A Distributed Service Oriented Architecture
for Business Process Execution

GUOLI LI, VINOD MUTHUSAMY, and HANS-ARNO JACOBSEN
University of Toronto

The Business Process Execution Language (BPEL) standardizes the development of composite
enterprise applications that make use of software components exposed as Web services. BPEL
processes are currently executed by a centralized orchestration engine, in which issues such as
scalability, platform heterogeneity, and division across administrative domains can be difficult to
manage. We propose a distributed agent-based orchestration engine in which several light-weight
agents execute a portion of the original business process and collaborate in order to execute the
complete process. The complete set of standard BPEL activities are supported, and the trans-
formations of several BPEL activities to the agent-based architecture are described. Evaluations
of an implementation of this architecture demonstrate that agent-based execution scales better
than a non-distributed approach, with at least 70% and 120% improvements in process execution
time, and throughput, respectively, even with a large number of concurrent process instances. In
addition, the distributed architecture successfully executes large processes that are shown to be
infeasible to execute with a non-distributed engine.

Categories and Subject Descriptors: H.4 [Information Systems Applications]: Miscellaneous

General Terms: Design, Experimentation, Performance
Additional Key Words and Phrases: business process, BPEL, workflow management, service-
oriented architecture, distributed orchestration, publish/subscribe

1. INTRODUCTION

Enterprise applications are increasingly being architected in a service-oriented ar-
chitecture (SOA) style, in which modular components are composed to implement
the business logic. The properties of such applications, such as the loose coupling
among the modules, is promoted as a way for an agile business to quickly adapt its
processes to an ever changing landscape of opportunities, priorities, partners, and
competitors. The proliferation of Web services standards in this area reflects the
industry interest and demand for distributed enterprise applications that commu-
nicate with software services provided by vendors, clients, and partners.

For example, an online retailer may utilize the services of a partner shipping com-
pany to allow their customers to track the delivery status of products. The shipping
company here would expose a component that allows its partners to retrieve de-
livery status information. Other external services the retailer may use include a

Author’s address: Hans-Arno Jacobsen, Dept. of ECE and Dept. of CS, University of Toronto,
10 King’s College Road, Toronto, Ontario, Canada, M5S 3G4; email: jacobsen@eecg.toronto.edu
Permission to make digital/hard copy of all or part of this material without fee for personal
or classroom use provided that the copies are not made or distributed for profit or commercial
advantage, the ACM copyright/server notice, the title of the publication, and its date appear, and
notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish,
to post on servers, or to redistribute to lists requires prior specific permission and/or a fee.

© 2009 ACM 1529-3785/2009/0700-0001 $5.00

ACM Transactions on Web, Vol. V, No. N, October 2009, Pages 1-077.

2 . G. Li, V. Muthusamy, H.-A. Jacobsen

payment service (such as PayPal), or a product review database. In addition, the
retailer may use services developed internally, such as a user interface engine (to
render interfaces for various devices such as a PDA or PC), and an authentication
service. Developing such loosely coupled components makes it easier to develop,
maintain, and modify the application.

It is not uncommon for business processes in industries such as supply chain man-
agement, online retail, or health care to consist of complex interactions among a
large set of geographically distributed services developed and maintained by various
organizations. The processes themselves can be very large, long running, manipu-
late vast quantities of data, and require thousands or millions of concurrent process
instances. For example, one of our project partners reports that a large Chinese
electronics manufacturer employs formal business processes to drive its operations
activities including component stocking, manufacturing, warehouse management,
order management, and sales forecasting. The processes are inherently distributed
using department-level processes for manufacturing, warehouse and order manage-
ment, with each of these processes utilizing from 26 to 47 activities. There also
exist global processes that compose the department-level ones. In addition to the
separation by administrative domains, the processes also involve geographically
distributed parties including a number of suppliers, several organizational depart-
ments, a dozen sales centers, and many retailers. Thousands of instances of these
processes are executing concurrently at any one time. Such large processes involv-
ing dozens of collaborating parties is a natural fit for our distributed execution
architecture.

Business processes are executed by an orchestration engine that is responsible for
carrying out the activities in the process, and maintaining the state associated with
process instances. Typically a single engine is deployed to manage an application,
and scalability is addressed by replicating the engine. Many existing BPEL engines
support clustering in order to optimize and ensure business process throughput
on highly available systems. When a business process needs to be scaled to meet
heavier processing needs, the BPEL engine’s clustering algorithm automatically
distributes processing across multiple engines. In this paper, we present NINOS, a
completely different orchestration architecture, one that is more in agreement with
the distributed nature of the processes themselves.

The NINOS runtime orchestrates business processes by distributing process exe-
cution across several light-weight agents, each of which carry out a single activity.
This distributed architecture is congruent with an inherently distributed enterprise
where business processes are geographically dispersed and coordinating partners
have to communicate across administrative domains. Not only does NINOS remove
the scalability bottleneck of a centralized orchestration engine, it offers additional
efficiencies by allowing portions of processes to be executed close to the data they
operate on, thereby conserving data and control traffic. Furthermore, NINOS sup-
ports flexible mappings of the orchestration agents onto heterogeneous platforms
and resources, permitting the system to shape itself from a centralized to a fully
distributed configuration.

NINOS utilizes and exploits the rich SOA enterprise service bus (ESB) capa-
bilities of the PADRES distributed content-based publish/subscribe routing in-

ACM Transactions on Web, Vol. V, No. N, October 2009.

