Detection for MANETs flooding

is required, thus making the approach unscalable. To overcome this scalability issue, an extension

is proposed in [16] by building a hierarchical structure. But the cost incurred in maintaining such

a hierarchical structure may be high.

3



In MANETconf [12], a new node entering the MANET requests for configuration information

from its neighbors. One of these neighbors initiates the IP address allocation process for the new

node. For each IP address assignment, this approach requires a network-wide broadcast leading

to scalability problems. However, this approach handles network partitioning and subsequent

merging.

Weak Duplicate Address Detection (DAD) protocol [17] requires each node in the network to

have a unique key. Weak DAD requires that packets “meant for” one node must not be routed

to another node, even if the two nodes have chosen the same address. This is achieved by using

the key information for duplicate address detection. In this approach, the routing protocol related

control packets need to be modified to carry the key information. In the weak DAD scheme, the

packet can still be misrouted in the interval between the occurrence of duplicate IP addresses

in the network and their actual detection. Enhanced Weak DAD [17] was proposed to eliminate

the above shortcoming by using sequence numbers and some bookkeeping.

Passive Duplicate Address Detection (PDAD) presented in [23] tries to detect duplicate ad-

dresses without disseminating additional control information. Based on classic link state routing,

the following three schemes are proposed:

PDAD based on sequence numbers (PDAD-SN): Detects duplicate addresses by using

sequence numbers and link state information.

PDAD based on locality principle (PDAD-LP): Exploits the fact that nodes move with

limited speed.

PDAD based on neighborhood (PDAD-NH): Exploits the property that a node knows its

own neighborhood and the neighborhood of the originator of a link state packet.

The proposed PDAD schemes use random source IDs to detect duplicate addresses within two

hop neighborhood. This approach requires the use of a link state routing protocol.

The stateless address autoconfiguration scheme presented in [24] consists of three phases: (1)

selection of random address, (2) verification of the uniqueness of the address and, (3) assignment

of the address to the network interface. The verification of uniqueness is done by a hybrid DAD

scheme consisting of two phases: (a) strong DAD phase and, (b) weak DAD phase. Within a

connected ad hoc network, a node configures itself with an IP address using strong DAD. During

strong DAD, the node chooses a tentative address and checks for any address duplication by

4



broadcasting AREQ message with the chosen tentative address for a fixed number of times. If

no response is received for the AREQ message, the node configures itself with the tentative

address. Weak DAD uses a “key” in addition to the IP address to detect duplicate addresses

during ad hoc routing. This scheme ensures that during resolution of an address conflict, the

sessions using conflicting addresses are maintained until the sessions are closed.

Dynamic Registration and Configuration Protocol (DRCP) [18] [19] extends DHCP for wire-

less networks. In this protocol, each node acts as both server and client and owns an ad-

dress pool. The address pool distribution is done using Dynamic Address Allocation Protocol

(DAAP) [18] [19]. Each node obtains the address pool by requesting half of the addresses from

the address pool of a neighboring node. The protocol does not discuss the network partitioning

issues and the impact of message loss.

Dynamic Address Allocation Protocol proposed in [20] requires that new nodes approach the

leader of the network to obtain an IP address. The leader is the node with the highest IP address

in the network. Network partitioning and merger are considered. The unique identifier used for

identifying the network is the MAC address of the initiator which is the first node that comes

up in the network. This could lead to a problem of multiple networks having the same identifier

when the initiator itself moves out of the network and forms another network. The impact of

message losses is not considered.

Zhou et al. [21] propose a solution which is derived from a sequence generation scheme

whereby a sequence consisting of numbers within a range R is generated using a function f(n).

The function f(n) is chosen such that in the sequences generated by f(n), the interval between two

occurrences of the same number is very large and the probability of more than one occurrence of

the same number in a limited number of different sequences initiated by different seeds during

some interval is extremely low. The protocol requires the first node to choose a random number

from the range R as its IP address and use a random state value as the seed for function f(n).

When a new node joins the network, the configured node generates another integer and a new

state value using f(n). The new node obtains these values and configures itself. In this approach,

the needed block of IP addresses may be significantly bigger than the number of nodes in the

network. Even if the minimal interval between two occurrences of the same address in the

sequence generated is extremely large, it is still possible for two nodes to have the same IP

5



address if the nodes keep moving in and out of the network at a high rate.

The solutions mentioned above have made significant contributions to our understanding of the

problem. However, we believe that all of these approaches handle only a subset of the network

conditions listed below:

1) Topology changes: Nodes in the network can move arbitrarily and can enter and leave the

network dynamically.

2) Message losses and node crashes: Message loss can be quite prevalent and can lead to

duplicate IP address assignment if not handled effectively. Nodes can leave the network

abruptly either due to link failure or crash.

3) Partitioning and subsequent merging: During the course of MANET operation, the network

can split into multiple networks and subsequently merge into one. During network merging,

it is possible to have duplicate IP addresses in the merged network.

4) Concurrent address requests: Multiple nodes can join the network simultaneously.

5) Limited energy and bandwidth: Nodes in MANET are energy limited and links are band-

width limited. Hence, the communication overhead incurred should be low.

In this paper, we propose a solution similar to DAAP [18], [19] that guarantees unique IP

address assignment under the above network conditions. In our approach, most of the address

assignments require local communication leading to low communication overhead and latency

(see Section VIII for details).

III. BASIC IDEA

The objective of the proposed protocol is to assign a unique IP address to a new node joining

the MANET. The new node joining the network is called a requester. The configured node

responsible for assigning an IP address to the requester is called an allocator. We assume

that the MANET starts with a single node. We call this node the Initiator of the network

and the configuration of this first node as MANET initialization. For simplicity, it is assumed

that at least the first node in the MANET knows the IP address block from which the IP

addresses are to be assigned to the nodes in the MANET. For example, this block can be the IPv4

private address block: 10.0.0.1 - 10.255.255.255, 172.16.0.0 - 172.31.255.255 or 192.168.0.0 -

192.168.255.255. The proposed protocol is equally applicable for IPv6 address space. The address

6



block information can be propagated to other nodes joining the network during the assignment

process. The term “broadcast” in this paper stands for local broadcast, unless specified otherwise.

When the Initiator starts operation in MANET mode, it broadcasts a message requesting an

IP address. As there are no other MANET nodes in the neighborhood, the Initiator will not

receive any response. The Initiator re-broadcasts its request message for a constant number of

times after which it assigns itself the first IP address from the IP address block and forms its

free ip set from the remaining addresses. The free ip set is an ordered set containing addresses

that are not in use by any node in the network.

After MANET initialization, every time a new node (requester) requests an IP address, one

of the existing MANET nodes (allocator) within communication range of the requester initiates

address allocation process for the requester. If the allocator has a non-empty free ip set, it allots

the second half of the addresses from its free ip set to the requester (this approach is similar

to the buddy system for memory management [2], [3]). Otherwise, it performs an expanding

ring search whereby it propagates the request through the network. If the allocator finds a node

(say node A) with a non-empty free ip set during the expanding ring search, it allots half of the

addresses from node A’s free ip set to the requester. The requester configures itself with the first

address from the alloted address block and forms its free ip set with the remaining addresses in

the block.

During the expanding ring search, the allocator might fail to find a free IP address either be-

cause: (i) all IP addresses have been assigned to nodes currently in the MANET or (ii) some nodes

have left the MANET without releasing their IP address and/or free ip set (leaked-addresses). In

the first scenario, no new node can be admitted (without expanding the address block range) as

the MANET has reached its maximum size. In the second case, the leaked-addresses have to be

reclaimed and assigned to new nodes joining the network. Address reclamation is done as follows:

the allocator determines the addresses of the nodes that failed to respond during the expanding

ring search (call this set the missing addresses set). The allocator performs a network-wide

broadcast targeted towards these addresses. The nodes in the network, on hearing this broadcast

message, respond with a message indicating a conflict if their IP address is among the broadcast

addresses. If the allocator receives messages indicating conflict, it removes the corresponding

IP address from the missing addresses set. The addresses in the resultant missing addresses set

7



are then declared as free IP addresses. One of these addresses is assigned to the requester. The

rest of the free IP addresses are re-distributed among the existing nodes in the network to form

their free ip sets. Concurrent reclamation operations are serialized based on the priorities of the

allocators (see Section VI-E for details).

