
A Distributed SDP Approach for
Large-scale Noisy Anchor-free Graph

Realization with Applications to Molecular
Conformation

Pratik Biswas∗, Kim-Chuan Toh †, Yinyu Ye ‡

October 16, 2007

Abstract

We propose a distributed algorithm for solving Euclidean metric realization prob-
lems arising from large 3D graphs, using only noisy distance information, and with-
out any prior knowledge of the positions of any of the vertices. In our distributed
algorithm, the graph is first subdivided into smaller subgraphs using intelligent clus-
tering methods. Then a semidefinite programming relaxation and gradient search
method is used to localize each subgraph. Finally, a stitching algorithm is used
to find affine maps between adjacent clusters and the positions of all points in a
global coordinate system are then derived. In particular, we apply our method to
the problem of finding the 3D molecular configurations of proteins based on a lim-
ited number of given pairwise distances between atoms. The protein molecules, all
with known molecular configurations, are taken from the Protein Data Bank. Our
algorithm is able to reconstruct reliably and efficiently the configurations of large
protein molecules from a limited number of pairwise distances corrupted by noise,
without incorporating domain knowledge such as the minimum separation distance
constraints derived from van der Waals interactions.

1 Introduction

Semidefinite programming (SDP) relaxation techniques can be used for solving a wide
range of Euclidean distance geometry problems, such as data compression, metric-space

∗Electrical Engineering, Stanford University, Stanford, CA 94305. E-mail: pbiswas@stanford.edu.
†Department of Mathematics, National University of Singapore, 2 Science Drive 2, Singapore 117543,

Singapore. E-mail: mattohkc@nus.edu.sg.
‡Management Science and Engineering and, by courtesy, Electrical Engineering, Stanford University,

Stanford, CA 94305. E-mail: yinyu-ye@stanford.edu.

1

embedding, covering and packing, chain folding [12, 20, 24, 39]. More recently, it has been
applied to machine learning problems such as nonlinear dimensionality reduction [36].

One particular instance of the distance geometry problem arises in sensor network
localization [8],[6], [5], where given the positions of some sensors in a network (the sensor
nodes known positions are called anchors) and a set of pairwise distances between sensors
and between sensors to anchors, the positions of all the sensor nodes in the network have
to be computed. This problem can be abstracted into a 2-D or 3-D graph realization
problem, that is, finding the positions of the vertices of a graph given some constraints
on the edge lengths.

Another instance of the graph realization problem arises in molecular conformation,
specifically, protein structure determination. It is well known that protein structure deter-
mination is of great importance for studying the functions and properties of proteins. In
order to determine the structure of protein molecules, nuclear magnetic resonance (NMR)
experiments are performed to estimate lower and upper bounds on interatomic distances
[13],[18]. Additional knowledge about the bond angles and lengths between atoms also
yield information about relative positions of atoms. In the simplest form, given a subset
of all the pairwise distances between the atoms of a molecule, the objective is to find
a conformation of all the atoms in the molecule such that the distance constraints are
satisfied.

Since this problem is also an abstraction of graph realization, most of the concepts that
were developed for the sensor network localization problem can be used directly for the
molecular conformation problem. In fact, the terms localization and realization will be
used interchangeably throughout this paper. However, some crucial improvements to the
basic algorithm have to be made before it can be applied to the molecular conformation
problem. In [8], the problem was described in 2-D although it can be extended to higher
dimensions, as is illustrated in this paper. The improvements suggested in [5] provide
much better performance for noisy distance data. However, the SDP methods described
in [5] and [8] were to handle problems of relatively small sizes with the number of points
typically below 100 or so. A distributed version of the algorithm was described in [7] for
larger sets of points, in which the larger problem was broken down in smaller subproblems
corresponding to local clusters of points. The assumption made in the large scale sensor
network problem was the existence of anchor nodes all across the network, i.e., points
whose positions are known prior to the computation. These anchor nodes play a major
role in determining the positions of unknown nodes in the distributed algorithm, since
the presence of anchors in each cluster is crucial in facilitating the clustering of points
and the process of stitching together different clusters. The anchor nodes are used to
create clusters by including all sensors within one or two hops of their radio range. When
the positions for unknown nodes are computed, they are already in the global coordinate
system since the anchor positions have been incorporated in the computation. Further-
more, the presence of anchors help to dampen the propagation of errors in the estimated
positions to other clusters when the problem is solved by a distributed algorithm.

2

Without anchors, we need alternative methods to cluster the points and to stitch the
clusters together. In this paper, we propose a distributed algorithm for solving large
scale noisy anchor-free Euclidean metric realization problems arising from 3-D graphs, to
address precisely the issues just mentioned. In the problem considered here, there are
no a priori determined anchors, as is the case in the molecular conformation problem.
Therefore the strategy of creating local clusters for distributed computation is different.
We perform repeated matrix permutations on the sparse distance matrix to form local
clusters within the structure. The clusters are built keeping in mind the need to maintain
a reasonably high degree of overlap between adjacent clusters, i.e., there should be enough
common points considered between adjacent clusters. This is used to our advantage when
we combine the results from different clusters during the stitching process.

Within each cluster, the positions of the points are first estimated by solving an SDP
relaxation of a non-convex minimization problem seeking to minimize the sum of errors
between given and estimated distances. A gradient-descent minimization method, first
described in [23], is used as a postprocessing step, after the SDP computation to further
reduce the estimation errors. The refinement of errors by a local optimization method is
especially important as there may not be enough distance data in a cluster, or the noise in
the distance measures may be too high, to determine a unique realization in the required
dimensional space. In that case, the SDP solution is in a higher dimensional space,
and a simple projection of that solution into a lower dimensional space does not yield
correct positions. Fortunately, it can often serve as a good starting iterate for a local
optimization method to obtain a lower dimensional realization that satisfies the given
distance constraints. After the gradient-descent postprocessing step, poorly estimated
points within each cluster are isolated and they are recomputed when more points are
correctly estimated.

The solution of each individual cluster yields different orientations in their local coor-
dinate systems since there are no anchors to provide global coordinate information. The
local configuration may be rotated, reflected, or translated while still respecting the dis-
tance constraints. This was not a problem in the case when anchors were available, as they
would perform the task of ensuring that each cluster follows the same global coordinate
system. Instead in this paper, we use a least squares based affine mapping between local
coordinates of common points in overlapping clusters to create a coherent conformation
of all points in a global coordinate system.

We test our algorithm on protein molecules of varying sizes and configurations. The
protein molecules, all with known molecular configurations, are taken from the Protein
Data Bank [4]. Our algorithm is able to reliably reconstruct the configurations of large
molecules with thousands of atoms quite efficiently and accurately based on given upper
and lower bounds on limited pairwise distances between atoms. To the best of our knowl-
edge, there are no computational results reported in existing literature for determining
molecular structures of this scale by using only sparse and noisy distance information.
However, there is still room for improvement in our algorithm in the case of very sparse

3

or highly noisy distance data.
For simplicity, our current SDP based distributed algorithm does not incorporate

the lower constraints generated from van der Waals (VDW) interactions between atoms.
But such constraints can naturally be incorporated into the SDP model. Given that our
current algorithm performs quite satisfactorily without the VDW lower bound constraints,
we are optimistic that with the addition of such constraints and other improvements in
the future, our algorithm would perform well even for the very difficult case of highly
noisy and very sparse distance data.

Section 2 of this paper describes related work in distance geometry, SDP relaxations
and molecular conformation, and attempts to situate our work in that context. Section 3
elucidates the distance geometry problem and the SDP relaxation models. A preliminary
theory for anchor-free graph realization is also developed. In particular, regularization
ideas to improve the SDP solution quality in the presence of noise are discussed. The
intelligent clustering and cluster stitching algorithms are introduced in Section 4 and 5
respectively. Postprocessing techniques to refine the SDP estimated positions are dis-
cussed in Section 6. Section 7 describes the complete distributed algorithm. Section 8
discusses the performance of the algorithm on protein molecules from the Protein Data
Bank [4]. Finally in Section 9, we conclude with a summary of the paper and outline
some work in progress to improve our distributed algorithm.

2 Related work

Owing to their large applicability, a lot of attention has been paid to Euclidean distance
geometry problems. The use of SDP relaxations to solve this class of problems involves
relaxing the nonconvex quadratic distance constraints into convex linear constraints over
the cone of positive semidefinite matrices. It is illustrated through sensor network prob-
lems in [8]. Similar relaxations have also been developed in [2], [22] and [36].

As the number of points and pairwise distances increase, it becomes computationally
intractable to solve the entire SDP in a centralized fashion. With special focus on anchored
sensor network localization problems, a distributed technique is proposed in [7]. This
involves solving smaller clusters of points in parallel and using information from points in
different clusters in subsequent iterations to refine the solutions.

Building on the ideas in [7], the authors in [11],[21] proposed an adaptive rule based
clustering strategy to sequentially divide a global anchored graph localization problem (in
2-dimension) into a sequence of subproblems. The technique in localizing each subproblem
is similar to that in [7], but the clustering and stitching strategies are different. It is
reported that the improved techniques can localize anchored graphs very efficiently and
accurately.