Distributed Architecture for Business Process Execution . 3

frastructure [Fidler et al. 2005; Li and Jacobsen 2005; Li et al. 2008; Hu et al.
2009; Kazemzadeh and Jacobsen 2009]. All communication in the system occurs
as pub/sub interactions, including process coordination among the agents, control
and monitoring. This decouples the agents, which now only need to be aware of
one another’s content-based addresses, thereby simplifying agent reconfiguration
and movement, and seamlessly allowing multiple processes and process instances
to coexist. In addition, in NINOS, processes are transformed such that certain
computations are carried out in the pub/sub layer, exploiting advanced features
available in PADRES. This further simplifies the orchestration agents, and allows
these computations to be optimized by the PADRES layer by, for example, perform-
ing in-network event correlation. Yet another advantage afforded by the pub/sub
layer is ease of administration. Agents can be configured and controlled individu-
ally, or as some subset, using their location-independent content-based addresses.
Similarly, since all communication occurs over the pub/sub layer, the system can be
fully monitored without additional instrumentation logic. The declarative pub/sub
interface supports expressive queries for precisely the information of interest.

The contributions of this paper include, (1) the design of the NINOS distributed
business process execution architecture based on the flexible PADRES pub/sub
layer; (2) a procedure to map standard Business Process Execution Language
(BPEL) processes, including the complete set of BPEL activities, to a set of dis-
tributed NINOS agents, with control flow realized using decoupled pub/sub seman-
tics; and (3) an evaluation of the NINOS orchestration engine that demonstrates
its improved scalability over a centralized engine.

We present background and related work in Section 2, followed by a description
of the BPEL mapping process to the NINOS system architecture in Section 3, an
evaluation of NINOS in Section 4, and some concluding remarks in Section 5.

2. BACKGROUND AND RELATED WORK

In order to keep the paper self-contained, this section presents a brief overview of
the BPEL language and the pub/sub model, and places NINOS within the context
of related work.

BPEL: The Business Process Execution Language (BPEL) standard supports
writing distributed applications by composing, or orchestrating, Web services. A
BPEL process consists of a set of predefined activities. BPEL programs have prop-
erties of traditional programming languages (with concepts of scope, variables, and
loops) and workflows (with concepts of parallel and sequential flows). BPEL pro-
cesses are often authored in a proprietary graphical tool that serializes the process
into a standard BPEL XML file.

BPEL activities can be classified as basic activities that perform some primitive
operation such as receiving a message or throwing an exception, and structured
activities that define control flow. The key BPEL activities are summarized in
Table I.

Several vendors have implemented BPEL engines, including IBM, Microsoft, Or-
acle, and Sun Microsystems. Scalability is typically addressed by load balancing
process instances across a cluster of engines, where each engine still executes the
entire process. In NINOS, however, the individual activities within a process are

ACM Transactions on Web, Vol. V, No. N, October 2009.

4 . G. Li, V. Muthusamy, H.-A. Jacobsen

Basic Activities

Activity Description
receive Blocking wait for a message to arrive.
reply Respond to a synchronous operation.
assign Manipulate state variables.
invoke Synchronous or asynch. Web service call.
wait Delay execution for a duration or deadline.
throw Indicate a fault or exception.
compensate | Handle a fault or exception.
terminate Terminate a process instance.

Structured Activities
Activity Description
sequence Sequential execution of a set of activities.
while Looping constructs.
switch Conditional exec. based on instance state.
pick Conditional exec. based on events.
flow Concurrent execution.

Table I. Summary of BPEL activities.

distributed among the available computing resources. The latter design also al-
lows placing computational activities near the data they operate on, which is not
possible in the cluster architecture. Furthermore, NINOS is applicable to the real-
ization of cross-enterprise business process management, where no one single entity
runs and controls the entire business process, but rather the process emerges as a
choreographed concert of activities and sub-processes run by each organization.

Publish/Subscribe: In pub/sub communication, the interaction between the
information producer (publisher) and consumer (subscriber) is mediated by a set
of brokers [Fabret et al. 2001; Carzaniga et al. 2001]. Publishers publish events to
the broker network, and subscribers subscribe to interesting events by submitting
subscriptions to the broker network. It is the responsibility of the brokers to route
each event to interested subscribers. In content-based pub/sub, subscribers can
specify constraints on the content of the events, and the broker network is said to
perform content-based routing of events. The terms event and publication are often
used synonymously in the pub/sub literature and in this paper.

The routing in our PADRES distributed content-based pub/sub system works
as follows [Fidler et al. 2005]. Publishers and subscribers connect to one of the
brokers in a broker overlay network. Publishers specify a template of their event
space by submitting an advertisement message that is flooded through the broker
network and creates a spanning tree rooted at the publisher. Similarly, subscribers
specify their interest by sending a subscription message that is forwarded along the
reverse paths of intersecting advertisements, i.e., those with potentially interesting
events. Now publications from publishers are forwarded along the reverse paths of
matching subscriptions to interested subscribers.

PADRES extends traditional pub/sub semantics with composite subscriptions
that allow event correlations to be specified [Jacobsen ; Li and Jacobsen 2005]. For
example, a subscriber may only be interested in being notified of business processes
with at least two failed instances within an hour. The correlation computations are

ACM Transactions on Web, Vol. V, No. N, October 2009.

Distributed Architecture for Business Process Execution . 5

performed at strategic points in the broker network. Another PADRES extension is
historic queries [Fidler et al. 2005; Li et al. 2007] which allow subscriptions to query
for events published in the past in addition to those in the future. This is useful
in enterprise applications where past system events may be needed for auditing or
analysis purposes.

Distributed workflows: Distributed workflow processing has been studied in
the 1990s to also address scalability, fault resilience, and enterprise-wide workflow
management [Alonso et al. 1995; Wodtke et al. 1996; Muth et al. 1998]. Alonso et
al. present a detailed design of a distributed workflow management system [Alonso
et al. 1995]. The work bares similarity with our approach in that a business process
is fully distributed among a set of nodes. However, the distribution architectures
differ fundamentally. In our approach, a content-based message routing substrate is
built to naturally enable task decoupling, dynamic reconfiguration, system monitor-
ing, and run-time control. This is not addressed in the earlier work. Moreover, we
present a proof-of-concept implementation and detailed performance results com-
paring distributed and centralized workflow management architectures, which is
lacking in prior approaches.