During the course of MANET operation, nodes can split from the network and form/join

different networks. These networks can later merge into a single network. Each network is as-

signed a unique identifier (network id). To detect network-merging, nodes periodically broadcast

“Hello” messages to their neighbors. These “Hello” messages contain the IP address and the

network id of the sending node. Whenever a node (say A) receives a “Hello” message from

its neighboring node (say B) containing a different network id than its own, node A detects

merging of networks and replies. When node B receives a reply from A, it detects network-

merging as well. Furthermore, if node A has higher IP address than node B (ties are broken

using network ids), then node B is responsible for re-configuring the merged network in terms

of re-distributing free IP addresses and removing duplicate address assignments. We call node

B the merge agent. Node B initiates a network-wide flood to collect the network configuration

information, i.e., the IP addresses assigned to the nodes and their corresponding free ip sets within

its network. Node B asks node A to initiate similar network-wide flood in node A’s network1. We

call node A as co-merge agent. Node A sends the collected network-wide information to node B.

After collecting the IP address and free ip set information from all the responses, node B detects

duplicate IP address assignments among nodes in the merged network. Node B invalidates the

IP address of the nodes with conflicting IP addresses and assigns them with new IP address.

After invalidation, node B performs re-distribution of free addresses among nodes in the merged

network.

The protocol is described in detail in Section VI.

IV. PROTOCOL MESSAGES

The following messages are exchanged during IP address assignment:

IPAddressRequest: A local broadcast message from the requester to neighboring nodes in

the network requesting an IP address.

1By A’s and B’s network we mean the networks they belonged to prior to merging.

8



IPAddressAvail: Unicast2 responses to IPAddressRequest from the neighboring nodes of the

requester. This message contains the replying node’s IP address and proposed block of IP

addresses, if any.

AllocatorChosen: Unicast messages from the requester to all its neighbors on electing

an allocator from among the neighbors that sent IPAddressAvail messages. This message

contains the IP address of the chosen allocator.

IPAddressAssign: Unicast message from the allocator to the requester assigning an IP

address. This message contains an IP address block for the requester, IP address range

from which the addresses can be assigned to nodes, and the network id.

IPAddressUpdate: Network-wide message exchanged between nodes to update the network

configuration information. This message is sent to all nodes in the network: (i) by the

allocator responsible for reclamation of IP addresses during IP address allocation process,

and (ii) by the merge agent during network-merging process.

WaitPeriod: Unicast message from the allocator informing the requester to extend its

assign ip timer (explained in Section V).

The following four messages are exchanged during the expanding ring search:

IPAddressInfoRequest: Unicast messages sent from the allocator, during expanding ring

search, to nodes in the network requesting network configuration information namely the

IP address and free ip set.

IPAddressInfoReply: Unicast message in response to IPAddressInfoRequest from a node to

the allocator containing its IP address, free ip set and the neighbor list information.

IPAddressChosen: Unicast message sent by the allocator to a node in the network informing

the node that addresses from its free ip set are chosen for assignment.

IPAddressConfirm: Unicast response to IPAddressChosen message confirming the receipt of

IPAddressChosen message. This message contains the IP address block for the requester.

The following five messages are exchanged during the reclamation operation :

TentativeFreeAddresses: Network-wide flood message sent by the allocator during the recla-

mation of IP addresses. This message contains the missing addresses set.

2Unicast messages directed to requester or originating from requester use MAC address for communication.

9



ConflictNotification: Unicast message sent by a node in response to a TentativeFreeAd-

dresses message indicating that the node’s IP address is in conflict with an address in the

TentativeFreeAddresses message.

NoConflict: Unicast message sent by a node in response to a TentativeFreeAddressesmessage

indicating that the node’s IP address is not in conflict with the addresses in the Tentative-

FreeAddresses message.

Defer: Unicast messages sent by the nodes/co-merge agents on receiving multiple Tenta-

tiveFreeAddresses/PartitionMergeQuery messages from different allocators/ merge agents.

This is sent to all the allocators/merge agents except the allocator/merge agent with the

lowest IP address. On receipt of this message, the receiver (allocator/merge agent) suspends

the address allocation/network-merge process.

Resume: Unicast message sent by a node that had previously sent a Defer message. A node

on receiving this message resumes the suspended address allocation/network-merge process.

The following message is exchanged during migration of a requester:

IPAddressForward: When a requester moves away from its allocator before acquiring an

IP address, the requester chooses a new allocator. The new allocator sends this message

to the old allocator.

The following four messages are used during partition handling:

Hello: Local broadcast messages exchanged periodically between neighbors to detect neigh-

borhood changes and merging of networks. Each node sends this message containing its

network id to its neighbors.

PartitionMergeQuery: Network-wide flood message sent by the merge agent/co-merge agent

to collect the network-wide IP address information. This message contains the network ids

of the merging networks and the IP address of merge agent .

PartitionMergeResponse: Unicast message sent in response to the PartitionMergeQuery

message by a node to a merge agent/co-merge agent. This message contains the responding

node’s IP address, free ip set and pending ip set (explained in SectionVI).

IPAddressInvalidate: Network-wide broadcast message sent from the merge agent to inval-

idate conflicting IP addresses.

The following message is for graceful departure of nodes:

10



HandOver: A node departing the network sends this unicast message, containing its IP

address, free ip set and pending ip set, to one of its neighbors.

V. TIMERS

Timers are used to ensure that the protocol is deadlock-free and works correctly in the event

of message losses or node crashes. Let t indicate the time it takes for a message to reach a

node one hop away from the sender, and let p indicate the upper bound on the time required

to process a message (including the queuing delay) at a node. The following are the various

timers3 used in the protocol.

offer ip timer: The requester sets this timer after sending IPAddressRequest message. If the

requester does not receive any reply before the timer expires, it retries for requester retry

times, where requester retry is the maximum number of attempts by a requester to acquire

an IP address. The timer value should at least be (2t + p).

allocation pending timer: A node in the network sets this timer after sending an IPAddres-

sAvail message and creating an entry in the pending ip set. If no AllocatorChosen message

is received before the timer expires, the proposed address block is withdrawn from the

pending ip set and appended to the free ip set of the node. The timer value should at least

be (2t + p).

assign ip timer: This timer is set by the requester after choosing an allocator. If no address is

assigned before the timer expires, the requester retries assign retry times, where assign retry

is the maximum number of times a requester tries to choose a new allocator. The timer

value should at least be (d + 1) (2t + p), where the value of the hop count, d, is provided by

the allocator through a WaitPeriod message (refer to Section VI for details on hop count).

confirm ip timer: The allocator sets this timer after sending an IPAddressChosen message to

a node with largest free ip set. If the timer expires before the receipt of an IPAddressConfirm

message, the allocator chooses the next node with largest free ip set. The timer value should

at least be (d (2t + p)).

state collection timer: The allocator sets this timer before sending an IPAddressInfoRe-

quest/TentativeFreeAddresses message. The timer should at least be (d (2t + p)).

3Here we have provided the minimum values for the timers. It is possible to choose higher values for the timers to make the

protocol less aggressive while increasing its latency, without compromising its correctness.

11



hello timer: This timer is used to detect network-merging. It is set after sending the Hello

messages. The timer value corresponds to the interval between consecutive Hello messages.

partition timer: This timer is set by the merge agent. It is set after sending the network-wide

flood of PartitionMergeQuery message. If and are the average diameters of the two

networks, the timer value should be at least (2 (max( )(t + p)))).

VI. DETAILED DESCRIPTION OF THE ALGORITHM

In MANETs, the following scenarios could occur due to dynamic topology changes and the

dynamic arrival/departure of nodes in the network: (i) MANET initialization, (ii) new nodes join-

ing the network, (iii) graceful departure of nodes, (iv) abrupt departure of nodes, (v) concurrent

address requests, (vi) migration of the requester, (vii) message losses, and (viii) partitioning of

network and subsequent merging. We address each of these scenarios in this section:

A. MANET Initialization

The Initiator of a MANET broadcasts IPAddressRequest message and waits for an IPAddres-

sAvail message until the offer ip timer expires. If it does not receive any IPAddressAvail message,

it re-broadcasts the IPAddressRequest message. This continues for requester retry times. This

is to ensure that, if there are other configured nodes in the network, in the event of message

losses the node does not assume itself to be the Initiator (details on message losses given in

Section VII-A). After all the failed retries, the node concludes that it is the only node in the

network. It then assigns itself the first IP address from the IP address block, initializes the

free ip set to the rest of the IP address block, and sets its network id to the following 4 tuple

Initiator’s MAC address, Initiator’s IP address, timestamp, random number .