Interestingly, the SDP relaxation method not only solves for unknown points, the
solution matrix also provides an error measure for each estimation. Furthermore, the
dual of the SDP relaxation also gives insights into the localizability of the given set of

4

points. In fact, the issue of localizability, that is, the existence of a unique configuration
of points satisfying the distance constraints is closely linked to the rigidity of the graph
structure underlying the set of points. These issues are explored in detail in [28].

Many approaches have been developed for the molecular distance geometry problem.
An overall discussion of the methods and related software is provided in [40]. Some of the
approaches are briefly described below.

When the exact distances between all pairs of n points are given, a valid configuration
can be obtained by computing the eigenvalue decomposition of an (n−1)×(n−1) matrix
(which can be obtained through a linear transformation of the squared distance matrix).
Note that if the configuration of n points can be realized in a d-dimensional space, then
the aforementioned matrix must have rank d, and the eigenvectors corresponding to the
d nonzero eigenvalues give a valid configuration. So a decomposition can be found and
a configuration constructed in O(n3) arithmetic operations. The EMBED algorithm [13]
exploits this idea for sparse and noisy distances by first performing bound smoothing,
that is, preprocessing the available data to remove geometric inconsistencies and finding
valid estimates for unknown distances. Then a valid configuration is obtained through
the eigenvalue decomposition of the inner product matrix and the estimated positions are
then used as the starting iterate for local optimization methods on certain nonlinear least
squares problems.

Classical multidimensional scaling (MDS) is the general class of methods that takes in-
exact distances as input, and extracts a valid configuration from them based on minimizing
the discrepancy between the inexact measured distances and the distances corresponding
to the estimated configuration. The inexact distance matrix is referred to as a dissimilar-
ity matrix in this framework. Since the distance data is also incomplete, the problem also
involves completing the partial distance matrix. The papers [32], [33], [34] consider this
problem of completing a partial distance matrix, as well as the more general problem of
finding a distance matrix of prescribed embedding dimension that satisfies specified lower
and upper bounds, for use in MDS based algorithms. In [33], good conformation results
were reported for molecules with a few hundred atoms each under the condition that all
the pairwise distances (specified in the form of lower and upper bounds with a gap of
0.02Å) below 7Å were given.

Also worth noting in this regard is the distance geometry program APA described
in [27], that applies the idea of a data box, a rectangular parallelepiped of dissimilarity
matrices that satisfy some given upper and lower bounds on distances. An alternating
projection based optimization technique is then used to solve for both a dissimilarity
matrix that lies within the data box, and a valid embedding of the points, such that the
discrepancy between the dissimilarity matrix and the distances from the embedding are
minimized.

The ABBIE software package [19], on the other hand, exploits the concepts of graph
rigidity to solve for smaller subgraphs of the entire graph defined by the points and dis-
tances and finally combining the subgraphs to find an overall configuration. It is especially

5

advantageous to solve for smaller parts of the molecule and to provide certificates confirm-
ing that the distance information is not enough to ascertain certain atoms. Our approach
tries to retain these advantages by solving the molecule in a distributed fashion, that is,
solving smaller clusters and later assembling them together.

Some global optimization methods attempt to attack the problem of finding a confor-
mation which fits the given data as a large nonlinear least squares problem. For example,
a global smoothing and continuation approach is used in the DGSOL algorithm [25]. To
prevent the algorithm from getting stuck at one of the large number of possible local
minimizers, the nonlinear least squares problem (with an objective that is closely related
to the refinement stage of the EMBED algorithm) is mollified to smoother functions so as
to increase the chance of locating the global minimizer. However, it can still be difficult
to find the global minimizer from various random starting points, especially with noisy
distance information. More refined methods that try to circumvent such difficulties have
also been developed in [26], though with limited success.

Another example is the GNOMAD algorithm [37], also a global optimization method,
which takes special care to satisfy the physically inviolable minimum separation distance,
or van der Waals (VDW) constraints. For GNOMAD, the VDW constraints are crucial in
reducing the search space in the case of very sparse distance data. Obviously, the VDW
constraints can easily be incorporated into any molecular conformation problem that is
modelled by an optimization problem. In [37], the success of the GNOMAD algorithm
was demonstrated on 4 molecules (the largest one has 5591 atoms) under the assumption
that 30-70% of the exact pairwise distances below 6Å were given. In addition, the given
distances included those from covalently bonded atoms and those between atoms that
share covalent bonds with the same atom.

Besides optimization based methods, there are geometry based methods proposed for
the molecular conformation problem. The effectiveness of simple geometric build up (also
known as triangulation) algorithms has been demonstrated in [14] and [38] for molecules
when exact distances within a certain cut-off radius are all given. Basically, this approach
involves using the distances between an unknown atom and previously determined neigh-
boring atoms to find the coordinates of the unknown atom. The algorithm progressively
updates the number of known points and uses them to compute points that have not yet
been determined. However, the efficacy of such methods for large molecules with very
sparse and noisy data has not yet been demonstrated.

In this paper, we will attempt to find the structures of molecules with sizes varying
from hundreds to several thousands of atoms, given only upper and lower bounds on
some limited pairwise distances between atoms. The approach described in this paper also
performs distance matrix completion, similar to some of the methods described above. The
extraction of the point configuration after matrix completion is still the same as the MDS
methods. The critical difference lies in the use of an SDP relaxation for completing the
distance matrix. Furthermore, our distributed approach avoids the issue of intractability
for very large molecules by splitting the molecule into smaller subgraphs, much like the

6

ABBIE algorithm [19] and then stitching together the different clusters. Some of the atoms
which are incorrectly estimated are solved separately using the correctly estimated atoms
as anchors. The latter bears some similarities to the geometric build up algorithms. In
this way, we adapted and improved some of the techniques used in previous approaches,
but also introduced new ideas generated from recent advances in SDP to attack the
twin problems of dealing with noisy and sparse distance data, and the computational
intractability of large scale molecular conformation.

3 The semidefinite programming model

We first present a non-convex quadratic programming formulation of the position estima-
tion problem (in the molecular conformation context) and then introduce its semidefinite
programming relaxation model.

Assume that we have m known points (called anchors) ak ∈ Rd (note that m = 0 if
no anchor exist), k = 1, . . . , m, and n unknown points xj ∈ Rd, j = 1, . . . , n. Suppose
that we know the upper and lower bounds on the Euclidean distances between some pairs
of unknown points specified in the edge set N , and the upper and lower bounds on the
Euclidean distances between some pairs of unknown points and anchors specified in the
edge set M. For the rest of the point pairs, the upper and lower bounds would be the
trivial bounds, ∞ and 0.

We define the lower bound distance matrices D = (dij) and H = (hik), where dij

is specified if (i, j) ∈ N , and dij = 0 otherwise; and hik is specified if (i, k) ∈ M, and

hik = 0 otherwise. The upper bound distance matrices D = (d̄ij) and H̄ = (h̄ik) are
defined similarly with d̄ij = 0 if (i, j) 6∈ N , and h̄ik = 0 if (i, k) 6∈ M. We let D = (dij)
be the mean of D and D, i.e., dij = (dij + d̄ij)/2.

The realization problem for the graph ({1, . . . , n},N ; {a1, . . . , am},M) is to deter-
mine the coordinates of the unknown points x1, . . . , xn given the upper and lower bound
distance matrices, D, D, H and H .

Let X = [x1 x2 . . . xn] be the d×n matrix that needs to be determined. The realization
problem just mentioned can be formulated as the following feasibility problem:

Find X s.t.

d2
ij ≤ ‖xi − xj‖2 ≤ d̄2

ij ∀(i, j) ∈ N

h2
ik ≤ ‖xi − ak‖2 ≤ h̄2

ik ∀(i, k) ∈M. (1)

We can write

‖xi − xj‖2 = eT
ijX

TXeij , ‖xi − ak‖2 = (ei;−ak)
T [X I]T [X I](ei;−ak),

where eij = ei − ej. Here ei is the ith unit vector of appropriate dimension, I is the
d × d identity matrix, and (ei;−ak) is the vector obtained by appending −ak to ei. Let

7

Y = XT X and Z = [Y XT ; X I]. Then the problem (1) can be rewritten as:

Find Z s.t.

d2
ij ≤ eT

ijY eij ≤ d̄2
ij, ∀(i, j) ∈ N

h2
ik ≤ (ei;−ak)

T Z(ei;−ak) ≤ h̄2
ik, ∀(i, k) ∈M

Z = [Y XT ; X I], Y = XTX. (2)

The above problem (2) is unfortunately non-convex. Our method is to relax it to an
SDP by relaxing the constraint Y = XT X to Y � XT X (meaning that Y − XT X is
positive semidefinite). The last matrix inequality is equivalent to (Boyd et al. [9])

Z =

(
Y XT

X I

)
� 0, Z symmetric.

Thus, the SDP relaxation of (2) can be written as the following standard SDP problem:

Find Z s.t.

d2
ij ≤ eT

ijZeij ≤ d̄2
ij, ∀ (i, j) ∈ N

h2
ik ≤ (ei;−ak)

T Z(ei;−ak) ≤ h̄2
ik, ∀ (i, k) ∈M

eT
i Zei = 1, ∀ n + 1 ≤ i ≤ n + d

(ei + ej)
T Z(ei + ej) = 2, ∀ n + 1 ≤ i < j ≤ n + d

Z � 0. (3)

Note that the last two sets of equality constraints in (3) specify that the lower-right d× d
block of Z is the identity matrix.