A behavior preserving transformation of a centralized activity chart, representing
a workflow, into an equivalent partitioned one is described in by Muth et al. [1998]
and realized in the MENTOR system [Wodtke et al. 1996]. The objective of the
work is to enable the parallel execution of the partitioned flow, while minimiz-
ing synchronization messages, and to analytically prove certain properties of the
partitioned flow [Muth et al. 1998]. In a different set of transformations, paral-
lelizing compiler-inspired techniques, including control flow and data flow analysis,
are used to parallelize the business process to achieve the highest possible concur-
rency [Nanda et al. 2004]. Both the transformation papers are complementary to
our work since we operate with the original business process model without analyz-
ing the process. An advantage of executing an unmodified process is that dynamic
changes to the executing business process instances are possible, as their structure
remains unchanged from the original specification.

Casati et al. present an approach to integrate existing business processes within
a larger workflow [Casati and Discenza 2001]. They define event points in business
processes where events can be received or sent. Events are filtered, correlated,
and dispatched using a centralized publish/subscribe model. The interaction of
existing business processes is synchronized by event communication. This is similar
to our work in terms of allowing business processes to publish and subscribe. In our
approach, activities in a business process are decoupled and are executed by activity
agents, which are publish/subscribe clients, and the communication between agents
is performed in a content-based publish/subscribe broker network.

Stream processing: There has been a lot of work on distributed stream pro-
cessing engines in which a set of operators are installed in the network to process
streams of data and execute SQL-like queries over the data streams [Kumar et al.
2006; Abadi et al. 2005; Chandrasekaran et al. 2003; Pietzuch et al. 2006]. These
operators input and output a set of streams and may filter, or change the data on
these streams.

Borealis is a distributed stream processing engine in which streams are queried

ACM Transactions on Web, Vol. V, No. N, October 2009.

6 . G. Li, V. Muthusamy, H.-A. Jacobsen

by a network of operators [Abadi et al. 2005]. In addition to using a proprietary
query language, Borealis does not support loops in the query network, which makes
it unsuitable for general business process execution, specified in BPEL or similar
languages, where looping constructs are commonplace.

In the IFLOW distributed stream processing engine, IFLOW nodes are organized
in a cluster hierarchy, with nodes higher in the hierarchy assigned more responsi-
bility [Kumar et al. 2006]. For example, the root node is respounsible for deploying
the entire operator network to its children, and for monitoring the summarized ex-
ecution statistics of this network. This is different from our completely distributed
architecture in which brokers have equal responsibility.

While stream processing engines may bear some architectural resemblance to
a set of agents executing a business process, there are issues related to business
process execution that are not easily handled by stream processing engines. First,
the stream processing work above is based on proprietary languages, not an industry
standard such as BPEL. More significantly, a business process is conceptually not
simply a data stream. There are notions of process instances and the accompanying
state and isolation semantics that are not required in streams.

In addition to the semantic differences between processes and streams, process
distribution in NINOS differs from the above work by exploiting an underlying
content-based pub/sub system. As in IFLOW, our agents are decoupled by com-
municating using pub/sub content-based addresses instead of network identifiers.
In addition, we utilize the composite subscription feature in PADRES to offload
some of the agent processing to the pub/sub network. This simplifies the agents,
and allows the pub/sub network to optimize this processing logic. This is further
explained in Section 3.

Dynamic redeployment: While this paper demonstrates the benefits of a dis-
tributed process execution architecture, it leaves open the problem of how a process
should be deployed in order to satisfy certain goals. Ongoing work in this area at-
tempts to dynamically redeploy the distributed business process based on certain
the current workload, environment, and process goals expressed as formal service
level agreements [Chau et al. 2008; Muthusamy et al. 2009]. It is important in
this situation that the behavior of the process is unaffected by the redeployment
of certain components. To support this capability, prior work has developed the
notion of a transactional movement operation in which the redeployment of stateful
pub/sub clients is guaranteed to satisfy a number of formal properties [Hu et al.
2009].

This paper builds on our extensive prior work on building the PADRES system,
a scalable, distributed pub/sub messaging middleware. The NINOS architecture
exploits capabilities of the PADRES system including fine-grained content-based
routing [Fidler et al. 2005], and support for event correlations using composite
subscriptions [Li and Jacobsen 2005]. Other notable features of the PADRES sys-
tem, such as user-tunable fault-tolerance [Kazemzadeh and Jacobsen 2009], load-
balancing [Yeung Cheung and Jacobsen 2006], system policy management [Wun
and Jacobsen 2007], historic data access [Li et al. 2007], and the ability to route
in cyclic overlay networks [Li et al. 2008] are useful infrastructural properties for
mission-critical enterprise applications.

ACM Transactions on Web, Vol. V, No. N, October 2009.

Distributed Architecture for Business Process Execution . 7

Get Matching_| Matching Engine |
Input | Subscriptions |

C T T T 1 oue
Broker Input Queue Handler Data Data

Controller
’W
Broke Input Route Message o
(RMI‘B\I‘SSTEE\SG)‘ etc) m

Broker
Monitor

Controller Queue

Client Binding(s)
(RMI, JMS, WS,
Grid, etc.)

Clients

Client Binding Queues

Broker Outpu|
Bindings
(RMI, WS,
Grid, etc.

Broker Binding Queues

Fig. 1. PADRES broker architecture

3. DISTRIBUTED PROCESS EXECUTION

NINOS is a distributed business process execution architecture. It leverages the
PADRES pub/sub system by transforming a BPEL business process into fine-
grained pub/sub agents that collaborate to realize the original process. These
agents interact using pub/sub messages and take advantage of some of the in-
network processing capabilities available in PADRES. To simplify management,
NINOS allows processes to be deployed and monitored in a centralized manner,
again exploiting some of the decoupling properties of the PADRES pub/sub sys-
tem.