B. New node joining the network

After MANET initialization, any new node (requester) appearing in the neighborhood of exist-

ing node(s) broadcasts an IPAddressRequest message and starts the offer ip timer. Each address

allocation is assigned a unique transaction id. The transaction id consists of the requester’s

MAC address and timestamp.

Let set at a configured node X in the neighborhood be . On

receiving the IPAddressRequest message, node X computes k = .

12



If k 0, node X sends IPAddressAvailmessage to the requester with the addresses ,...,

as the proposed address block (proposed block)4. It updates its free ip set to : free ip

. Node X also creates a transaction id, proposed block entry in its

pending ip set and starts the allocation pending timer.

Otherwise, node X sends a NULL IPAddressAvail message to the requester.

When the offer ip timer expires5, requester sorts all the received non-NULL IPAddressAvail

replies based on the size of the proposed block. The requester selects the neighbor with the

largest proposed block6 as the allocator. The requester sends an AllocatorChosen message with

the selected allocator’s IP address and corresponding transaction id to all its neighbors. If all

the received IPAddressAvail messages contain NULL responses, the requester randomly chooses

one of the nodes as its allocator.

On receiving an AllocatorChosen message, each neighboring node that is not chosen as the al-

locator, removes the proposed block from its pending ip set for the corresponding transaction id

and appends it to its free ip set. Thus, it is ensured that nodes not chosen as the allocator get

back their offered address blocks.

On receiving the AllocatorChosen message, the node chosen as the allocator creates an entry

in the transaction info set for the transaction id. The transaction info is a set of ordered pairs.

The first field of the ordered pair is the transaction id and the second field is the allocator’s

IP address. The allocator, then retrieves the proposed block from its pending ip set for the

corresponding transaction id.

1) If proposed block is not NULL: The allocator cancels the allocation pending timer and

sends IPAddressAssign message with the proposed block to the requester. It then removes the

entry for the transaction id from its pending ip set.

2) If proposed block is NULL: The allocator initiates an expanding ring search. The hop

count d is initialized to 1. Each node in the network maintains a neighbor list. The neighbor

list is updated by the exchange of Hello messages used for partition handling. The allocator

performs the following sequence of steps during the expanding ring search until it finds either

4If the proposed block is contiguous only the fi rst and the last addresses are sent. A fi eld can be added to the protocol header

to indicate whether the message contains the range or individual addresses of the block.
5The fi rst IPAddressAvail message received need not contain the largest proposed block, hence we wait for a time-out to

collect more IPAddressAvail messages.
6In case of a tie, one of the neighbors is chosen randomly.

13



a free IP address or all the nodes in the network are visited:

1) The allocator sends an IPAddressInfoRequestmessage containing its IP address, transaction id,

and hop count (d) to every node in its d-hop neighborhood and to all the nodes that did

not respond during previous iterations. It also starts the statecollection timer and sends

a WaitPeriod message to the requester with an estimated delay of the allocation process.

The requester on receiving the WaitPeriod message extends its assign ip timer.

2) On receiving an IPAddressInfoReply response, if the received IPAddressInfoReply message

has a non-empty free ip set, the allocator goes to step 3. Otherwise, it takes a union of all

the received neighbor lists to check if the resultant union set is same as the set obtained

during the previous iteration. If so, there are no nodes left to be visited. Thus, if the

IPAddressInfoReply message responses do not have any free IP addresses and if all nodes

in the network are visited, the allocator performs reclamation of IP address (explained in

next subsection). Otherwise it goes to step 5.

3) The allocator sorts all the received non-empty free ip sets based on their cardinality. It

sends an IPAddressChosen message to the node with highest cardinality free ip set. It also

sends a WaitPeriod message to the requester with current hop count. It then starts the

confirm ip timer and waits for IPAddressConfirm message. If the timer expires before it

receives an IPAddressConfirm message, it chooses the next node in the sorted list and

repeats this step until either an IPAddressConfirm response is received or all the nodes in

the list are visited. If all nodes in the list are visited and no free IP address is found, it

goes to step 5.

4) If the allocator receives IPAddressConfirm message before confirm ip timer expires, it

cancels the confirm ip timer and sends an IPAddressAssign message to the requester with

the proposed block received in the IPAddressConfirm message. This ends the IP address

allocation process.

5) The allocator increments hop count d by an integer constant and goes to step 1.

During the expanding ring search, an intermediate node does the following:

On receiving an IPAddressInfoRequest message, it responds with an IPAddressInfoReply

message containing its free ip set and neighbor list information.

On receiving IPAddressChosen message, it performs actions similar to the ones performed

14



by the neighbors of the requester when they receive an IPAddressRequest message. It

sends an IPAddressConfirm message with half of the addresses from its free ip set as the

proposed block to the allocator. In case the IPAddressConfirm message is lost, the allocator

eventually times out as explained in step 3 of the expanding ring search. The addresses of

the proposed block would be unavailable for allocation in future as they are assumed to

be allocated and are removed from the free ip set of the node. These addresses would be

reclaimed during subsequent reclamation process (Section VI-B.3).

3) Reclamation of IP addresses: Suppose, no free IP addresses are found during the ex-

panding ring search, it does not necessarily mean that there are no free IP addresses in the

network. It is possible that some nodes may have left the network abruptly. Hence, reclamation

of addresses needs to be done whereby the IP addresses of nodes that may have left abruptly

are reclaimed. Reclamation of addresses is done by the allocator as follows:

It finds the addresses that are not in use and forms the missing addresses set where:

missing addresses = x:x IP address block - alive addresses

alive addresses = IP addresses of nodes that responded during expanding ring search

It floods a TentativeFreeAddresses message in the network. This message contains the

missing addresses set. Nodes that receive this message respond either with a ConflictNotifi-

cation message (if the node’s IP address is in the missing addresses set) or with a NoConflict

message. If the allocator receives a ConflictNotification message from any node, it removes

the corresponding IP address from the missing addresses set. If addresses in a node’s free ip

set are in the missing addresses set, then the node removes the corresponding addresses from

its free ip set. The resulting missing addresses set contains addresses that are free.

It then sends an IPAddressAssign message with the first address from these free IP ad-

dresses and a new network id ( allocator’s MAC address, its IP address, timestamp, ran-

dom number ) to the requester. It then re-distributes the remaining free IP addresses

among the nodes in the network by sending a network-wide IPAddressUpdate message.

The addresses could be re-distributed randomly or evenly among the nodes. Instead of

distributing reclaimed IP addresses randomly, they can also be allocated such that nodes

finally have contiguous block of addresses. The latter approach would reduce the problem of

address block fragmentation. The IPAddressUpdatemessage also carries the new network id.

15



The nodes receiving the IPAddressUpdate message update their network id and free ip set. If

nodes that had left the network later rejoin the network, their network id would be different

from the new network id. Thus, by changing the network id during reclamation it is ensured

that rejoining of nodes that left the network is detected by the partition handling process

(Section VI-G).

The requester, on receiving the IPAddressAssign message, cancels the assign ip timer and

configures itself with the first address from the proposed block. It also sets its free ip set to the

remaining addresses in the proposed block . If it does not receive an IPAddressAssign message

before assign ip timer expires, it retries assign retry times. The likelihood of all the assign retry

attempts being unsuccessful due to message losses is very low (refer to Section VII-A for details).

C. Migration of Requester

Let a requester (say node X) move away from the allocator (say node Y) before Y could

assign an IP address to X. Node X sends node Y’s IP address to the new allocator (say node

Z). Node Z sends IPAddressForward message to Y. Node Y, on receiving the IPAddressForward

message, updates the entry for the corresponding transaction id in the transaction info set with

the IP address of Z. Node Y then sends the IPAddressAssign message to node X via node

Z. Alternately, the old allocator (Y) could abort the IP address allocation process when the

requester migrates and the new allocator (Z) could start the allocation process afresh. In the

former approach, the communication overhead is reduced by maintaining state information at

the nodes. The latter approach does not maintain such state information but requires the address

allocation process to be started all over again. Our simulations use the first approach.

D. Departure of a node:

The nodes in the network can either depart abruptly or gracefully from the network. The IP

addresses and the free ip sets of nodes that abruptly depart the network are reclaimed during

subsequent IP address allocation processes. A node that wishes to gracefully depart the network

sends a HandOver message with its IP address, free ip set, and pending ip set to one of its

neighbors before leaving the network. The neighbor on receiving the HandOvermessage, appends

the received IP address, free ip set, and pending ip set to its own free ip set.