We note that if there are additional constraints of the form ‖xi−xj‖ ≥ L coming from
knowledge about the minimum separation distance between any 2 points, such constraints
can be included in the SDP (3) by adding inequality constraints of the form: eT

ijZeij ≥
L2. In molecular conformation, the minimum separation distances corresponding to the
VDW interactions are used in an essential way to reduce the search space in the atom-
based constrained optimization algorithm (GNOMAD) described in [37]. The minimum
separation distance constraints are also easily incorporated in the MDS framework [27, 33].

For the anchor-free case where M = ∅ (empty set), the SDP problem (3) can be
reduced in dimension by replacing Z by Y and removing the last d(d + 1)/2 equality
constraints, i.e.,

Find Y s.t.

d2
ij ≤ eT

ijY eij ≤ d̄2
ij, ∀ (i, j) ∈ N ,

Y e = 0,

Y � 0. (4)

8

This is because when M = ∅, the (1, 2) and (2, 1) block of Z are always equal to zero if
the starting iterate for the interior-point method used to solve (3) is chosen to be so. Note
that we add the extra constraint Y e = 0 to eliminate the translational invariance of the
configuration by putting the center of gravity of the points at the origin, i.e.,

∑n
i=1 xi = 0.

Note also that in the anchor-free case, if the graph is localizable (defined in the next
subsection), a realization X ∈ Rd×n can no longer be obtained from the (2, 1) block of Z
but needs to be computed from the inner product matrix Y by factorizing it to the form
Y = XT X via eigenvalue decomposition (as has been done in previous methods discussed
in the literature review). In the noisy case, the inner product matrix Y would typically
have rank greater than d. In practice, X is chosen to be the best rank-d approximation,
by choosing the eigenvectors corresponding to the d largest eigenvalues. The configuration
so obtained is a rotated or reflected version of the actual point configuration.

3.1 Theory of anchor-free graph realization

In order to establish the theoretical properties of the SDP relaxation, we will consider
the cases where all the given distances in N are exact, i.e., without noise. A graph
G = ({1, . . . , n}, D) is localizable in dimension d if (i) it has a realization X in Rd×n such
that ‖xi− xj‖ = dij for all (i, j) ∈ N ; (ii) it cannot be realized (non-trivially) in a higher
dimensional space. We let D = (dij) be the n × n matrix such that its (i, j) element dij

is the given distance between points i and j when (i, j) ∈ N , and zero otherwise. It is
shown for the exact distances case in [28] that if the graph with anchors is localizable,
then the SDP relaxation will produce a unique optimal solution Z with its (1,1) block
equal to XT X. For the anchor free case where M = ∅, it is clear that the realization
cannot be unique since the configuration may be translated, rotated, or reflected, and still
preserve the same distances.

To remove the translational invariance, we will add an objective function to minimize
the norm of the solution in the problem formulation:

minimize
∑n

j=1 ‖xj‖2

s.t. ‖xi − xj‖2 = d2
ij , ∀ (i, j) ∈ N .

(5)

What this minimization does is to translate the center of gravity of the points to the
origin, that is, if x̄j, j = 1, ..., n, is the realization of the problem, then the realization
generated from the (5) will be x̄j − x̄, j = 1, ..., n, where x̄ = 1

n

∑n
j=1 x̄j , subject to only

rotation and reflection. The norm minimization also helps the following SDP relaxation
of (5) to have bounded solutions:

minimize Trace(Y) = I • Y

s.t. eT
ijY eij = d2

ij , ∀ (i, j) ∈ N ,

Y � 0,

(6)

9

where Y ∈ Sn (the space of n × n symmetric matrices), I is the identity matrix, and •
denotes the standard matrix inner product. We note that a model similar to (6) is also
proposed in [1] but with the objective function replaced by ‖Y ‖2F . The dual of the SDP
relaxation (6) is given by:

maximize
∑

(i,j)∈N wijd
2
ij

s.t. I −∑
(i,j)∈N wij · eije

T
ij � 0.

(7)

Note that the dual is always feasible and has an interior, since wij = 0 for all (i, j) ∈ N
is an interior feasible solution. Thus the primal optimal value in (6) is always attained.
However the dual optimal value in (7) may not be always attainable unless the primal
problem (6) is strictly feasible. From the standard duality theorem for SDP, we have the
following proposition.

Proposition 1. Let Ȳ � 0 be an optimal solution of (6) and suppose that the dual
optimal value in (7) is attained, with Ū = I −∑

(i,j)∈cN w̄ij · eije
T
ij � 0 being an optimal

slack matrix. Then,

1. complementarity condition holds: Ȳ • Ū = 0 or Ȳ Ū = 0;

2. Rank(Ȳ) + Rank(Ū) ≤ n.

In general, a primal (dual) max–rank solution is a solution that has the highest rank
among all solutions for primal (6) (dual (7)). It is known that various path–following
interior–point algorithms compute the max–rank solutions for both the primal and dual
in polynomial time.

We now investigate when the SDP (6) will have an exact relaxation, given that the
partial distance data (dij) is exact. For the anchored case, it was proved in [28] that
the condition of exact relaxation is equivalent to the rank of the SDP solution Ȳ being
d. However, for the anchor-free case, we are unable to prove this. Instead, we derive an
alternative result.

Definition 1. Problem (5) is d-localizable if there is no xj ∈ Rh, j = 1, . . . , n, where
h 6= d, such that:

‖xi − xj‖2 = d2
ij ∀ (i, j) ∈ N

For h > d, the condition should exclude the trivial case when we set xj = (x̄j ; 0) for
j = 1, . . . , n.

The d-localizability indicates that the distances cannot be embedded by a non-trivial
realization in higher dimensional space, and cannot be “flattened” to a lower dimensional
space either. We now develop the following theorem.

Theorem 1. If problem (5) is d-localizable, then the solution matrix, Ȳ , of (6) is unique
and its rank equals d. Furthermore, if Ȳ = X̄T X̄ and the dual optimal value of (7) is
attained, then X̄ = (x̄1, ..., x̄n) ∈ Rd×n is the unique minimum-norm localization of the
graph with

∑n
j=1 x̄j = 0 (subject to only rotation and reflection).

10

Proof. Since problem (5) is d-localizable, by definition every feasible solution matrix Y of
(6) has rank d. Thus, there is a rank-d matrix V̄ ∈ Rd×n such that any feasible solution
matrix Y can be written as Y = V̄ T P V̄ , where P is a d × d symmetric positive definite
matrix. We show that the solution is unique by contradiction. Suppose that there are
two feasible solutions

Y 1 = V̄ T P 1V̄ and Y 2 = V̄ T P 2V̄ ,

where P 1 6= P 2 and, with out loss of generality, P 2−P 1 has at least one negative eigenvalue
(otherwise, if P 1 − P 2 has at least one negative eigenvalue, we can interchange the role
of P 1 and P 2; the only case left to be considered is when all the eigenvalues of P 2 − P 1

are equal to zero, but this case is not possible since it implies that P 1 = P 2). Let

Y (α) = V̄ T (P 1 + α(P 2 − P 1))V̄ .

Clearly, Y (α) satisfies all the linear constraints of (6), and it has rank d for 0 ≤ α ≤ 1.
But there is an α′ > 1 such that P 1 +α′(P 2−P 1) is positive semidefinite but not positive
definite, that is, one of eigenvalues of P 1 + α′(P 2 − P 1) becomes zero. Thus, Y (α′) has a
rank less than d but feasible to (6), which contradicts the fact that the graph cannot be
“flattened” to a lower dimensional space.

Let Ū be an optimal dual matrix of (7). Then, any optimal solution matrix Ȳ satisfies
the complementarity condition Ȳ Ū = 0. Note that Ūe = e where e is the vector of all
ones. Thus, we have X̄T X̄e = Ȳ e = Ȳ Ūe = 0, which further implies that X̄e = 0.

Theorem 1 has an important implication in a distributed graph localization algorithm.
It suggests that if a subgraph is d-localizable, then the sub-configuration is the same
(up to translation, rotation and reflection) as the corresponding portion in the global
configuration. Thus, one may attempt to localize a large graph by finding a sequence of
d-localizable subgraphs.

Theorem 1 also says that if the graph G is d-localizable, then the optimal solution of
the SDP is given by Ȳ = X̄T X̄ for some X̄ = [x̄1, . . . , x̄n] ∈ Rd×n such that X̄e = 0.

It is now clear that when G is d-localizable, we have Ȳ = X̄T X̄, and hence Ȳjj = ‖x̄j‖2
for j = 1, . . . , n. But in general, when the given distances are not exact but corrupted
with noises, we only have Ȳ − X̄T X̄ � 0. This inequality however, may give a measure
of the quality of the estimated positions. For example, the individual trace

Tj := Ȳjj − ‖x̄j‖2, (8)

may give an indication on the quality of the estimated position x̄j , where a smaller trace
indicates more accuracy in the estimation.