3.1 PADRES system description

The PADRES system is a distributed content-based pub/sub system which consists
of an overlay network of brokers, where clients connect to brokers using Java Remote
Method Invocation (RMI) or Java Messaging Service (JMS) interfaces.

Network architecture: The overlay network connecting the brokers is a set of
connections that form the basis for message routing, with each broker knowing only
about its immediate neighbors. Message routing in PADRES is based on the pub/
sub content-based routing model, where publications are routed toward interested
subscribers who have expressed interest in receiving publication content by issuing
subscriptions. At the application level, only publish and subscribe primitives are
available and no IP address information is required. All distributed client inter-
actions take place in this manner. A subscriber may subscribe at any time, and
publications are exclusively disseminated to subscribers who have issued matching
subscriptions.

Broker architecture: The PADRES brokers are modular software components
built on a set of queues: one input queue and multiple output queues, with each
output queue representing a unique message destination. A diagram of the broker
internals is provided in Figure 1. The matching engine, a critical component of a
broker, maintains various data structures. In one such structure subscriptions are
mapped to rules, and publications are mapped to facts. The rule engine performs

ACM Transactions on Web, Vol. V, No. N, October 2009.

8 . G. Li, V. Muthusamy, H.-A. Jacobsen

BPEL Process BP Manager Eeplyt SAwitcrt1 AFlowt |
/Client gen gen gen WS Web Service
Agent
SOAP
HTTP
[Invoke][Invoke] WS — Client)
Va Vs Agent
[Receive |[Receive |
SOAP
l HTTP
WS .
Receive Invoke Assign Agent Web Service
Agent Agent Agent

Fig. 2. NINOS distributed business process execution architecture

matching and decides the next-hop destinations of the messages. This novel rule-
based routing approach allows for powerful subscription semantics and naturally
enables composites subscriptions, which are more complex rules in the rule engine.
Mapping the subscription language to a rule language is relatively straightforward,
and extending this subscription language does not require significant changes in
the engine. Furthermore, rule engines are well-studied, allowing PADRES to take
advantage of existing research. Our experience with the system indicates that rule-
based matching is quite efficient, especially for composite subscriptions.

3.2 NINOS system architecture

The NINOS system architecture, as shown in Figure 2, consists of four components:
the underlying PADRES broker network, activity agents, Web service agents, and a
business process manager. As mentioned in Section 2, the PADRES broker network
consists of a network of brokers that carry out content-based routing and in-network
processing of composite subscriptions.

In NINOS, each business process element, such as a BPEL activity, has a corre-
sponding activity agent, which is a light-weight pub/sub client. Generally, an agent
waits for its predecessor activities to complete by subscribing to such an event,
then executes its activity, and finally triggers the successor activities by publishing
a completion event. As a result, process execution is event-driven and naturally
distributed.

Cross-enterprise business interaction is a requirement in business processes. For
example, BPEL supports invoking partner Web services. NINOS Web service
agents interface Web services with the PADRES network by translating between
Web service protocols (such as SOAP over HT'TP) and pub/sub message formats.
This allows the appropriate activities in a NINOS business process to invoke and be
invoked by external Web services. Web service agents support both static partners,
which are defined at design time, and dynamic partners, determined at runtime.

The business process manager, which is also a pub/sub client, transforms business
processes into pub/sub messages for the activity agents, deploys the process onto
the available agents in the network, triggers instances of business processes, and
monitors and controls the execution.

ACM Transactions on Web, Vol. V, No. N, October 2009.

Distributed Architecture for Business Process Execution : 9
Business Process Management and Business Activity Monitoring

Relrect Update VlsuahzeMonltor

Business Process Execution

H@W

Content-based Routing
Content-based Router Clients (publisher/subscribe;

. . Laptops
Computing, Storage, and Networking Resources

Fig. 3. Conceptual system architecture

NINOS addresses three phases of business process execution: process transforma-
tion, deployment, and execution. In the transformation phase, a business process is
mapped to a set of activity agents and corresponding pub/sub messages that spec-
ify the dependencies among the activities. The transformation of some interesting
BPEL activities is described in Section 3.3 in detail.

In the deployment phase, the business process manager deploys the process to
the appropriate activity agents. Each activity agent subscribes to agent control
messages with a unique agent identifier, allowing the manager to install an activity
at a particular agent. An agent partakes in a business process by issuing the
subscriptions and advertisements as requested by the manager, thereby building
up the inter-agent activity dependencies and making the process ready to execute.

In the execution phase, the deployed business process can be invoked through a
Web service agent, which translates the invocation into a NINOS service request.
The service request is a publication message that specifies the process and instance
identifiers, and other required information. The first activity agent in the process,
say the receive activity in the process in Figure 2, receives this publication, instan-
tiates a process instance, processes the activity, and triggers the successor assign
activity. Agents execute and trigger one another using pub/sub messages in this
event-driven manner until the process terminates.

Unlike a centralized orchestration engine, the NINOS agent-based engine sup-
ports flexible deployment. All activity agents can be deployed at one node, effec-
tively executing processes in a centralized manner, or distributed across the network
to realize fully distributed execution. It is also possible to cluster sets of agents
and to achieve partially distributed execution. By automatically and dynamically
deploying agents at strategic points in the network based on network conditions
and available system resources, the NINOS execution engine can optimize the busi-
ness processes. Such QoS-based business process execution is one of the ongoing
research directions for this system [Chau et al. 2008; Muthusamy et al. 2009].

ACM Transactions on Web, Vol. V, No. N, October 2009.