16



E. Concurrent Address Requests

If a node receives concurrent IP address requests, and if it has a non-empty free ip set, then

it allots disjoint IP address blocks from its free ip set to the requesting nodes. If two allocators

perform IP address reclamation concurrently, one of them suspends the allocation process as fol-

lows. Let the two allocators be P and Q with P’s IP address higher than Q’s. Both nodes flood the

network with TentativeFreeAddresses message. A node that receives the TentativeFreeAddresses

message from Q before receiving that from P, sends a NoConflict/ConflictNotification message

(based on whether there is conflict between its address and addresses in the broadcast message)

to Q and a Defer message to P. A node that receives the TentativeFreeAddresses message from

P before receiving that from Q, responds with a NoConflict/ConflictNotification message to both

the allocators. P suspends the IP address allocation process on receiving a Defer message. While

Q continues the IP address allocation process. After completing the address allocation process,

Q sends the IPAddressUpdate message to all nodes in the network. Nodes that had sent the Defer

messages to P, now send Resume messages to P. Node P, on receiving the Resume message, re-

broadcasts TentativeFreeAddresses message and continues the address reclamation process. After

the reclamation process at Q, the free ip sets at nodes in the network might have changed. Hence,

it is possible that the addresses that were in missing addresses set of P are either in use or are re-

distributed among nodes to form their free ip set. By re-broadcasting TentativeFreeAddresses after

suspension, it is ensured that P has the updated network information. The proposed approach is

similar to the one described in [12] and Ricart-Agrawala algorithm [25] for mutual exclusion.

Unlike the Ricart-Agrawala algorithm, in our proposed scheme, explicit Defer messages are

used to suspend the allocation process. In the absence of such Defer messages, the timer at

the allocator would have expired and the allocation process at multiple allocators would have

continued leading to duplicate IP address assignment. The approach described above avoids such

duplication.

F. Message Losses

We propose to use UDP for communication. Hence, it is important to handle message losses

as they can lead to duplicate IP address assignments. In this protocol, message losses are handled

using appropriate timers and confirmation messages (refer to Section VII-A).

17



G. Partition Handling

During the course of MANET operation, nodes can split from a network and form/join other

networks. These networks can later merge into one. To detect merging of networks, each network

needs a unique identifier (network id). The network id of the network is initially the following

4-tuple: Initiator’s MAC address, Initiator’s IP address, timestamp, random number , where

Initiator is the first node that forms the network. The probability of two nodes having the

same MAC address is low. Furthermore the probability of nodes having the same MAC address

getting assigned identical IP addresses with equal timestamps is even lower. Adding the random

number field to the 4-tuple, makes the probability of duplicate network ids negligible. Thus, for

all practical purposes, network ids can be considered to be unique.

The network id of a network is changed every time an address reclamation is performed. By

changing the network id it is ensured that networks have unique network ids. The inclusion of

timestamp as part of the network id ensures that even if the same allocator performs IP address

reclamation more than once, the resulting networks would still have different network ids. If a

MANET splits into multiple MANETs at time and the networks merge at a later time such

that no reclamation is performed between time and , then the network ids will not change.

This does not violate the correctness of the protocol because there are no conflicts among the

networks merging.

Figure 1 describes a sample network partitioning and merging process. Suppose network id of

network X is , , , . Let free ip sets of all the nodes except node A be empty

(Figure 1(a)). Nodes P, Q, and R split from this network and form a new network Y. The nodes

in networks X and Y have unique IP addresses, disjoint free ip sets, and same network ids after

partitioning (Figure 1(b)). New nodes joining either networks are assigned unique IP addresses

as long as the two networks do not initiate an IP address reclamation process. Now, suppose new

node F joins the network X and let node E be the allocator (Figure 1(c)). Since free ip set of node

E is empty, it initiates an expanding ring search and finds that none of the active nodes in network

X have a non-empty free ip set. At this point, node E performs address reclamation whereby it

finds that nodes P, Q, and R have left the network (the protocol does not distinguish between

nodes leaving the network and abrupt crashing of nodes). Node E reclaims the IP addresses and

the free ip sets (in this example, they are empty) of P, Q, and R. Node E then propagates new

18



A A    A(MAC    , IP     , T   , R    )   A 

Q

R

P

A

B

C

D

10.0.0.1

10.0.0.3

10.0.0.4

10.0.0.5

10.0.0.6

10.0.0.7

10.0.0.8

free_ip = {10.0.0.2}

Network X

(a) Network X before Partitioning

A A    A
(MAC    , IP    , T    , R    )

   AA A    A(MAC    , IP    , T    , R    )   A

Q

R

P

A

B

C

D

E

10.0.0.1

10.0.0.3

10.0.0.4

10.0.0.5

10.0.0.2

10.0.0.6

10.0.0.7

10.0.0.8

Network X Network Y

(b) Network after Partitioning. Node E joins the net-

work X after partitioning

E E    E(MAC    , IP    , T    , R    )   E

A A    A(MAC    , IP    , T    , R    )   A

Network Y

Q

R

P

10.0.0.6

10.0.0.7

10.0.0.8

free_ip = {10.0.0.8}

A

B

C

D

F

E

10.0.0.1

10.0.0.3

10.0.0.4

10.0.0.2

10.0.0.6

Network X

10.0.0.5free_ip ={10.0.0.7}

(c) Network X performs reclamation of IP address

E E    E(MAC    , IP    , T    , R    )   E

A A    A(MAC    , IP    , T    , R    )   A

free_ip = {10.0.0.8}

A

B

C

F

E

10.0.0.1

10.0.0.3

10.0.0.2

10.0.0.6

10.0.0.5free_ip ={10.0.0.7}

R

P

10.0.0.6

10.0.0.7

Q
10.0.0.4

D

10.0.0.8

Network X

Network Y

(d) Network X and Network Y merge

Fig. 1. Network Partitioning and Merging

network id, Node E’s MAC address, Node E’s IP address, timestamp, random number , to all

the nodes in network X. Thus, at the end of the reclamation process, the network ids of X and

Y are different (Figure 1(c)).

Detection of network merging is done as follows. Each node in the network locally broadcasts

a periodic Hello message with its network id and IP address to its neighbors. Whenever a

node (say A) receives Hello message from a neighboring node (say B) containing a network id

different from its own, A detects merging of networks and responds to B. When B receives such

a response from A, B detects merging of networks as well. Furthermore, if A has higher IP

address than B (ties are broken using network ids), then B (merge agent) initiates a network-

wide flood of PartitionMergeQuery message to collect the network configuration information in

terms of IP addresses assigned to the nodes and their respective free ip sets within its network.

Node B asks node A (co-merge agent) to do the same within A’s network7. On receiving a

7By A’s and B’s network we mean the networks they belonged to prior to merging.

19



PartitionMergeQuery message, a node responds with a PartitionMergeResponse message, if its

network id matches with sender’s network id. The PartitionMergeResponse message contains

IP address, free ip set, and network id of the node sending the message. Nodes receiving a

PartitionMergeQuery message store the network ids of networks being merged. Node A sends

all the collected IP address and free ip set information to node B. The assigned IP addresses and

free IP addresses that are present in both the networks being merged are called as conflicting

addresses and conflicting free ip sets, respectively. By aggregating all the information obtained

from the PartitionMergeResponse messages and information collected from A, node B learns

of all the non-conflicting IP addresses and the number of nodes with conflicting IP addresses.

For each conflicting IP address, node B further knows those nodes that own the IP address and

the corresponding network id. Based on all these information, node B performs a network-wide

broadcast of an IPAddressInvalidate message containing three tuples of the following form: x,

y, z . The first element, x, is a conflicting IP address and y is a network id. While multiple

nodes may have the same IP address, x, they can be differentiated by their network ids. The first

two elements (x and y) can uniquely identify the nodes whose address needs to be invalidated

and the third element z8 is the new IP address assigned to that particular node. Nodes receiving

the IPAddressInvalidate message with their IP address and network id contained in one of the

3-tuples, change their IP address to the new IP address9 given in that three tuple. After the

invalidation process, node B computes all the addresses not in use. It re-distributes these free IP

addresses among nodes and propagates the new network id to all the nodes in the merged network

by sending an IPAddressUpdate message. The free IP addresses can be re-distributed such that

the nodes finally have contiguous block of addresses. A node on receiving the IPAddressUpdate

message updates its network id and its free ip set. Any node that misses the IPAddressUpdate

message remains as part of the old network. Later, when the nodes in the network exchange

Hello messages, this node gets merged into the network.