3.2 Regularization term

When the measured distances have errors, the distance constraints usually contradict each
other and so there is no localization in Rd. In other words, Y 6= XTX. However, since

11

the SDP approach relaxes the constraint Y = XTX into Y � XT X, it is still possible
to locate the points in a higher dimensional space (or choose a Y with a higher rank)
such that they satisfy the distance constraints exactly. The optimal solution in a higher
dimensional space always results in a smaller violation of the distance constraints than the
one constrained in Rd. Furthermore, the ’max-rank’ property [17] implies that solutions
obtained through interior point methods for solving SDPs converge to the maximum rank
solutions. Hence, because of the relaxation of the rank requirement, the solution is “lifted”
to a higher dimensional space. For example, imagine a rigid structure consisting of set
of points in a plane (with the points having specified distances from each other). If we
perturb some of the specified distances, the configuration may need to be readjusted by
setting some of the points outside the plane.

The above discussion leads us to the question on how to round the higher-dimensional
(higher rank) SDP solution into a lower-dimensional (in this case, rank-3) solution. One
way is to ignore the augmented dimensions and use the projection X∗ as a suboptimal
solution, which is the case in [8]. However, the projection typically leads to points getting
“crowded” together. (Imagine the projection of the top vertex of a pyramid onto its base.)
This is because a large contribution to the distance between 2 points could come from the
dimensions we choose to ignore.

In [36], regularization terms have been incorporated to the SDP arising from kernel
learning in nonlinear dimensionality reduction. The purpose is to penalize folding and try
to find a stretched map of the set of points while respecting local distance constraints.
Here we propose a similar strategy to ameliorate the difficulty of crowding.

Our strategy is to convert the feasibility problem(1) into an maximization problem
using the following regularization term as the objective function,

n∑

i=1

n∑

j=1

‖xi − xj‖2. (9)

The new optimization problem is

Maximize

n∑

i=1

n∑

j=1

‖xi − xj‖2 s.t

d2
ij ≤ ‖xi − xj‖2 ≤ d̄2

ij ∀(i, j) ∈ N
n∑

i=1

xi = 0 (10)

and the SDP relaxation is

Maximize 〈I − (eeT /n), Y 〉 s.t.

d2
ij ≤ eT

ijY eij ≤ d̄2
ij, ∀ (i, j) ∈ N ,

Y e = 0, Y � 0. (11)

12

where e is the vector of all ones. As mentioned before, the constraint
∑n

i=1 xi = 0 and
Y e = 0 are to remove the translational invariance of the configuration of points by putting
the center of gravity at the origin.

The addition of a regularization term penalizes folding between the points and maxi-
mizes the separation between them, while still respecting local distance constraints. The
idea of regularization has also been linked to tensegrity theory and realizability of graphs
in lower dimensions, see [29]. The notion of stress is used to explain this. By maximizing
the distance between some vertices in a graph, the graph gets stretched out and there is
a non-zero stress induced on the edges in the graph. For the configuration to remain in
equilibrium, the total stress on a vertex must sum to zero. In order for the overall stress
to cancel out completely, the graph must be in a low dimensional space.

One important point to be noted is that in the case of very sparse distance data, often
there may be 2 or more disjoint blocks within the given distance matrix, that is, the
graph represented by the distance matrix may not be connected, and have more than 1
component. In that case, using the regularization term leads to an unbounded objective
function since the disconnected components can be pulled as far apart as possible. There-
fore, care must be taken to identify the disconnected components before applying (11) to
the individual components.

4 Clustering

The SDP problem (11) is computationally not tractable when there are several hundreds
points. Therefore we divide the entire molecule into smaller clusters of points and solve
a separate SDP for each cluster. The clusters need to be chosen such that there should
be enough distance information between the points in a cluster for it to be localized
accurately, but at the same time only enough that it can also be solved efficiently. In
order to do so, we make use of matrix permutations that reorder the points in such a
way that the points which share the most distance information amongst each other are
grouped together.

In the problem described in this paper, we have an upper and a lower bound distance
matrix, but for simplicity, we will describe the operations in this section on just the
partial distance matrix D. In the actual implementation, the operations described are
performed on both the upper and lower bound distance matrices. This does not make a
difference because the operations performed here basically exploit information only about
the connectivity graph of the set of points.

We perform a symmetric permutation of the partial distance matrix D to aggregate
the non-zero elements towards the main diagonal. Let D̃ be the permuted matrix. In
our implementation, we used the function symrcm in Matlab to perform the symmetric
reverse Cuthill-McKee permutation [15] on D. In [41], the same permutation is also used
in a domain decomposition method for fast manifold learning.

The permutated matrix D̃ is next partitioned into a quasi-block-diagonal matrix with

13

variable block-sizes. Let the blocks be denoted by D1, . . . , DL. A schematic diagram of
the quasi-block-diagonal structure is shown in Figure 4. The size of each block (except
the last) is determined as follows. Starting with a minimum block-size, say 50, we extend
the block-size incrementally until the number of non-zero elements in the block is above a
certain threshold, say 1000. We start the process of determining the size of each block from
the upper-left corner and sequentially proceed to the lower right-corner of D̃. Observe
that there are overlapping sub-blocks between adjacent blocks. For example, the second
block overlaps with the first at its upper-left corner, and overlaps with the third at its
lower-right corner.

The overlapping sub-blocks serve an important purpose. For convenience, consider the
overlapping sub-block between the second and third blocks. This overlapping sub-block
corresponds to points that are common to the configurations defined by their respective
distance matrices, D2 and D3. If the third block determines a localizable configuration X3,
then the common points in the overlapping sub-block can be used to stitch the localized
configuration X3 to the current global configuration determined by the first two blocks.
In general, if the kth block is localizable, then the overlapping sub-block between the
k − 1st and kth blocks will be used to stitch the kth localized configuration to the global
configuration determined by the aggregation of all the previous blocks.

(a) (b)

D
2

Figure 1: (a) Schematic diagram of the quasi-block-diagonal structure considered in the
distributed SDP algorithm; (b) The shaded region is the (2,2) block of D2 that is not
overlapping D1. Points correspond to this shaded block is re-ordered again via a symmetric
reversed Cuthill-McKee permutation.

Geometrically, the above partitioning process splits the job of determining the global
configuration defined by D̃ into L smaller jobs, each of which try to determine the sub-
configuration defined by Dk, and then assemble the sub-configurations sequentially from
k = 1 to L to reconstruct the global configuration.

As the overlapping sub-blocks are of great importance in stitching a sub-configuration

14

to the global configuration, it should have as high connectivity as possible. In our im-
plementation, we find the following strategy to be reasonably effective. After the blocks
D1, . . . , DL are determined, starting with D2, we perform a symmetric reverse Cuthill-
McKee permutation to the (2,2) sub-block of D2 that is not overlapping D1, and repeat
the same process sequentially for all subsequent blocks. To avoid introducing excessive
notation, we still use Dk to denote the permuted kth block.

It is also worth noting that in the case of highly noisy or very sparse data, the size of
the overlapping sub-blocks needs to be set higher for the stitching phase to succeed. The
more common points there are between 2 blocks, the more robust the stitching between
them. This is also true as the number of sub-blocks which need to be stitched is large
(that is, the number of atoms in the molecules is large). However, increasing the number
of common points also has an impact on the runtime, and therefore we must choose the
overlapping sub-block sizes judiciously. Experiments indicated that a sub-block size of
15-20 was sufficient for molecules with less than 3000 atoms but sub-block sizes of 25-30
were more suitable for larger molecules.

5 Stitching

After all the individual localization problems corresponding to D1, . . . , DL have been
solved, we have L sub-configurations that need to be assembled together to form the
global configuration associated with D̃.

Suppose the current configuration determined by the blocks Di, i = 1, . . . , k − 1 is
given by the matrix X(k−1) = [U (k−1), V (k−1)]. Suppose also that F (k−1) records the
global indices of the points that are currently labelled as localized in the current global
configuration. Let Xk = [Vk, Wk] be the points in the sub-configuration determined by
Dk. (For k = 1, Vk is the null matrix. For k = 2, Vk and Wk correspond to the unshaded
and shaded sub-blocks of D2 in Figure 1(b), respectively.) Here V (k−1) and Vk denote the
positions of the points corresponding to the overlapping sub-block between Dk−1 and Dk,
respectively.

Let Ik be the global indices of the points in Wk. Note that the global indices of the
unlocalized points for the blocks D1, . . . , Dk−1 are given by J (k−1) =

⋃k−1
i=1 Ii \F (k−1).

We will now concentrate on stitching the sub-configuration Dk with the global index
set Ik. Note that the points in the sub-configuration Dk, which have been obtained by
solving the SDP on Dk, will most likely contain points that have been correctly estimated
and points that have been estimated less accurately. It is essential that we isolate the badly
estimated points, so as to ensure that their errors are not propagated when estimating
subsequent blocks and that we may recalculate their positions when more points have
been correctly estimated.

To detect the badly estimated points, we use a combination of 2 error measures. Let
xj be the position estimated for point j. Set F̂ ← F (k−1). We use the trace error Tj from

15

Equation (8) and the local error

Êj =

∑
i∈N̂j

(‖xi − xj‖ − dij)
2

|N̂j|
. (12)

where N̂j = {i ∈ F̂ : i < j, D̃ij 6= 0}. We require max{Tj , Êj} ≤ Tε as a necessary
condition for the point to be correctly estimated.