10 . G. Li, V. Muthusamy, H.-A. Jacobsen

Sub1:

Process1 [class,eq, ACTIVITY_STATUS],
[process,eq,Process1],
[activityName,eq,"activity1'],
[IID,isPresent],
[status.eq,"SUCCESS"]

activity 1

Sub1:

o~ Sub2: Process2 [class,eq ACTIVITY_STATUS],
[class,eq, ACTIVITY_STATUS], [process.eqProcess2],
—————— [process,eq,MProcess1], [activityName,eq,"activity 1],
[activityName,cq,"activity3'], [IID,\sPresfnt], .
[IID.isPresent], activity 1 |status,eq,"SUCCESS"|
L

status eq,"SUCCESS"| sub2
ub2:

[class,eq,ON_MESSAGE],

process,Process1], or onAlarm [porﬂype,eq,”aPonType”],
activityName,"while1"], [IID,"g001"], 1,6q,"a0Oper"],

________ [triggeredActivity,"activity2"] 1 1 [variable,eq,"aVar"]
activityd Pup2: Pub1:

[class ACTIVITY_STATUS], [class,ONMESSACE_TRICCER],
[process,Process1], [process,Process2),
[activityName,"while1"], [IID,"g001"], [activityName,"pick 1", [1ID,"g001"],
[status,"FINISHED"] [triggeredActivity,"activity2"]

Pub1:
[class, WHILE_TRIGGER], [process,eq,Process2],
[
[

Fig. 4. BPEL while activity Fig. 5. BPEL pick activity

The PADRES and NINOS system architecture is conceptually summarized in
Figure 3. A set of computing and network resources are virtualized by the PADRES
distributed content-based pub/sub routing layer. Over this layer a set of distributed
NINOS agents collaborate and coordinate to execute a business process. Finally,
various tools are available to monitor and manage the process execution and the
pub/sub layer.

3.3 Process transformation

NINOS supports the transformation of the complete set of BPEL features, including
fault, compensation, and event handling. This section outlines the transformation
of some of the more interesting BPEL activities from Table I, notably the while,
pick, compensate, switch, and flow activities.

3.3.1 While activity. The BPEL while activity repeatedly executes a sequence
of activities until a condition, which is a Boolean expression on BPEL variables, is
no longer satisfied.

A generic use of the while activity is shown in the BPEL process fragment in
Figure 4, where the italicized activities are placeholders for one of the standard
BPEL activities. The while activity is mapped to a while agent that evaluates the
condition expressed in the activity, and triggers the appropriate subsequent activity.
In NINOS, the while agent evaluates the while condition at the beginning of each
iteration of the loop. In order to be triggered at this time, the while agent issues
the subscriptions Subl and Sub2 in Figure 4. These subscriptions are matched by
the successful completion of the activity preceding the while activity, or by the final
activity within the while loop.

As well, the while agent issues publications Publ and Pub2 in Figure 4 to trigger
another iteration of the while loop or to exit the loop and continue execution with
the first activity following the loop.

Although not shown, the while agent mapping also specifies the subscription
and publication messages for the activity preceding the while activity (activityl in
Figure 4), the first and last activities within the while loop (activity2 and activity3),
and the first activity after the loop (activity4). Also not shown are the messages

ACM Transactions on Web, Vol. V, No. N, October 2009.

Distributed Architecture for Business Process Execution . 11

Subt

Process4 \cliss,eq ACTIVITY_STATUS],
[proess,eq, Processd
JactivityName, eq "actvity 1]
ol |ID.2q.8X].
activity 1 |status &g "SUCCESS"|
88
SwitonT Jukiss,eq, VARIABLE_UFDATE]
[swch] [provess,eq, Processd),
r~- _(.d_ae?\ - _CESEZ_ T 1ID.&q.8X].
Process3 Subt | | veriableName &g, "vart"|
|cleiss,eq,COMP_INFO), : ! 88
. Iprocess Provess3] | |
| ScupeA iH activityName, eq."compensate")
| Se FaultHandier D, oo "g00T, \ ' |clerss &g, VARIABLE_UFDATE]
\L eqrscopeB”] 00 | T T[T 7 Iprovess.eq,Process4 |,
fauit? [7] activity4 1IID.&q.8X].
| N Pupt |variableName g "varN'|
: " [Cliss, COMP_HANDLER_TRIGGER|
ScopeB | Compensation provess, Process)
Hendier jactivityName."ScopeB”] Aubt: Sub2
aciviy T 1D."¢Z") N [Cless, SWITCH_CASE_TRIGGER] |ckiss,eq, SWITCH_CASE_TRIGGER|
activity2 [iriggeredActivity."activity2"| process, ey, Provess4). |provess e, ProcessA |,
jewtivityName,"switch 7] JetivityNeme. eq,"swilch")
11D."g001" I3 isPresent]
triggeredAdivity."adtivity2']
Fig. 6. BPEL compensate activity Fig. 7. BPEL switch activity

used to assign and retrieve variables. For example, the while activity may subscribe
to update publications for any variables used in the while condition. The handling
of BPEL variables is discussed further in Section 3.3.7.

3.3.2 Pick activity. The BPEL pick activity waits for one or more events to
occur and conditionally executes a sequence of activities based on the event that
occurred. The events a pick activity can wait on include messages, such as Web
service invocations or asynchronous replies, and alarms, which are triggered after
some time duration or deadline.

A generic use of the pick activity is shown in Figure 5. Note that many details,
such as the onMessage parameters, are omitted. The pick activity is mapped to a
pick agent that blocks and listens for one of the events specified in the pick activity
to occur, and then triggers the appropriate subsequent activity. The execution of
the pick activity is triggered when the preceding activity complete, which the pick
agent listens for with subscription Subl in Figure 5. Also, the pick agent issues
a subscription for each onMessage it listens for (Sub2 in Figure 5), and when a
matching event occurs, it issues a publication to trigger the appropriate activity
(Publ in Figure 5).

Note that no subscriptions are issued for onAlarm events since alarm deadlines or
durations are evaluated internally by the pick agent. As with the previous activity,
not all the subscription and publications messages are shown here.