When more than one node initiates the network-wide flood of PartitionMergeQuery message

simultaneously on detecting the same merger between networks, the merge agent with lower

IP address has precedence over the merge agent with higher IP address. If a node receives

PartitionMergeQuery messages from multiple nodes that detected the same merger concurrently,

8If there are no free IP addresses, then z is set to null.
9If the new IP address fi eld is null, then the node invalidates its IP address and retries to acquire a new IP address later.

20



then: (i) If the node has already sent a response to one flood request, it ignores the Parti-

tionMergeQuery message from the other nodes if the merge agent’s address in the received

PartitionMergeQuery message is higher than the merge agent’s address in the previous flood

message or if the network id of the sender is different from its own network id, else it responds;

(ii) If the node itself is a merge agent and receives a flood message from another merge agent

with lower IP address, the node aborts the merging process that it had initiated and responds

to the received flood message. Thus, the merge agent with the lowest IP address among all

the merge agents succeeds. Figure 1(d) illustrates this situation. Nodes C-P and D-Q detect the

merging of networks X and Y simultaneously. Node C has a lower IP address than node P.

So, C initiates network-wide flood within X and P initiates flood within Y on behalf of C.

Both the flood messages contain node C’s address as merge agent’s address. Similarly, node D

(merge agent) initiates the network-wide flood in X and Q initiates the network-wide flood on

D’s behalf in network Y. Later, when D learns about node C’s merge process, node D aborts its

merge process.

When more than two networks merge simultaneously, the merge requests are serialized based

on the priorities of the merge agents. If a node receives PartitionMergeQuerymessages from mul-

tiple nodes that detected different mergers simultaneously, then: (i) If the node is a merge agent

and receives a flood message from another merge agent with lower IP address, then the node

suspends the merging process that it had initiated and responds to the flood message, (ii) If

the node is a co-merge agent and receives a flood message from a merge agent with lower IP

address, then the co-merge agent sends a Defer message to the merge agent with higher IP

address. The suspended merge process is resumed on completion of ongoing merge process.

This approach is quite similar to the one described in Section VI-E.

VII. DISCUSSION

In this section we discuss the correctness of the address assignment process and the partition

handling process. Theoretically, it is impossible to guarantee correctness in the event of message

losses and node failures [4]. As message delays are non-deterministic and timers are best guesses,

it is possible that timers may always expire prematurely and all the retry attempts fail all the

time. In this section we prove the correctness based on the assumption that not all the retry

attempts fail.

21



A. Correctness of IP address assignment

Given: Prior to an address assignment all the nodes have unique IP addresses and disjoint free ip

sets.

Assertion: Following the IP address assignment all the nodes have unique IP addresses and

disjoint free ip sets.

Proof:We prove the assertion in two parts. First, we prove the correctness of address assignment

when there are no message losses. Then we relax our assumption and prove the correctness of

address assignment in the event of message losses.

Part 1: Correctness under reliable communication: When an IP address request arrives, one of

the following possibilities exist.

Possibility 1: The allocator has a non-empty free ip set: The allocator allots the second half of

its free ip set to the requester and removes the corresponding addresses from its own free ip set.

The requester configures itself with the first address from the alloted set and forms its free ip

set with the remaining addresses in the alloted set (refer to Section VI-B.1 for details). Thus,

following the IP address assignment, the IP address at both the allocator and the requester would

be different and their free ip sets disjoint. The IP addresses and free ip sets at the other nodes

in the network remain unaffected.

Possibility 2: The allocator has an empty free ip set and finds a non-empty free ip set in the

network during expanding ring search: During expanding ring search, the allocator chooses one

of the nodes (say X) with non-empty free ip set and allots the second half of the addresses from

X’s free ip set to the requester. X deletes the alloted addresses from its free ip set (see Section

VI-B.2). Thus, all the nodes in the the network have unique IP addresses and disjoint free ip

sets following the IP address assignment.

Possibility 3: The allocator does not find any free IP address during the expanding ring search: It

does reclamation of addresses. As described in Section VI-B.3, after reclamation, the addresses

in the missing addresses set are free. One of the addresses from the resultant missing addresses

set is assigned to the requester. The remaining addresses are re-distributed among other nodes

in the network.

Possibility 4: During concurrent IP address requests, a node X receives multiple IP address

requests and has a non-empty free ip set: X assigns different IP addresses and disjoint free ip

22



sets to the requesters (Section VI-E).

Possibility 5: Multiple allocators perform reclamations concurrently: The allocator(s) with lower

priority receives Defer message(s) and suspends the allocation process while the allocator with

highest priority continues its allocation process. After the highest priority allocator completes

the allocation process, the next highest priority allocator resumes its allocation process. Thus,

concurrent IP address requests are serialized based on the priorities of the allocators.

Therefore, when there are no message losses, all the five possibilities result in unique IP address

assignment and disjoint free ip set allotment.

Part 2: Correctness of address assignment in the event of message losses: Suppose the IP address

assignment results in duplicate addresses in the network in the event of message losses. The

following messages are exchanged during the address allocation process.

If IPAddressRequest and/or IPAddressAvail messages are lost, when offer ip timer expires,

the requester retries by sending IPAddressRequestmessage for a maximum of requester retry

times. If it does not receive any response, it assigns itself an IP address, a free ip set and

a network id. If requester is the only node in the network, then there are no duplicate

addresses. If that is not the case, the requester assigns itself an IP address which may

already be in use in the network. This amounts to a single node MANET (composed of

the requester) co-located with another MANET consisting of all the other nodes. However,

the network id assigned to the requester would be different from the network id of other

nodes in the network. Eventually, when the MANETs are able to communicate with each

other by network-merging process the duplicate address assignments would be detected and

removed (Section VI-G). Thus, there would be no duplicate addresses in the network.

If AllocatorChosen message is lost and the assign ip timer at the requester expires, the

requester retries by sending IPAddressRequest message and this IP address allocation pro-

cess is started all over. This is done for a maximum of assign retry times after which the

requester is either successful in obtaining a unique IP address or it fails to acquire one.

If IPAddressInfoRequest and/or IPAddressInfoReply messages from nodes get lost during

expanding ring search, then during reclamation of addresses, these nodes would respond

with ConflictNotification messages. If ConflictNotification message is also lost then either:

(i) Node receives IPAddressUpdate message, invalidates its IP address and tries to acquire

23



a new IP address, or (ii) Node does not receive the IPAddressUpdate message, hence it

would not receive the new network id. This node remains as a part of the old network and

eventually when it communicates with any node in the current network, it gets merged into

the current network (Section VI-G).

If IPAddressChosen and/or IPAddressConfirm messages are lost, the allocator on confirm ip

timer expiry sends IPAddressChosen message to another node with non-empty free ip set

and continues the allocation process. If the IPAddressConfirm message is lost, the proposed

free block of IP addresses would no longer be available for allocation because they are

assumed to be already allocated. Thus, it is possible that some addresses are unavailable

temporarily. This does not violate the correctness requirement and those addresses would

be available after subsequent address reclamation.

Thus, none of the message losses lead to duplicate address assignment. Therefore, we prove that

IP address assignment process works correctly in the event of message losses.

B. Correctness of Partition Handling process

Given: Prior to network-merging all the nodes in the network have unique IP addresses and

disjoint free ip sets.

Assertion: Following network-merging, all the nodes in the merged network have unique IP

addresses and disjoint free ip sets.

Proof: The network id assigned to each network is unique (see Section VI-G for details on

uniqueness of network id). The Hello messages are exchanged periodically to detect merging of

networks. Thus, in finite time, the merging of networks would be detected. When two networks

merge, there could be address conflicts. In the proposed scheme, the node responsible for

configuring the merged network (merge agent) collects the network-wide information in terms

of IP addresses, free ip sets, and pending ip sets. If there are address conflicts, the merge agent

would send address invalidation message with new IP addresses for nodes with conflicting IP

addresses. The merge agent would also send a flood message to re-distribute the free IP addresses

among the nodes in the merged network and update the network id of the merged network. As

all the conflicting addresses are removed and disjoint free ip sets are distributed, all nodes in

the merged network would have unique IP addresses and disjoint free ip sets.

24



VIII. SIMULATION EXPERIMENTS

Simulation experiments were performed using the network simulator ns-2 (ver 2.1b9a) [18]

with CMU extensions to support MANETs to evaluate the performance of the protocol in terms

of message complexity and latency.

A. Simulation scenario and parameters

The random waypoint mobility model was used. The speed of the nodes in the network was 5

meters/second and the pause time was 10 seconds. The simulation duration was 4500 seconds.