In the case when we are just provided with upper and lower bounds on distances, we
use the mean distance in the local error measure calculations, i.e.,

dij = (d̄ij + dij)/2. (13)

The use of multiple error measures is crucial, especially in cases when the distance
information provided is noisy. In the noise free case, it is much easier to isolate points
which are badly estimated using only the trace error Tj . But in the noisy case, there
are no reliable error measures. By using multiple error measures, we hope to identify all
the bad points which might possibly escape detection when only a single error measure is
used.

Setting the tolerances Tε for the error is also an important parameter selection issue.
For very sparse distance data and highly noisy cases, where even accurately estimated
points may have significant error measure values, there is a tradeoff between selecting the
tolerance and the number of points that are flagged as badly estimated. If the tolerance is
too tight, we might end up discarding too many points that are actually quite accurately
estimated.

The design of informative error measures is still an open issue and there is room for
improvement. As our results will show, the stitching phase of the algorithm is one which
is most susceptible to noise and inaccurate estimation, and we need better error measures
to make it more robust.

Now we have two cases to consider in the stitching process.

(i) Suppose that there are enough points in the overlapping sub-blocks Vk and V (k−1)

that are well estimated/localized, then we can stitch the kth sub-configuration di-
rectly to the current global configuration X(k−1) by finding the affine mapping that
matches points in V (k−1) and Vk as closely as possible. Mathematically, we solve the
following linear least squares problem:

min
{
‖B(Vk − α)− (V (k−1) − β)‖F : B ∈ Rd×d

}
, (14)

where α and β are the centroids of Vk and V (k−1), respectively. Once an optimal B
is found, set

X̂ = [U (k−1), V (k−1), β + B(Wk − α)], F̂ ← F (k−1)
⋃

Ik.

16

We should mention that in the stitching process, it is very important to exclude
points in V (k−1) and Vk that are badly estimated/unlocalized when solving (14) to
avoid destroying the current global configuration.

It should also be noted that there may be points in Wk that are incorrectly estimated
in the SDP step. Performing the affine transformation on these points is useless,
because they are in the wrong position in the local configuration to begin with. To
deal with these points, we re-estimate the positions using those correctly estimated
points as anchors. This procedure is exactly the same as what is described in case
(ii).

(ii) If there are not enough common points in the overlapping sub-blocks, then the
stitching process described in (a) cannot be carried out successfully. In this case,
the solution obtained from the SDP step for Dk is discarded. That is, the positions in
Wk are discarded and they are to be determined via the current global configuration
X(k−1) point-by-point as follows.

Set X̂ ← X(k−1), and F̂ ← F (k−1). Let Tε = 10−4.
For j ∈ J (k−1)

⋃
Ik,

(1) Formulate the new SDP problem (3) with N = ∅ and M = {(i, j) : i ∈
F̂ , D̃ij 6= 0} where the anchor points are given by {X̂(:, i) : (i, j) ∈M}.

(2) Let xj and Tj be the newly estimated position and trace error from the previous

step. Compute the local error measure Êj.

If j ∈ J (k−1), set X̂(:, j) = xj ; else, set X̂ = [X̂, xj]. If min{Tj, Êj} ≤ Tε, then

set F̂ ← F̂ ∪ {j}, end.

Notice that in attempting to localize the points corresponding to Wk, we also at-
tempt to estimate the positions of those previously unlocalized points, whose indices
are recorded in J (k−1).

Furthermore, we use previously estimated points as anchors to estimate new points.
This not only helps in stitching new points into the current global configuration, but
also increases the chances of correcting the positions of previously badly estimated
points (since more anchor information is available when more points are correctly
estimated).

17

6 Postprocessing refinement by a gradient descent

method

The positions estimated from the SDP and stitching steps can further be refined by
applying a local optimization method to the following problem:

min
X∈Rd×n

{
f(X) :=

∑

(i,j)∈N

(‖xi − xj‖ − dij)
2 +

∑

(j,k)∈M

(‖xj − ak‖ − hjk)
2
}
. (15)

The method we suggest to improve the current solution is to move every position along
the negative gradient direction of the function f(X) in (15) to reduce the error function
value. Now, we will explain the gradient method in more detail.

Let Nj = {i : (i, j) ∈ N} and Mj = {k : (j, k) ∈ M}. By using the fact that
∇x‖x − b‖ = (x − b)/‖x − b‖ if x 6= b, it is easy to show that for the objective function
f(X) in (15), the gradient ∇jf with respect to the position xj is given by:

∇jf(X) = 2
∑

i∈Nj

(
1− dij

‖xj − xi‖
)
(xj − xi) + 2

∑

i∈Mj

(
1− hjk

‖xj − ak‖
)
(xj − ak). (16)

Notice that∇jf only involves points that are connected to xj . Thus ∇jf can be computed
in a distributed fashion.

The gradient-descent method is a local optimization method that generally does not
deliver the global optimal solution of a non-convex problem, unless a good starting iter-
ate is available. The graph realization problem described in this paper is a non-convex
optimization problem. Hence a pure gradient-descent method would not work. However,
the SDP estimated solutions are generally close to the global minimum, and so they serve
as excellent initial points to start the local optimization.

Different objective functions can also be used in the gradient-descent method, for
example, one could have considered the objective function

∑
(i,j)∈N (‖xi − xj‖2 − d2

ij)
2 +∑

(j,k)∈M(‖xj − ak‖2 − h2
jk)

2 instead of the one in (15). But we have found that there
are no significantly difference in the quality of the estimated positions produced by the
gradient method using either objective functions. The one considered in (15) is easily
computed and is a good indicator of the estimation error. In our implementation, we
use the gradient refinement step quite extensively, both after the SDP step for a single
block, and also after each stitching phase between 2 blocks. In the single block case, the
calculation does not involve the use of any anchor points, but when used after stitching,
we fix the previous correctly estimated points as anchors.

18

7 A distributed SDP algorithm for anchor-free graph

realization

We will now describe the complete distributed algorithm for solving a large scale anchor-
free graph realization problem. To facilitate the description of our distributed algorithm
for anchor-free graph realization, we first describe the centralized algorithm for solving
(1). It is important to note here that the terms localization and realization are used
interchangeably.

Centralized graph localization (CGL) algorithm.
Input: (D, D,N ; {a1, . . . , am},M).
Output: Estimated positions, [x̄1, . . . , x̄n] ∈ Rd×n, and corresponding accuracy measures;

trace errors, T1, . . . , Tn and local error measures Ê1, . . . , Ên.

1. Formulate the optimization problem (10) and solve the resulting SDP. Let X =
[x1, . . . , xn] be the estimated positions obtained from the SDP solution.

2. Perform the gradient-descent algorithm to (15) using the SDP solution as the start-
ing iterate to get more refined estimated positions [x̄1, . . . , x̄n].

3. For each j = 1, . . . , n, label the point j as localized or unlocalized based on the error
measures Tj and Êj .

Distributed anchor free graph localization (DAFGL) algorithm.
Input : Upper and lower bounds on a subset of the pairwise distances in a molecule.
Output : A configuration of all the atoms in the molecule that is closest (in terms of the

RMSD error described in Section 8) to the actual molecule (from which the measurements
were taken).

1. Divide the entire point set into sub-blocks using the clustering algorithm described
in Section 4 on the sparse distance matrices.

2. Apply the CGL algorithm to each sub-block.

3. Stitch the sub-blocks together using the procedure described in Section 5. After each
stitching phase, refine the point positions again using the gradient-descent method
described in Section 6 and update their error measures.

Some remarks are in order for the above algorithm. In Step 3, we can solve each
cluster individually and the computation is highly distributive. In using the centralized
CGL algorithm to solve each cluster, the computational cost is dominated by the solution
of the SDP problem(the SDP cost is in turn determined by the number of given distances).
For a graph with n nodes and m given pairwise distances, the computational complexity
in solving the SDP is roughly O(m3) + O(n3), provided sparsity in the SDP data is fully

19

exploited. For a graph with 200 nodes and the number of given distances is 10% of the
total number of pairwise distances, the SDP would roughly have 2000 equality constraints
and matrix variables of dimension 200. Such an SDP can be solved on a Pentium IV 3.0
GHz PC with 2GB RAM in about 36 and 93 seconds using the general purpose SDP
software SDPT3-3.1 [35] and SeDuMi-1.05 [30], respectively.

The computational efficiency in the CGL algorithm can certainly be improved in var-
ious ways. First, the SDP problem need not be solved to high accuracy. It is sufficient to
have a low accuracy SDP solution if it is only used as a starting iterate for the gradient-
descent algorithm. There are various highly efficient methods (such as iterative solver
based interior-point methods [31] or the SDPLR method of Burer and Monteiro [10]) to
obtain a low accuracy SDP solution. Second, a dedicated solver based on a dual scaling
algorithm can also speed up the SDP computation. Substantial speed up can be expected
if the computation exploits the low rank structure present in the constraint matrices.
However, as our focus in this paper is not on improving the computational efficiency of
the CGL algorithm, we shall not discuss this issue further. In the numerical experiments
conducted in Section 8, we use the softwares SDPT3-3.1 and SeDuMi to solve the SDP in
the CGL algorithm. An alternative is to use the software DSDP5.6 [3], which is expected
to be more efficient than SDPT3-3.1 or SeDuMi.