3.3.3 Compensate activity. Compensation handlers are an application specific
rollback mechanism in BPEL. The activities in a BPEL process are grouped into
arbitrarily nested scopes, and each scope may define a fault handler and a com-
pensation handler. When a fault, or exception, occurs, the scope’s fault handler is
called. A compensate activity within the fault handler can call the compensation
handlers for any nested scopes that have successfully executed. A compensation
handler attempts to “undo” the logic within the scope. For example, the compen-
sation for a scope whose activities ship a product to a customer may be to cancel
the order if it hasn’t been delivered yet, or otherwise notify the customer that the
order cannot be canceled.

A generic use of the compensate activity is shown in Figure 6. Here, ScopeA’s
fault handler invokes the compensation handler in ScopeB. The scope agent for

ACM Transactions on Web, Vol. V, No. N, October 2009.

12 . G. Li, V. Muthusamy, H.-A. Jacobsen

ScopeB subscribes to compensation events for its scope with Subl in Figure 6, and
triggers the first activity in its compensation handler using Publ in Figure 6.

BPEL semantics require the compensation handler to be called with a snapshot
of the variables when the scope completed. This can be achieved by retrieving these
values using the PADRES historic access capability [Li et al. 2007], or by having
each scope handler cache these values upon scope completion. These cached values
would be flushed when the process instance completes. In Figure 6, this would be
done by ScopeB’s scope agent.

3.3.4 Switch activity. The BPEL switch activity allows for conditional execu-
tion, whereby one of several case branches is executed based on a Boolean condition
associated with each case. The cases are ordered and the first branch whose condi-
tion evaluates to true is taken. If all the cases fail, an optional otherwise branch is
taken.

Figure 7 gives an example of a process with a switch activity. Not illustrated
in the figure is the possibility for execution to transfer directly from the switchl
activity to activity4 if neither case condition is true. In NINOS, a switch agent is
used to evaluate the case conditions in each branch of a switch activity.

A switch agent subscribes to updates from the system for any variables necessary
to evaluate the case conditions, and determines which (if any) branch should be
taken. By using a composite subscription (Subl in Figure 7), the switch agent
receives a single notification of its predecessor activity’s completion, along with all
the required variable updates in the associated process instance. After evaluating
the case conditions, the switch agent triggers the appropriate branch with a pub-
lication such as Publ in Figure 7. The first activity in each branch subscribes to
these trigger publications. For example, in Figure 7, activity2 subscribes to Sub2.
Note that the case where none of the cases in a switch activity are taken is not
shown.

An alternative implementation could eliminate the need for a switch agent en-
tirely, by transferring the responsibility of determining the appropriate branch to
follow to the first activities within each case branch. For example, in Figure 7,
the agents associated with activity2 and activity3 could independently determine
if they should execute. The tradeoff, however, is that these agents will have to
perform redundant computations of the case conditions. Recall that the case state-
ments are ordered and only the first true case condition is executed. Therefore, in
Figure 7, activity3d must evaluate the condition that case2 is true and that casel
is false. These redundant computations are unnecessary if the conditions are eval-
uated by a single switch agent. Furthermore, distributing the computation of the
case conditions requires sending the variable updates necessary to compute these
conditions to several agents.

3.3.5 Flow activity. The BPEL flow activity supports the execution of parallel
branches. Branches in a flow typically execute concurrently, but may be synchro-
nized by a link. A link between a source and target specifies that the target activity
executes only after the source activity has completed. An activity may be the source
or target of multiple links.

In addition, a source activity may set a Boolean valued transition condition on

ACM Transactions on Web, Vol. V, No. N, October 2009.

Distributed Architecture for Business Process Execution . 13

Process5

activity

Sub1:

[class,eq,ACTIVITY_STATUS],

[process,eq,Process5],
[activityName,eq, "activity1"],
[1ID,isPresent],
[status,eq,"SUCCESS"|
Pub1:
[class, ACTIVITY_STATUS],
[process.eq,Processs],
[activityName, "flow1"],

Pub3:
[class,LINK_STATUS],
[process,eq,Processb],
[activityName,"activity2"],
[IID,"g001"],
[status,"POSITIVE"]

Sub4:

[class,eq ACTIVITY_STATUS],

[process,eq,Processs],
[activityName,eq,"activity2"],
i

[

Subs:

[class,eq, ACTIVITY_STATUS],
process,eq,Processd],
activityName eq, "activity6"],
1ID,isPresent],
status,eq,"SUCCESS"]

Il
[class,eq ACTIVITY_STATUS],
[process,eq,Processs],
[activityName,eq,"activity6"],
[IID,isPresent],

i
[
[
£

| |

I [activity2 |.. [activity5 | : 1lID,"g001"), 1ID.eq.$X]. status,eq,"SKIPPED"]

: | [status,"STARTED"] status,eq,"SUCCESS"]

| N2 1 | && Pub5:

| [activity3 | + activity6 | | Sub2: [class,eq,LINK_STATUS], [class, ACTIVITY],

| | [class,eq,ACTIVITY_STATUS], [process,eq,Process5], [process,eq,Processs],
| N2 ! process,eq,Process5], [activityName,eq,"activity2"], [activityName,"activity7"],
1 acl‘lvll‘y4 | [activity7 | ! activityName, eq, "flow1'], D 6q,$X], [IID,"g001"],

_ [[

11D,isPresent],
status,eq,"STARTED"]

status,isPresent]

l
[
I status,"SUCCESS']
[

Pub4:
Pub2: [class ACTIVITY_STATUS],
[class, ACTIVITY_STATUS], process,eq,Processs],

activity8

i
[process.eq,Processs], [activityName,"activity'],
JactivityName,"activity2"], [IID,"g001"],
[11D,"g001', [status,"SUCCESS"]

[status,"SUCCESS"]

Fig. 8. BPEL flow activity

its outgoing links based on an expression of its process instance’s state. Likewise,
a target activity may specify a Boolean valued join condition based on instance
state including the state of its incoming links. A target activity executes only if
at least one of its incoming links evaluates to true and its join condition is true.
A join condition failure, by default, generates a fault, and control is passed to
the appropriate fault handler. This fault, however, may be suppressed by setting
the suppressJoinFailure attribute to true. In the latter case, the target activity is
skipped, and all its outgoing links (if any) are set to false.