The routing protocol used was AODV, although any routing protocol can be used. The hello

timer period was 3 seconds, and the requester retry threshold and assign retry threshold were

set to 3 and 2, respectively. The hop count d was incremented by 1 during the expanding ring

search. Following terms are used in subsequent discussions:

1) Network density: the number of nodes per unit area.

2) Degree of a node: the number of nodes in the neighborhood of the node.

Two kinds of simulation experiments were carried out:

1) In the first kind, performance of the protocol was evaluated in terms of latency and

communication overhead. The following three sets of simulation were performed:

a) Varying Node Population: Networks with n nodes were simulated where n varied from

50 nodes to 300 nodes. The area of the network was 408m 408m, 578m 578m, 816m

816m and 1001m 1001m for the 50, 100, 200 and 300 node networks, respectively (ensuring

the network density of around 300 nodes/ ). The size of the IP address block was 2 n.

Simulation started with zero configured nodes. The network was initialized with a single node.

The inter-arrival time of new nodes in the MANET was exponentially distributed with mean of

0.2 node arrivals/second. The arriving node could appear anywhere within the area served by

the network. Once the population reached n, departure of nodes began. The inter-departure time

of nodes was exponentially distributed with a mean of 0.24 node departures/second. The arrivals

and departures continued independently until the number of IP address allocations reached (n +

500) requests. Simulation results were collected for the last 500 address allocations. From these

experiments the behavior of protocol for different node populations was analyzed.

25



b) Varying Address block range: Networks with 50 and 300 nodes, respectively with varying

address block size were simulated. The area of network was set to 578m 578m and 1415m

1415m for the 50 node and 300 node systems, respectively. The address block size was varied

from twice the node population to 10 times the node population. The arrival/departure pattern

was the same as in the previous case. These experiments were used to analyze the effect of

varying address block size on address allocation latency and communication overhead.

c) Varying Network Density: Networks with 50 and 300 nodes, respectively with varying

network density were simulated. The address block size was three times the node population.

The arrival/departure pattern was the same as in the previous case. The goal of these experiments

was to study the address allocation latency and communication overhead with varying network

density (which also affects the degree of each node).

2) In the second kind, the effect of the protocol on application traffic was analyzed: We used

50 and 300 node networks with 25% of node population generating CBR traffic. For every source

there was a corresponding destination. The source and destination pairs were randomly selected.

Each source injected packets with rate varying from 4 packets/second to 20 packets/second. The

packet size was 512 bytes. The effect of the control traffic induced by our protocol on the end-

to-end latency of application traffic was studied. This required us to run two sets of experiments

for a given network scenario: (i) Using the proposed protocol for IP address assignment with its

associated messages competing with application traffic for network bandwidth, and (ii) Using

static IP address assignment with no resultant address assignment traffic. The area of the network

was 578m 578m and 1415m 1415m for the 50 and 300 node systems, respectively.

Following statistics were gathered:

Number of unicast messages: This includes the various unicast messages required namely

IPAddressAvail, AllocatorChosen, IPAddressInfoRequest, IPAddressInfoReply, IPAddressCho-

sen, IPAddressConfirm, NoConflict, ConflictNotification,Defer, Resume andWaitPeriodmes-

sage.

Latency: The total time taken by the protocol, from the instant the node enters the network

and requests for an IP address until the node is assigned an IP address.

Number of address reclamations: Number of times address reclamations were needed during

the entire simulation. Two network-wide floods are required during each address reclama-

26



tion: (i) TentativeFreeAddresses sent by the allocator when none of the active nodes in the

network have a non-empty free ip set, and (ii) IPAddressUpdate message sent to update the

network id at nodes in the network.

Free ip set distribution: This gives the mean number of addresses in the free ip set of the

nodes in the network and the mean size of largest contiguous block of addresses in the

free ip set of the nodes in the network.

Partition Handling overhead: This indicates the communication overhead incurred during

network-merging, including the number of network-wide flood messages and number of

unicast messages. The network-wide flood messages include the following: (i) Partition-

MergeQuery flooded by the node detecting the network-merging, (ii) network-wide flood

message with IP addresses to be invalidated, sent by the node responsible for configuring

the merged network, and (iii) network-wide IPAddressUpdate message sent to all the nodes

in the network. The unicast messages include the PartitionMergeResponse messages sent

in response by the nodes in network for the PartitionMergeQuery message.

Vulnerability Period: This is the total time taken by the protocol, from the instant network-

merging is detected to the instant when the merged network is re-configured.

End-to-end latency for application data: The time taken for application data to reach the

destination node from the source node.

B. Simulation Results

1) Message overhead:

a) Impact of varying node population on number of unicast messages: The 95% confidence

interval (CI) for mean number of unicast messages for varying node population over 500 address

allocations is plotted in Figure 2(a). Figure 2(b) gives 95% confidence interval for mean degree

of requester in the network. It was observed that, the mean degree of requester was about 20

and the mean number of unicast messages varied from around 50 to 60 messages. Every address

allocation needs at least ((2 degree of requester) + 1) unicast messages. Hence, the number

of unicast messages is between 2.5 to 3 times the degree of requester. This is because most

of the addresses were allocated locally. Only for few allocations, expanding ring search and

reclamations were needed as can be seen from Figure 2(c). Thus, for the same network density,

27



50 100 150 200 250 300
0

10

20

30

40

50

60

70

Node Population (Number of Nodes)

U
n
ic

a
s
t 
M

e
s
s
a
g
e
 (

N
u
m

b
e
r 

o
f 
M

e
s
s
a
g
e
s
)

95% CI Lower
Mean
95% CI Upper

(a) Node Population vs Number of

Unicast Messages

50 100 150 200 250 300
0

5

10

15

20

25

Node Population (Number of Nodes)

D
e
g
re

e
 o

f 
R

e
q
u
e
s
te

r 
(N

u
m

b
e
r 

o
f 
N

e
ig

h
b
o
rs

)
95% CI Lower
Mean
95% CI Upper

(b) Node Population vs Degree of

requester

50 100 200 300
0

10

20

30

40

50

60

70

80

90

100

110

Node Population (Number of Nodes)

P
e
rc

e
n
ta

g
e
 (

%
) 

o
f 
a
d
d
re

s
s
 a

ll
o
c
a
ti
o
n
s

Locally
Expanding ring searches
Address Reclamations

(c) Node Population vs Percent-

age of Expanding ring searches and

Reclamations

Fig. 2. Communication overhead for varying Node population ( address block size = 2 x node population, network density =

300 nodes/ )

the number of unicast messages required increases sub-linearly with increase in network size.

0 50 100 150 200 250 300
0

10

20

30

40

50

60

70

Network Density (Nodes/Km
2
)

N
u

m
b

e
r 

o
f 

U
n

ic
a

s
t 

M
e

s
s
a

g
e

s

95% CI Lower for 300 node
Mean for 300 node
95% CI Upper for 300 node
95% CI Lower for 50 node
Mean for 50 node
95% CI Upper for 50 node

(a) Network Density (nodes/ )

vs Number of Unicast Messages

0 50 100 150 200 250 300
0

5

10

15

20

25

Network Density (Nodes/Km
2
)

D
e

g
re

e
 o

f 
re

q
u

e
s
te

r 
(N

u
m

b
e

r 
o

f 
N

e
ig

h
b

o
rs

)

95% CI Lower for 300 node
Mean for 300 node
95% CI Upper for 300 node
95% CI Lower for 50 node
Mean for 50 node
95% CI Upper for 50 node

(b) Network Density (nodes/ )

vs Degree of requester

300 150 75 38 19
0

10

20

30

40

50

60

Network Density (Nodes/Km
2
)

One Hop searches 
Two Hop searches 
Three Hop Searches 
Number of Reclamations 

50
node 

300
node 

50
node 

300
node 

50
node 

300 
node 

50
node 

300
node 

50
node 

300
node 

(c) Network Density (nodes/ )

vs Expanding ring searches and

reclamations

Fig. 3. Communication overhead for varying network density ( node population = 50 and 300 nodes, Address Block Size = 3

x node population )

b) Impact of varying network density on number of unicast messages: Figure 3(a) shows

the 95% confidence interval for mean number of unicast messages for 50 node and 300 node

systems with varying network density. It was observed that the mean number of unicast messages

exchanged increases with the increase in network density. In networks with high density, there

are more nodes in the neighborhood of the requester, leading to a higher number of message

28



exchanges. Thus, we can say that the number of message exchanges required is a function of

degree of nodes in the network. This can further be confirmed by Figure 3(b) which shows

the degree of the requester. The number of unicast messages exchanged is 2 to 3 times the

degree of requester. The same reason given in previous section applies. Figure 3(c) shows the

number of expanding ring searches required along with their radius and the number of address

reclamations done during the entire simulation duration. From Figure 3(c), we can infer that

with the increase in area there was need to search farther in the network, with expanding ring

searches upto a distance of 3 hops from the allocator. For networks with network density less

than 75 nodes/ , we observed partitioning of network into smaller networks, which in turn

lead to lower number of expanding ring searches and reclamations.