The stitching process in Step 4 is sequential in nature. But this does not imply that
the distributed DAFGL algorithm is redundant and that the centralized CGL algorithm
is sufficient for computational purpose. For a graph with 10000 nodes and the number
of given distances is 1% of the total number of all pairwise distances, the SDP problem
that needs to be solved by the CGL algorithm would have 500000 constraints and matrix
variables of dimension 10000. Such a large scale SDP is well beyond the range that can
be solved routinely on a standard workstation available today. By considering smaller
blocks, the distributed algorithm does not suffer from the limitation faced by the CGL
algorithm.

If there are multiple computer processors available, say p of them, the distributed
algorithm can also take advantage of the extra computing power. The strategy is to
divide the graph into p large blocks using Step 2 of the algorithm and apply the DAFGL
algorithm to localize one large block on each processor.

We end this section with two observations on the DAFGL algorithm. First, we ob-
served that usually the outlying points which have low connectivity are not well estimated
in the initial stages of the method. As the number of well estimated points grows gradually,
more and more of these “loose” points are estimated by the gradient-descent algorithm.
As the molecules get larger, the frequency of having non-localizable sub-configurations
in Step 4 also increases. Thus the point-by-point stitching procedure of the algorithm
described in Section 5 gets visited more and more often.

Second, for large molecules, the sizes of the overlapping-blocks need to be larger for the
stitching algorithm in Section 5 to be robust (more common points generally lead to more
accuracy in stitching). But to accommodate larger overlapping-blocks, each subgraph

20

in the DAFGL algorithm will correspondingly be larger, and that in turns increases the
problem size of the SDP relaxation. In our implementation, we apply the idea of dropping
redundant constraints to reduce the computational effort in selecting large sub-block sizes
of 100-150. This strategy works because many of the distance constraints are for some of
the densest parts of the sub-block, and the points in these dense sections can actually be
estimated quite well with only a fraction of those distance constraints. Therefore in the
SDP step, we limit the number of distance constraints for each point to below 6. If there
are more distance constraints, they are not included in the SDP step. This allows us to
choose large overlapping-block sizes while the corresponding SDPs for larger clusters can
be solved without too much additional computational effort.

8 Computational results

To evaluate our DAFGL algorithm, numerical experiments were performed on protein
molecules with the number of atoms in each molecule ranging from a few hundreds to a
few thousands. We conducted our numerical experiments in Matlab on a single Pentium
IV 3.0 GHz PC with 2GB of RAM. The known 3D coordinates of the atoms were taken
from the Protein Data Bank (PDB) [4]. These were used to generate the true distances
between the atoms. Our goal in the experiments is to reconstruct as closely as possible
the known molecular configuration for each molecule, using only distance information
generated from a sparse subset of all the pairwise distances. This information was in the
form of upper and lower bounds on the actual pairwise distances.

For each molecule, we generated the partial distance matrix as follows. If the distance
between 2 atoms was less than a given cutoff radius R, the distance is kept; otherwise,
no distance information is known about the pair. The cutoff radius R is chosen to be
6Å (1Å = 10−8cm), which is roughly the maximum distance that NMR techniques can
measure between two atoms. Therefore, in this case, N = {(i, j) : ‖xi − xj‖ ≤ 6Å}.

We then perturb the distances to generate upper and lower bounds on the given
distances in the following manner. Assume that d̂ij is the true distance between atom i
and atom j, we set

d̄ij = d̂ij(1 + |ε̄ij|)
dij = d̂ij max(0, 1− |εij |),

where ε̄ij, εij ∼ N (0, σ2
ij)

By varying σij (which we keep as the same for all pairwise distances), we control the
noise in the data. This is a multiplicative noise model, where a higher distance value
means more uncertainty in its measurement. For all future reference, we will refer to σij

in percentage values. For example, σij = 0.1 will be referred to as 10% noise on the upper
and lower bounds.

Typically, not all the distances below 6Å are known from NMR experiments. There-
fore, we will also present results for the DAFGL algorithm when only a fraction of all the

21

distances below 6Å are chosen randomly and used in the calculation.
Let Q be the set of orthogonal matrices in Rd×d (d = 3). We measure the accuracy

performance of our algorithm by the following criteria:

RMSD =
1√
n

min
{
‖Xtrue −QX − h‖F |Q ∈ Q, h ∈ Rd

}
(17)

LDME =
(1

|N |
∑

(i,j)∈N

(
‖xi − xj‖ − dij

)2)1/2

. (18)

The first criterion RMSD (root mean square deviation) requires the knowledge of the
true configuration, whereas the second does not. Thus the second criterion LDME (local
distance matrix error) is more practical but it is also less reliable in evaluating the true
accuracy of the constructed configuration. The practically useful measure LDME gives
lower values than the RMSD, and as the noise increases, it is not a very reliable measure.

When 90% of the distances (below 6Å) or higher were given, and were not corrupted
by noise, the molecules considered here were estimated very precisely with RMSD =
10−4−10−6Å. This goes to show that the algorithm performs remarkably well when there
is enough exact distance data. In this regard, our algorithm is competitive compared to the
geometric build-up algorithm in [38] which is designed specifically for graph localization
with exact distance data. With exact distance data, we have solved molecules that are
much larger and with much sparser distance data than those considered in [38].

However, our focus in this paper is more on molecular conformation with noisy and
sparse distance data. We will only present results for such cases. In Figure 2, the original
true and the estimated atom positions are plotted for some of the molecules, with vary-
ing amounts of distance data and noise. The open green circles correspond to the true
positions and solid red dots to their estimated positions from our computation. The error
offset between the true and estimated positions for an individual atom is depicted by a
solid blue line. The solid lines, however, are not visible for most of the atoms in the plots
because we are able to estimate the positions very accurately.

The plots show that even for very sparse data (as in the case of 1PTQ), the estimation
for most of the atoms is accurate. The atoms that are badly estimated are the ones that
have too little distance information for them to be localized. The algorithm also performs
well for very noisy data, and for large molecules, as demonstrated for 1AX8 and 1TOA.
The largest molecule we tried the algorithm on is 1I7W, with 8629 atoms. Figure 3 shows
that even when the distance data is highly noisy (10 % error on upper and lower bounds),
the estimation is close to the original with an RMSD error = 1.3842 Å.

However, despite using more common points for stitching, the DAFGL algorithm
can sometimes generate estimations with high RMSD error for very large molecules due
to a combination of irregular geometry, very sparse distance data and noisy distances.
Ultimately, the problem boils down to being able to correctly identify when a point has
been badly estimated. Our measures using trace error (8) and local error (12) are able
to isolate the majority of the points that are badly estimated, but do not always succeed

22

0.5
0.4

0.6

−0.4

−0.2

0

0.2

0.4

0.6

(a) 1PTQ(402 atoms) with 30% of dis-
tances below 6Å and 1% noise on upper
and lower bounds, RMSD = 0.9858 Å

0.5

0

0.2

0.4

0.6

−0.4

−0.2

0

0.2

0.4

0.6

(b) 1AX8(1003 atoms) with 70% of dis-
tances below 6Å and 5% noise on upper
and lower bounds, RMSD = 0.8184 Å

(c) 1TOA(4292 atoms) with 100% of distances below 6Å and 10% noise on upper
and lower bounds, RMSD = 1.5058 Å

Figure 2: Comparison of actual and estimated molecules

23

Figure 3: 1I7W(8629 atoms) with 100% of distances below 6Å and 10% noise on upper
and lower bounds, RMSD = 1.3842 Å

when many of the points are badly estimated. In fact, for such molecules, a lot of the
computation time is spent in the point-by-point stitching phase, where we attempt to
repeatedly solve for better estimations of the badly estimated points, and if that fails
repeatedly, the estimations continue to be poor. If the number of badly estimated points
is very high, it may affect the stitching of the subsequent clusters as well. In such cases,
the algorithm more or less fails to find a global configuration. Examples of such cases
are the 1NF7 molecule (5666 atoms) and the 1HMV molecule (7398 atoms) solved with
10% noise. While they are estimated correctly when there is no noise, the 1NF7 molecule
estimation returns an RMSD of 25.1061 Å and the 1HMV molecule returns 28.3369 Å.

A more moderate case of stitching failure can be seen in Figure 4 for the molecule
1BPM with 50% of the distance below 6 Å, and 5% error on upper and lower bounds,
the problem is in particular clusters (which are encircled in the figure). Although they
have correct local geometry, their positions with respect to the entire molecule are not.
This indicates that the stitching procedure has failed because some of the common points
are not estimated correctly, and are then used in the stitching process, thus destroying
the entire local configuration. So far, this is the weakest part of the algorithm and future
work is heavily focussed on developing better error measures to isolate the badly estimated
points and to improve the robustness of the stitching process.

In Figure 5, we plotted the 3-dimensional configuration (via Swiss PDBviewer [16]) of
some of the molecules to the left and their estimated counterparts (with different distance
data inputs) to the right. As can be seen clearly, the estimated counterparts closely

24

Figure 4: 1BPM(3672 atoms) with 50% of distances below 6Å and 5% noise on upper and
lower bounds, RMSD = 2.4360 Å

resemble the original molecules.
The results shown in the following tables are a good representation of the performance

of the algorithm on different size molecules with different types of distance data sets. The
numerical results presented in Table 1 are for the case when all distances below 6Å are
used and perturbed with 10% noise on lower and upper bounds. Table 2 contains the
results for the case when only 70% of distances below 6Å are used and perturbed with 5%
noise and also for the case when only 50% of distances below 6Å are used and perturbed
with 1% noise. The results for 50% distance and 1% noise are representative of cases
with sparse distance information and low noise, 100% distance and 10% noise represent
relatively denser but highly noisy distance information and 70% distance and 5% noise is
a middle ground between the 2 extreme cases.