A generic use of the flow activity, including the use of a link, is shown in Figure 8.
For brevity, not all messages are shown, and notably, transition and join conditions
are omitted, and assumed to evaluate to true. The flow activity maps to a flow
agent which waits for the preceding activity to finish (Subl in Figure 8), triggers the
execution of each flow branch (Publ in Figure 8), and then waits for each branch
to complete before triggering the subsequent activity.

Activities within a flow are first mapped to NINOS agents based on their asso-
ciated transformation rules. For example, a flow activity agent will subscribe to
and publish messages as outlined earlier. Then, each activity agent within a flow
is augmented with the behavior described in the following paragraphs.

The first activity in each flow branch subscribes to the initiation of the flow
(Sub2 in Figure 8), and publishes its completion as usual (Pub2 in Figure 8). Both
activity2 and activityb belong to this case in Figure 8.

Each link source activity publishes the transition condition of each outgoing link.
In Figure 8, Pub3 indicates a true transition condition on activity2’s outgoing link.
On the other hand, link targets subscribe to the status of their incoming links and
the source activities associated with those links. For example, in Figure 8, activity6
subscribes to Sub4, and publishes Pub4 when it has completed successfully. A target
activity that does not execute, due to a false join condition, publishes that it has
skipped the execution of the activity. A successor activity to a link target must,
therefore, subscribe to both the execution or suppression of its predecessor. In

ACM Transactions on Web, Vol. V, No. N, October 2009.

14 . G. Li, V. Muthusamy, H.-A. Jacobsen

Figure 8, activity7, for example, would subscribe to Sub5 and publish Pub5 upon
completion. Notice that the use of the composite subscriptions feature in Sub4 and
Subb offloads the detection of event correlation patterns to the PADRES pub/sub
layer, simplifying the work of the activity agents.

All other activities publish and subscribe as usual, and do not change their be-
havior as a consequence of belonging within a flow.

Note that the cases above are not mutually exclusive, and an activity may be
required to behave according to multiple descriptions. For example, an activity
may be both the first activity in a flow branch and the target of a link, or may be
both a source and target of (different) links.

3.3.6 Other activities. The mappings for the basic BPEL activities from Ta-
ble I are relatively straightforward. For example, the reply activity subscribes to
the successful completion of its predecessor activity, and publishes the reply mes-
sage along with any variable updates. The fault activity, likewise, subscribes to the
completion of its predecessor activity and publishes a fault message. The mapping
of the sequence structured activity is also routine compared to the other activities
described above. Each activity within a sequence simply subscribes to its predeces-
sor’s completion, and publishes its own completion status.

3.3.7 BPEL variables. Activities within a BPEL process instance share data by
means of variables, which are global within a process instance. NINOS supports
two mechanisms to support BPEL variables.

The first mechanism maintains variables in a distributed manner. Every activity
that modifies a variable publishes a VARIABLE_UPDATE message with the new
value. Any activity that needs to read a variable issues a subscription for these
update messages and caches this information locally. In this scheme, each activity
agent independently maintains the variable value, and in the case of a sequential
process, the value will be consistent across all activities.

A second mechanism addresses the issue of concurrent accesses to variables as
is possible with activities executing in parallel flows in a process. In this case,
a variable agent is used to maintain consistent variable values, and synchronize
accesses to variables. Adopting standard distributed locking techniques, activities
that read or write to variables must first acquire a read or write lock, respectively,
from the variable agent and then retrieve the current variable value from the variable
agent. The variable agent supports concurrent reads but exclusive writes. We plan
in future work to explore the use of distributed locking algorithms that support
greater concurrency and efficiency.

The variable agent mechanism can always be used, while distributed VARI-
ABLE_UPDATESs are guaranteed to operate correctly only when variables are not
accessed concurrently. Since it is straightforward to distinguish the potentially con-
current and sequential portions of a BPEL process, the process transformation is
able to use the distributed VARIABLE_UPDATE mechanism in sequential parts
of the process, but revert to variable agents in concurrent portions.

The wisibility of variables by activities in different scopes is well-defined in the
BPEL specification, and can be determined and resolved during process transforma-
tion. For example, activities would only issue subscriptions for updates to variables

ACM Transactions on Web, Vol. V, No. N, October 2009.

Distributed Architecture for Business Process Execution . 15

Assign
\Agent

BPEL Process

BP Manager

)

Publication

PADRES Broker Network
(Content-based Routing)

—
~——

Publication

Pub1: [class,AGENT_CTL], Adv/Sub
[agentID,"WhileAgent1'], 3) [process,PAYROLL],
[command,"SUBSCRIBE'], [instancelD,p001],...
[content, “[class,eq,ACTIVITY_STATUS]...[status,eq,SUCCESS]'] [detail, Name:Raymond,PersonallD:UT001"

Pub2: [class,Trigger],

Fig. 9. Process deployment and execution monitor

declared within their own or ancestor scopes. Other activities, for whom these
variables are not supposed to be visible would not subscribe to and hence would
not receive these variable updates.

3.4 Process deployment

The result of process transformation is a set of subscription, advertisement and ac-
tivity information messages representing the BPEL activities in a business process.
The goal of process deployment is to install an activity at a particular agent by
sending the advertisements, subscriptions and the activity information generated
from the transformation phase to available activity agents in the system.

Exploiting the publish/subscribe paradigm, the process manager wraps the above
messages inside envelopes compliant with the publish/subscribe language and sends
them to activity agents. The envelopes are agent control publications with class
AGENT_CTL, and contain the information that the manager wants to deliver to
an agent, and the identifier of the particular agent in the agent/D predicate. Ac-
tivity agents receive the control messages by subscribing to AGENT_CTL messages
addressed to themselves. Upon receiving an envelope, an agent unwraps the en-
closed message and issues the messages as its own subscriptions or advertisements,
as shown in Figure 9.