2 x n 3 x n 4 x n 5 x n 10 x n
0

10

20

30

40

50

60

70

Address Block Size (Number of Addresses)

N
u
m

b
e
r 

o
f 

U
n
ic

a
s
t 

M
e
s
s
a
g
e
s
 

95% CI Lower for 300 node
Mean for 300 node
95% CI Upper for 300 node
95% CI Lower for 50 node
Mean for 50 node
95% CI Upper for 50 node

(a) Address Block Size vs Number

of Unicast Messages

2 x n 3 x n 4 x n 5 x n 10 x n
0

20

40

60

80

100

120

Address Block Size (Number of Addresses)

P
e
rc

e
n
ta

g
e
 (

%
) 

o
f 
a
d
d
re

s
s
e
s
 a

s
s
ig

n
e
d
 l
o
c
a
ll
y

For 50 node n/w
For 300 node n/w

(b) Address Block Size vs Percent-

age of address allocations done lo-

cally

2 x n 3 x n 4 x n 5 x n 10 x n
0

5

10

15

20

25

30

35

40

45

50

Address Block Size (Number of Addresses)

One Hop searches 
Two Hop searches
Three Hop Searches
Number of Reclamations

50
node 

300
node 

50
node 300

node 

50
node 

300 
node 

50
node 300

node 

50
node 

300
node 

(c) Address Block Size vs Expand-

ing ring searches and reclamations

Fig. 4. Communication overhead for varying address block size for 50 and 300 node network ( network density = 150

nodes/ )

c) Impact of varying address block size on number of unicast messages: The 95% confi-

dence interval for mean number of unicast messages over 500 address allocations for 50 node

network and 300 node network is plotted in figure 4(a). From the plot, it can be seen that the

mean number of unicast messages exchanged decreases as the size of address block increases.

We observed around 17% decrease in number of unicast messages for a 300 node system when

the address block size was increased from 2n to 10n. When the IP address block size is small,

the probability of requester finding a free IP address within its neighborhood is small. Hence,

the request needs to be propagated farther through the network, leading to a higher number

29



of message exchanges. Figure 4(b) shows the fraction of address requests that were completed

locally by the allocator. It was observed that around 95% of addresses were allocated locally

without requiring expanding ring search or reclamation of addresses. Figure 4(c) shows the

number of address allocations that required expanding ring search and address reclamation to

obtain an IP address. In our simulation experiments we observed that the number of expanding

ring searches and the number of address reclamations decreased with increase in the address

block size. Most of them were one or two hop searches.

d) Free ip set distribution: Free ip set distribution for 50 and 300 node systems is plotted

in Figure 5. We collected snapshots at different stages of the simulation. In our simulations,

the addresses are re-distributed randomly among nodes during reclamation and network-merging

processes. During graceful departure of a node, the addresses given by the departing node to

one of its neighbors need not be contiguous with the addresses in the neighbor’s free ip set. To

find a node with free ip set contiguous to addresses in free ip set of the departing node would

require significant communication overhead. We observed that the difference between mean size

of free ip sets and the mean size of contiguous block in free ip sets is not much (around 1 to

2 addresses). As the simulation progresses, the mean size of contiguous block decreases, but

again the decrease is not significant. Hence, there is little fragmentation of the free ip set and

not much reason for re-distribution of addresses to yield contiguous free ip set at nodes.

1000 1500 2000 2500 3000 3500 4000 4500
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Time (sec) 

S
iz

e
 o

f 
fr

e
e
_
ip

 s
e
t 

Mean Contiguous free_ip set size

Mean free_ip set size

(a) Time vs Size of free ip set for

50 node network

1000 1500 2000 2500 3000 3500 4000 4500
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Time (sec)

S
iz

e
 o

f 
fr

e
e
_
ip

 s
e
t

Mean Contiguous free_ip set size

Mean free_ip set size

(b) Time vs Size of free ip set for

300 node network

Fig. 5. Distribution of IP address blocks at different time instances for 50 and 300 node network (network density = 150

nodes/ , address block size = 5 x node population)

2) Latency:

30



a) Impact of varying node population on latency: Figure 6(a) shows the 95% confidence

interval for mean latency for 50, 100, 200 and 300 node network scenarios. It was observed that

around 95% of address allocations were completed within 0.19 seconds as the requester had

neighbors with non-empty free ip sets. A small fraction of the allocations did require as much

as 4 seconds in a 300 node network. This was when the allocator had to perform a network-

wide search for an IP address. Figure 6(a) shows an increase in latency with increase in node

population. This was because as node population increased, for the same network density, the

network diameter also increased. But again increase in latency is sub-linear with respect to the

increase in node population. This is because of the same reasons provided in Section VIII-B.1.a.

50 100 150 200 250 300
0

0.1

0.2

0.3

0.4

0.5

0.6

Node Population (Number of Nodes)

L
a
te

n
c
y
 (

S
e
c
o
n
d
s
)

95% CI Lower
Mean
95% CI Upper

(a) Node Population vs Latency

(seconds)

2 x n 3 x n 4 x n 5 x n 10 x n
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Address Block Size (Number of Addresses)

L
a

te
n

c
y
 (

s
e

c
s
)

(Network Density = 150 Nodes/Km.
2
)

95% CI Lower for 300 node
Mean for 300 node
95% CI Upper for 300 node
95% CI Lower for 50 node
Mean for 50 node
95% CI Upper for 50 node

(b) Address Block Size vs Latency

(seconds)

0 50 100 150 200 250 300
0

0.2

0.4

0.6

0.8

1

Network Density (Nodes/Km
2
)

L
a

te
n

c
y
 (

S
e

c
o

n
d

s
)

(Address Block size = 2 x node population)

95% CI Lower for 300 node
Mean for 300 node
95% CI Upper for 300 node
95% CI Lower for 50 node
Mean for 50 node
95% CI Upper for 50 node

(c) Network Density (nodes/ )

vs Latency (seconds)

Fig. 6. Latency for 50 and 300 node network with varying node population, varying address block size and varying network

density

b) Impact of varying address block size on latency: The 95% confidence interval for mean

latency for 50 and 300 node network scenarios is plotted in Figure 6(b) with varying address

block size. It was observed that mean latency decreased with an increase in IP address block

size. We observed a 33% decrease in latency when the address block size was increased from

2n to 10n in the 300 node system. Larger the address block size, greater is the probability

of the requester finding a free IP address from its immediate neighbors. Hence, the number of

expanding ring searches/address reclamations required decreases leading to lower latency (Figure

4(c)). Again the decrease in latency is sub-linear with increase in address block size.

c) Impact of varying network density on latency: The 95% confidence interval for mean

latency for 50 node and 300 node network scenarios with varying network density is plotted

31



in Figure 6(c). It was observed that as the network density increased, mean latency decreased.

At higher network density, there are more nodes in the neighborhood of the requester. Hence,

the probability of a requester finding a free IP address from its immediate neighbors increases.

Thus, the number of expanding ring searches/reclamations required is low. Even if there is need

for expanding ring search, a free IP address is found within a few number of hops. At lower

network density, more expanding ring searches are required leading to higher latency. In a 300

node network the latency increases upto a point, after which the networks have partitions and

each partition in itself is a smaller network. Hence, we see a decrease in latency.