We can see from the values in Table 1 that LDME is not a very good measure of the
actual estimation error as given by RMSD since the former does not correlate well with
the latter. Therefore we do not report the LDME values in Table 2.

From the tables, it can be observed that for relatively dense distance data (100% of
all distances below 6 Å), the estimation error stays below 2 Å even when the upper and
lower bounds are very loose. The algorithm is seen to be quite robust to high noise when
there is enough distance information. The estimation error is also quite low for most
molecules for cases when the distance information is very sparse but much more precise.
In the sparse distance cases, it is the molecules that have more irregular geometries that
suffer the most from lack of enough distance data and exhibit high estimation errors. The

25

(a) 1HOE(558 atoms) with 40% of dis-
tances below 6Å and 1% noise on upper
and lower bounds, RMSD = 0.2154 Å

(b) 1PHT(814 atoms) with 50% of dis-
tances below 6Å and 5% noise on upper
and lower bounds, RMSD = 1.2014 Å

(c) 1RHJ(3740 atoms) with 70% of dis-
tances below 6Å and 5% noise on upper
and lower bounds RMSD = 0.9535 Å

(d) 1F39(1534 atoms) with 85% of dis-
tances below 6Å and 10% noise on upper
and lower bounds, RMSD = 0.9852 Å

Figure 5: Comparison between the original (left) and reconstructed (right) configurations
for various protein molecules using Swiss PDB viewer

26

Table 1: Results for 100% of Distances below 6Å and 10% noise on upper and lower bounds

PDB ID
No. of
atoms

% of total pairwise
distances used

RMSD(Å) LDME(Å)
CPU time

(secs)

1PTQ 402 8.79 0.1936 0.2941 107.7

1HOE 558 6.55 0.2167 0.2914 108.7

1LFB 641 5.57 0.2635 0.1992 129.1

1PHT 814 5.35 1.2624 0.2594 223.9

1POA 914 4.07 0.4678 0.2465 333.1

1AX8 1003 3.74 0.6408 0.2649 280.1

1F39 1534 2.43 0.7338 0.2137 358.0

1RGS 2015 1.87 1.6887 0.1800 665.9

1KDH 2923 1.34 1.1035 0.2874 959.1

1BPM 3672 1.12 1.1965 0.2064 1234.7

1RHJ 3740 1.10 1.8365 0.1945 1584.4

1HQQ 3944 1.00 1.9700 0.2548 1571.8

1TOA 4292 0.94 1.5058 0.2251 979.5

1MQQ 5681 0.75 1.4906 0.2317 1461.1

combination of sparsity and noise has detrimental impact on the algorithm’s performance,
as can be seen for the results with 70% distances, and 5% noise.

In Figure 6, we plotted the CPU times required by our DAFGL algorithm to localize a
molecule with n atoms versus n (with different types of distance inputs). As the distance
data becomes more and more sparse, the number of constraints in the SDP also reduce,
and therefore they take less time to be solved in general. However, many points may be
incorrectly estimated in the SDP phase and so the stitching phase usually takes longer in
these cases. This behavior is exacerbated by the presence of higher noise.

Our algorithm is reasonably efficient in solving large problems. The spikes that we see
in the graphs for some of the larger molecules also correspond to cases with high RMSD
error, in which the algorithm fails to find a valid configuration of points, either due to very
noisy or very sparse data. A lot of time is spent in recomputing points in the stitching
phase, and many of these points are repeatedly estimated incorrectly. The number of
badly estimated points grows at each iteration of the stitching process and becomes more
and more time consuming. But, given the general computational performance, we expect
our algorithm to be able to handle even larger molecules if the number of badly estimated
points can be kept low. On the other hand, we are also investigating methods that discard
repeatedly badly estimated points from future calculations.

27

Table 2: Results with 70% of distances below 6Å and 5% noise on upper and lower bounds and with
50% of distances below 6Å and 1% noise on upper and lower bounds

PDB ID No. of atoms 70% Distances, 5% Noise 50% Distances, 1% Noise

RMSD(Å)
CPU time

(secs)
RMSD(Å)

CPU time
(secs)

1PTQ 402 0.2794 93.8 0.7560 22.1

1HOE 558 0.2712 129.6 0.0085 32.5

1LFB 641 0.4392 132.5 0.2736 41.6

1PHT 814 0.4701 129.4 0.6639 53.6

1POA 914 0.4325 174.7 0.0843 54.1

1AX8 1003 0.8184 251.9 0.0314 71.8

1F39 1534 1.1271 353.1 0.2809 113.4

1RGS 2015 4.6540 613.3 3.5416 308.2

1KDH 2923 2.5693 1641.0 2.8222 488.4

1BPM 3672 2.4360 1467.1 1.0502 384.8

1RHJ 3740 0.9535 1286.1 0.1158 361.5

1HQQ 3944 8.9106 2133.5 1.6610 418.4

1TOA 4292 9.8351 2653.6 1.5856 372.6

1MQQ 5681 3.1570 1683.4 2.3108 1466.2

9 Conclusion and work in progress

An SDP based distributed method to solve the distance geometry problem in 3-D with
incomplete and noisy distance data and without anchors is described. The entire problem
is broken down into subproblems by intelligent clustering methods. An SDP relaxation
problem is formulated and solved for each cluster. Matrix decomposition is used to find
local configurations of the clusters and a least squares based stitching method is applied to
find a global configuration. Gradient-descent methods are also employed in intermediate
steps to refine the quality of the solution.

The performance of the algorithm is evaluated by using it to find the configurations
of large protein molecules with a few thousands atoms. The distributed SDP approach
can solve large problems having favorable geometries with good accuracy and speed when
50-70% distances (corrupted by moderate level of 0-5% noises in both the lower and upper
bounds) below 6Å are given.

The current DAFGL algorithm needs to be improved for it to work on very sparse
(30-50% of all distances below 6 Å) and highly noisy data (10-20% noise), which is often
the case for actual NMR data used to perform molecular conformation. For the rest of
this section, we outline some possible improvements that can be made to our current

28

0 1000 2000 3000 4000 5000 6000
0

500

1000

1500

2000

2500

3000

Number of atoms n

T
o
ta

l
S

o
lu

ti
o
n
 T

im
e
(s

e
c
)

100 % distance, 10% error
70 % distance, 5% error
50 % distance, 1% error

Figure 6: CPU time taken to localize a molecule with n atoms versus n

algorithm.
One of the main difficulties we encounter in the current distributed algorithm is the

propagation of position estimation errors in a cluster to other clusters during the stitching
process when the given distances are noisy. Even though we have had some successes
in overcoming this difficulty, it is not completely alleviated in the current paper. The
difficulties faced by our current algorithm with very noisy or very sparse data cases are
particularly noticeable for very large molecules (which correspond to a large number of
sub-blocks that need stitching). Usually, the estimation for many of the points in some of
the sub-blocks from the CGL step is not accurate enough in these cases. This is especially
problematic when there are too few common points that can then be used for stitching
with the previous block, or if the error measures used to identify the bad points are unable
to filter out some of the badly estimated common points. This usually leads to the error
propagating to subsequent blocks as well. Therefore, the bad point detection and stitching
phase need to made more robust.

To reduce the effect of inadvertently using a badly estimated point for stitching, we can
increase the number of common points used in the stitching process, and at the same time,
use more sophisticated stitching algorithms that not only stitch correctly estimated points,
but also isolate the badly estimated ones. As far as stitching is concerned, currently we
use the coordinates of the common points between 2 blocks to find the best affine mapping
that would bring the 2 blocks into the same coordinate system. Another idea is to fix
the values in the matrix Y in (11) that correspond to the common points, based on the
values that were obtained for it in solving the SDP for the previous block. By fixing
the values, we are indirectly using the common points to anchor the new block with

29

the previous one. The dual of the SDP relaxation also merits further investigation, for
possible improvements in the computational effort required and for more robust stitching
results.

With regard to error measures, it would be useful to study if the local error measure
(12) can be made more sophisticated by including a larger set of points to check its dis-
tances with, as opposed to just its immediate neighborhood. In some cases, the distances
are satisfied within local clusters, but the entire cluster itself is badly estimated (and the
local error measure fails to filter out many of the badly estimated points in this scenario).
Also, we need to investigate the careful selection of the tolerance Tε in deciding which
points have been estimated correctly and can be used for stitching.

As has been noted before, our current algorithm does not use the VDW minimum
separation distance constraints of the form ‖xi−xj‖ ≥ Lij described in [27] and [37]. The
VDW constraints played an essential role in those previous work in reducing the search
space of valid configurations, especially in the case of sparse data where there are many
possible configurations fitting the sparse distance constraints. As mentioned in Section
3, VDW lower bound constraints can be added to the SDP model, but we would need
to keep track of the type of atom to which each point corresponds. However, one must
be mindful that the VDW constraints should only be added when necessary so as not to
introduce too many redundant constraints. If the VDW constraints between all pairs of
atoms are added to the SDP model, then the number of lower bound constraints is of the
order n2, where n is the number of points. Thus even if n is below 100, the total number
of constraints could be in the range of thousands. However, many of the VDW constraints
are for two very remote points, and they are often inactive or redundant at the optimal
solution. Therefore, we can adopt an iterative active constraint generation approach. We
first solve the SDP problem by completely ignoring the VDW lower bound constraints
to obtain a solution. Then we verify the VDW lower bound constraints at the current
solution for all the points and add the violated ones into the model. We can repeat this
process until all the VDW constraints are satisfied. Typically, we would expect only O(n)
VDW constraints to be active at the final solution.