300 150 75 38 19
0

100

200

300

400

500

600

700

800

Network Density (Nodes/Kms
2
)

P
a

rt
it
io

n
 H

a
n

d
li
n

g
 O

v
e

rh
e

a
d

 (
N

u
m

b
e

r 
o

f 
M

e
s
s
a

g
e

s
)

Broadcasts 
Unicasts

50 node 

300 node 

300 node 

50 node 

300 node 

50 node 

300 node 

50 node 

(a) Network Density (nodes/ )

vs Partition Messages (Number of

Messages)

0 50 100 150
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Network Density (Nodes/Km
2
)

M
e

a
n

 V
u

ln
e

ra
b

il
it
y
 P

e
ri
o

d
 (

S
e

c
o

n
d

s
)

For 300 node
For 50 node

(b) Network Density (nodes/ )

vs Vulnerability Period (seconds)

Fig. 7. Partition Handling overhead for varying network density

3) Overhead due to Partitioning:

a) Impact of varying network density on partition handling: Figure 7(a) shows the com-

munication overhead incurred due to partition merging in 50 and 300 node networks with

varying network density. The lower the network density, the greater the probability of network-

partitioning. In our simulations we do not consider sparse networks which could experience

disconnections and merger very often. In a 50 node system, we observed that the network had

partitions but by the end of the simulation all the partitions had merged to form one single

network. For a 300 node system, we observed that the network had partitions until the end of

the simulation when the network density was low. Figure 7(b) shows the mean vulnerability

period for 50 and 300 node networks with varying network density. During the vulnerability

period, there could be duplicate addresses and it is possible that the traffic destined for one node

32



might get mis-routed to some other node. However, we observed that this period was always

less than 4 seconds.

4 6 8 10 12 14 16 18 20
0

0.5

1

1.5

2

2.5

3

CBR Traffic (packets/second)

E
n
d
!

to
!

E
n
d
 L

a
te

n
c
y
 (

s
e
c
o
n
d
s
)

Static IP addressing
Using proposed protocol

(a) CBR traffi c (packets/second) vs

End-to-End Latency (seconds) for

50 node network

4 6 8 10 12 14 16 18 20
0

1

2

3

4

5

6

CBR Traffic (packets/second)

E
n
d
!

to
!

E
n
d
 L

a
te

n
c
y
 (

s
e
c
o
n
d
s
)

Static IP addressing
Using proposed protocol

(b) CBR traffi c (packets/second) vs

End-to-End Latency (seconds) for

300 node network

Fig. 8. Effect of protocol on application data ( Address Block Size = 2 x node population )

4) Effect of protocol on application data: The mean end-to-end latency for CBR flows with

and without the traffic generated by the proposed protocol is shown in Figure 8. We observed

that there is a slight increase in end-to-end latency in the presence of control traffic generated

by address assignment protocol. This is due to contention between the CBR traffic and protocol

messages for communication medium. From Figure 8 we see that the application traffic is not

adversely affected by the control traffic induced by our IP address assignment protocol.

From our simulation experiments, we can see that the communication overhead and latency

is low when compared to the solution presented in [12]. This is because regardless of where a

new node appears in the network, most IP address requests are satisfied locally incurring low

latency and communication overhead. All the simulations were conducted with 2Mbps wireless

channels. With current IEEE 802.11b and IEEE 802.11a hardware support for 11Mbps and

54Mbps channels respectively, latency would be less than what is shown in Figures 6 and 8.

IX. CONCLUSION

We presented a distributed protocol for dynamic configuration of nodes in MANETs. We have

addressed the issue of unique IP address assignment to nodes in MANETs in the absence of any

static configuration or centralized servers. The proposed protocol is based on the buddy system

33



[2], [3] used for memory management. The basic idea is to dynamically distribute the IP address

block among the nodes in the network. Our approach guarantees unique IP address assignment

under all network conditions including message losses, node crashes, network partitioning and

merging.

We have presented the results obtained from simulation experiments. Simulation results show

that most of the address allocations were done locally and required around 0.19 seconds. We

observed that the latency and communication overhead increased in a sub-linear manner with

increase in node population. We also observed that decrease in latency and communication

overhead was sub-linear with increase in the address block size. Thus, the proposed protocol

incurs low latency and communication overhead.

X. ACKNOWLEDGEMENTS

The authors wish to thank the anonymous reviewers for their useful suggestions that helped in

improving the quality of this paper. The authors also wish to thank Mansoor Mohsin for helpful

suggestions and discussions.

REFERENCES

[1] R. Droms, “Dynamic Host Confi guration Protocol,” Network Working Group, RFC 2131, Mar 1997.

[2] K. Knowlton, “Fast Storage Allocator,” Communications of the ACM, Oct 1965.

[3] J. L. Peterson and T. A. Norman, “Buddy Systems,” Communications of the ACM, Jun 1977.

[4] N. A. Lynch, “A hundred impossibility proofs for distributed computing,” Proceedings of 8th Annual Symposium on

Principles of Distributed Computing, pp. 1-28, Aug 1989.

[5] D. B. Johnson, D. A. Maltz, Y. Hu and J. Jetcheva, “DSR: The Dynamic Source Routing for Multi-hop wireless Ad-hoc

Networks,”Ad Hoc Networking, pp.139 - 172, Addison-Wesley, 2001.

[6] M. Jiang, J. Li and Y.C. Tay, “Cluster Based Routing Protocol (CBRP) Function Specifi cation,” Internet Draft, Aug 1999,

work in progress, http://www.math.nus.edu.sg/ mattyc/cbrp.txt.

[7] V. D. Park and M. S. Corson, “A Highly Adaptive Distributed Routing Algorithm for Mobile Wireless Networks,” IEEE

Conference on Computer Communications (Infocom ’97), 1997.

[8] M. R. Pearlman and Z. J. Haas, “Determining the Optimal Confi guration for the Zone Routing Protocol,” IEEE Journal

on Selected Areas in Communications, vol. 17, issue 8, pp. 1395 - 1414, Aug 1999.

[9] C. Perkins and P. Bhagwat, “Routing over Multihop Wireless Network in Mobile Computers,”SIGCOMM’94 Computer

Communications Review, Oct 1994.

[10] C. Perkins and E. Royer, “Ad Hoc On-Demand Distance Vector Routing,” 2nd IEEE Workshop on Selected Area in

Communications, pp. 90-100, Feb 1999.

[11] Cisco, “Duplicate MAC addresses on Cisco 3600 series,” May 1997, http://www.cisco.com/warp/public/770/7.html.

34



[12] S. Nesargi and R. Prakash, “MANETconf: Confi guration of Hosts in a Mobile Ad Hoc Network,”Proceedings of INFOCOM

2002, 2002.

[13] S. Cheshire, B. Aboba and E. Guttman, “Dynamic Confi guration of IPv4 Link-Local Addresses,” Internet Draft, Jul 2004,

work in progress, “http://fi les.zeroconf.org/draft-ietf-zeroconf-ipv4-linklocal.txt”.

[14] C. Perkins, J. Malinen, R. Wakikawa, E. Royer and Y. Sun, “IP Address Autoconfi guration for Ad Hoc Networks,” Internet

Draft, Nov 2001, work in progress, http://people.nokia.net/ charliep/txt/aodvid/autoconf.txt.

[15] S. Thomson and T. Narten, “IPv6 Stateless Address Autoconfi guration,” RFC 2462, Dec 1998.

[16] K. Weniger and M. Zitterbart, “IPv6 Autoconfi guration in Large Scale Mobile Ad-Hoc Networks,”Proceedings of European

Wireless 2002, Florence, Italy, Feb 2002.

[17] N. Vaidya, “Weak Duplicate Address Detection in Mobile Ad Hoc Networks,” ACM International Symposium on Mobile

Ad Hoc Networking and Computing (MobiHoc), Jun 2002.

[18] A. J. McAuley and K. Manousakis, “Self-Confi guring Networks,” 21st Century Military Communications Conference

Proceedings, Oct 2000, vol.1, pp. 315 - 319.

[19] A. Misra, S. Das, A. McAuley and S.K. Das, “Autoconfi guration, registration, and mobility management for pervasive

computing,” IEEE Personal Communications, pp. 24 - 31, Aug 2001.

[20] P. Patchipulusu, “Dynamic Address Allocation Protocols For Mobile Ad Hoc Networks,” Master’s Thesis, Texas A&M

University, Aug 2001.

[21] H. Zhou, L. Ni, and M. Mutka, “Prophet Address Allocation for Large Scale MANETs,” Proceedings of IEEE INFOCOM

2003, Mar 2003.

[22] K. Fall and K. Varadhan, “The ns Manual,”, http://www.isi.edu/nsnam/ns/ns-documentation.html.

[23] K. Weniger, “Passive Duplicate Address Detection in Mobile Ad Hoc Networks,” Proceedings of IEEE WCNC 2003, Mar

2003.

[24] J. Jeong, J. Park, H. Kim and D. Kim, “Ad Hoc IP Address Autoconfi guration,” Internet Draft, draft-jeong-adhoc-ip-addr-

autoconf-03.txt, work in progress, Jul 2004.

[25] G. Ricart and A. K. Agrawala, “An Optimal Algorithm for Mutual Exclusion in Computer Networks,” Communications

of the ACM, vol. 24, no.1, pp.9-17, Jan 1981.

35