We are optimistic that by combining the ideas presented in previous work on molecular
conformation (especially incorporating domain knowledge such as the minimum separation
distances derived from VDW interactions) with the distributed SDP based algorithm
in this paper, the improved distributed algorithm would likely be able to calculate the
conformation of large protein molecules with satisfactory accuracy and efficiency in the
future. Based on the performance of the current DAFGL algorithm, and the promising
improvements to the algorithm we have outlined, a realistic target for us to set in the
future is to correctly calculate the conformation of a large molecule (with 5000 atoms or
more) given only about 50% of all pairwise distances below 6Å, and corrupted by 10-20%
noise.

30

Acknowledgements

We would like to thank the anonymous referees for their insightful comments and sugges-
tions that lead to a major revision of the paper.

References

[1] S. Al-Homidan and H. Wolkowicz. Approximate and exact completion problems for
euclidean distane matrices using semidefinite programming. Linear Algebra Appl.,
406:109–141, 2005.

[2] A. Y. Alfakih, A. Khandani, and H. Wolkowicz. Solving euclidean distance matrix
completion problems via semidefinite programming. Comput. Optim. Appl., 12(1-
3):13–30, 1999.

[3] S. J. Benson, Y. Ye, and X. Zhang. Solving large-scale sparse semidefinite programs
for combinatorial optimization. SIAM Journal on Optimization, 10(2):443–461, 2000.

[4] H. M. Berman, J. Westbrook, Z. Feng, G. Gilliland, T. N. Bhat, H. Weissig, I. N.
Shindyalov, and P. E. Bourne. The Protein data bank. Nucleic Acids Research,
28:235–242, 2000.

[5] P. Biswas, T.-C. Liang, K.-C. Toh, T.-C. Wang, and Y. Ye. Semidefinite programming
approaches for sensor network localization with noisy distance measurements. IEEE
Transactions on Automation Science and Engineeering, Special Issue on Distributed
Sensing, 3(4):360–371, October 2006.

[6] P. Biswas, T.-C. Liang, T.-C. Wang, and Y. Ye. Semidefinite programming based
algorithms for sensor network localization. ACM Transactions on Sensor Networks,
2(2):188–220, 2006.

[7] P. Biswas and Y. Ye. A distributed method for solving semidefinite programs aris-
ing from ad hoc wireless sensor network localization. Technical report, Dept of
Management Science and Engineering, Stanford University, to appear in Multiscale
Optimization Methods and Applications, October 2003.

[8] P. Biswas and Y. Ye. Semidefinite programming for ad hoc wireless sensor network
localization. In Proceedings of the third international symposium on Information
processing in sensor networks, pages 46–54. ACM Press, 2004.

[9] S. Boyd, L. El Ghaoui, E. Feron, and V. Balakrishnan. Linear Matrix Inequalities in
System and Control Theory. SIAM., 1994.

31

[10] S. Burer and R. D. C. Monteiro. A nonlinear programming algorithm for solv-
ing semidefinite programs via low-rank factorization. Mathematical Programming,
95(2):329–357, 2003.

[11] M. Carter, H. H. Jin, M. A. Saunders, and Y. Ye. Spaseloc: An adaptable subproblem
algorithm for scalable wireless network localization. Submitted to the SIAM J. on
Optimization, January 2005.

[12] B. Chazelle, C. Kingsford, and M. Singh. The side-chain positioning problem: a
semidefinite programming formulation with new rounding schemes. In PCK50: Pro-
ceedings of the Paris C. Kanellakis memorial workshop on Principles of computing
& knowledge, pages 86–94. ACM Press, 2003.

[13] G. Crippen and T. Havel. Distance geometry and molecular conformation. Wiley,
1988.

[14] Q. Dong and Z. Wu. A geometric build-up algorithm for solving the molecular
distance geometry problem with sparse distance data. J. of Global Optimization,
26(3):321–333, 2003.

[15] A. George and J.W. Liu. Computer Solution of Large Sparse Positive Definite. Pren-
tice Hall Professional Technical Reference, 1981.

[16] N. Guex and M. C. Peitsch. Swiss-model and the Swiss-Pdbviewer: An environment
for comparative protein modeling. Electrophoresis, 18:2714–2723, 1997.

[17] O. Güler and Y. Ye. Convergence behavior of interior point algorithms. Mathematical
Programming, 60:215–228, 1993.

[18] T. F. Havel and K. Wthrich. An evaluation of the combined use of nuclear magnetic
resonance and distance geometry for the determination of protein conformation in
solution. Journal of Molelcular Biolology, 182:281–294, 1985.

[19] B. A. Hendrickson. The molecular problem: Determining Conformation from pairwise
distances. PhD thesis, Cornell University, 1991.

[20] G. Iyengar, D. Phillips, and C. Stein. Approximation algorithms for semidefinite
packing problems with applications to maxcut and graph coloring. In Eleventh Con-
ference on Integer Programming and Combinatorial Optimization, Berlin, 2005.

[21] H. H. Jin. Scalable Sensor Localization Algorithms for Wireless Sensor Networks.
PhD thesis, Department of Mechanical and Industrial Engineering, University of
Toronto, 2005.

[22] M. Laurent. Matrix completion problems. The Encyclopedia of Optimization, 3:221–
229, 2001.

32

[23] T.-C. Liang, T.-C. Wang, and Y. Ye. A gradient search method to round the semidef-
inite programming relaxation solution for ad hoc wireless sensor network localization.
Technical report, Dept of Management Science and Engineering, Stanford University,
August 2004.

[24] N. Linial, E. London, and Y. Rabinovich. The geometry of graphs and some of its
algorithmic applications. Combinatorica, 15:215–245, 1995.

[25] J. Moré and Z. Wu. Global continuation for distance geometry problems. SIAM
Journal on Optimization., 7:814–836, 1997.

[26] Jorge J. Moré and Z. Wu. ǫ-optimal solutions to distance geometry problems via
global continuation. Preprint MCS–P520–0595, Mathematics and Computer Science
Division, Argonne National Laboratory, Argonne, Ill., May 1994.

[27] R. Reams, G. Chatham, W. K. Glunt, D. McDonald, and T. L. Hayden. Determining
protein structure using the distance geometry program apa. Computers & Chemistry,
23(2):153–163, 1999.

[28] A. M.-C. So and Y. Ye. Theory of semidefinite programming relaxation for sensor
network localization. Technical report, Dept of Management Science and Engineering,
Stanford University, in SODA’5 and to appear in Mathematical Programming, April
2004.

[29] A. M.-C. So and Y. Ye. A semidefinite programming approach to tensegrity the-
ory and realizability of graphs. Technical report, Dept of Management Science and
Engineering, Stanford University, to appear in SODA’06, July 2005.

[30] J. F. Sturm. Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmet-
ric cones. Optimization Methods and Software, 11 & 12:625–633, 1999.

[31] K.-C. Toh. Solving large scale semidefinite programs via an iterative solver on the
augmented systems. SIAM J. on Optimization, 14(3):670–698, 2003.

[32] M. W. Trosset. Applications of multidimensional scaling to molecular conformation.
Computing Science and Statistics, 29:148–152, 1998.

[33] M. W. Trosset. Distance matrix completion by numerical optimization. Comput.
Optim. Appl., 17(1):11–22, 2000.

[34] M. W. Trosset. Extensions of classical multidimensional scaling via variable reduc-
tion. Computational Statistics, 17(2):147–162, 2002.

[35] R. H. Tütüncü, K. C. Toh, and M. J. Todd. Solving semidefinite-quadratic-linear
programs using SDPT3. Mathematical Programming, Series B, 95:189–217, 2003.

33

[36] K. Q. Weinberger, F. Sha, and L. K. Saul. Learning a kernel matrix for nonlinear
dimensionality reduction. In ICML ’04: Proceedings of the twenty-first international
conference on Machine learning, page 106, New York, NY, USA, 2004. ACM Press.

[37] G. A. Williams, J. M. Dugan, and R. B. Altman. Constrained global optimization
for estimating molecular structure from atomic distances. Journal of Computational
Biology, 8(5):523–547, 2001.

[38] D. Wu and Z. Wu. An updated geometric build-up algorithm for molecular distance
geometry problems with sparse distance data., submitted 2003.

[39] Y. Ye and J. Zhang. An improved algorithm for approximating the radii of point
sets. In RANDOM-APPROX, pages 178–187, 2003.

[40] J.-M. Yoon, Y. Gad, and Z. Wu. Mathematical modeling of protein structure us-
ing distance geometry. Technical report, Department of Computational & Applied
Mathematics, Rice University, 2000.

[41] Z. Zhang and H. Zha. Principal manifolds and nonlinear dimension reduction via
local tangent space alignment. SIAM Journal of Scientific Computing, 26:313–338,
2004.

34