The process of installing an activity at an agent consists of five steps. First, a set
of subscription, advertisement and activity information messages are generated from
a business process definition file during the process transformation phase. Second,
the messages are wrapped in an envelope as a field of an AGENT_CTL publication.
Third, the publish/subscribe broker network delivers the AGENT_CTL publications
to the addressed agents. Fourth, the agent extracts the subscription, advertisement,
and activity information messages from the AGENT_CTL message. For instance,
Publ in Figure 9 is an agent control publication wrapping a subscription for the
while agent. Finally, the agent processes the messages based on the command
field which has three possible values: subscribe, advertise or activityinfo. The
subscribe command causes the agent to subscribe to the subscription specified in
the content field, and not surprisingly, the advertise command causes the agent to
advertise the advertisement contained in the content field. Whereas subscriptions
and advertisements describe the activity dependency of a process, the activityinfo
control message contains information needed by an activity agent to execute the

ACM Transactions on Web, Vol. V, No. N, October 2009.

16 . G. Li, V. Muthusamy, H.-A. Jacobsen

Organization A Organization B
Invokel Reply Invoke2 Wait

Wait
Agent

Invoke
Agent

Invoke
Agent

BPEL Process

PADRES Network PADRES Network

[Invokel][Invoke2] i Flow Receive
- a BP Manager Agent Agent
[Receivel][Receive2 | Agent
Wi Receive0 Flow Receive2
ai ;
S Receivel WS—‘
Reply [Agent [Agent |
! Web
(_ Client) Service
Organization C Organization D

Fig. 10. Inter-organizational deployment

activity, such as the Boolean looping condition for a while activity. At this point,
the business process is deployed and each agent is ready for execution.

We emphasize that after a BPEL process has been transformed into advertise-
ments, subscriptions and activityinfo messages, there is much flexibility in the ac-
tivity agents where these messages are installed. Furthermore, the provisioning
of the quantity and types of activity agents can itself be arbitrary and accom-
modate to system requirements. For example, Figure 10 shows a scenario where
organizations A and B decide to collaborate in hosting a business process. Each
organization administers its own PADRES federation, and decides on which set of
activity agents to provision. Notice that there may be multiple agents of the same
type. Such replication of activity agents allows greater flexibility during process
deployment, provides more resources with which to balance and support greater
loads, and supports redundancy in case of failures. The BPEL process in Figure 10
may be deployed to the activity agents as annotated in the figure. Notice that
regardless of the complexity of the network architecture, activity agents are simply
identified by their location-independent address in the PADRES network, and the
deployment of a BPEL process to activity agents proceeds exactly as above. As
elaborated in Section 3.6, the ability of the PADRES content-based pub/sub layer
to address components in the system by their network- and location-independent
name is key to managing the complexity of arbitrarily elaborate deployments.

While organizations that wish to participate in the execution of a BPEL process
must administer a PADRES/NINOS deployment, it remains possible to invoke
processes hosted by other organizations (see Organization D in Figure 10) that
expose their processes as Web services. Furthermore, BPEL processes executed by
the distributed NINOS system can be invoked by outside clients (see Organization C
in Figure 10). The scenario in Figure 10 illustrates the flexible deployment options

ACM Transactions on Web, Vol. V, No. N, October 2009.

Distributed Architecture for Business Process Execution . 17

available to organizations in terms of the distribution of the NINOS execution
engine, and interactions with business partners and clients. The determination of
an appropriate or optimal deployment is driven by business policies and goals and
is the subject of ongoing work.

3.5 Process execution

The activity agents attached to the publish/subscribe system are responsible for
executing the activities in the process. They are both subscribers and publishers,
subscribing to activity completion events from predecessor activities and publishing
events to notify their successor activities. The dual roles enable them to exchange
messages within the publish/subscribe messaging system, allowing coordinated ex-
ecution of the business process.

A particular instance of a process is started by a NINOS service request, such as
Pub2 in Figure 9, and is driven by activity completion events. Execution continues
until all the activities defined in the process are finished. The process flow, or de-
pendencies between activities, is encoded in the interplay between subscriptions and
advertisements, which determine the order of activity execution. Dependency sub-
scriptions may be composite subscriptions, in which case matching is performed in
the broker network, and agents are notified only when their execution conditions are
fully satisfied. Detecting the execution condition in the PADRES broker network
makes the activity agent a light-weight component in NINOS without significant
processing or storage requirements. During execution, all the message routing is
automatic and transparent to the process management layer.

3.6 Process management

Enterprises demand powerful facilities to control and monitor their business pro-
cesses. Convenient management features are even more important in distributed
architectures. We highlight a few management scenarios below, and describe how
they are supported in NINOS.

NINOS provides a graphical monitoring interface to visualize the network topol-
ogy, message routing, and distributed process execution, as shown in Figure 11.
The monitoring itself is entirely based on pub/sub messages, making it possible,
for example, to observe what others are monitoring.

Both real-time and historic process monitoring are supported by NINOS. Real-
time monitoring is simple to achieve in NINOS due to the use of a content-based
pub/sub infrastructure. The monitor, shown in Figure 11, which is itself a pub/sub
client, subscribes to the execution information of a particular activity, allowing the
monitor to know the execution status of a process. The expressive content-based
pub/sub semantics allow the monitor to observe the status of individual activities,
trace the execution of a particular process instance, or perform countless other
queries, all without requiring additional instrumentation logic at the components
being monitored. For example, the first ACTIVITY_STATUS subscription in Fig-
ure 11 allows an administer to view, in real-time, the operation of a particular while
activity agent in the system including the invocations of the activity.

Enterprise applications also require probing the execution of completed processes,
perhaps for auditing or analysis purposes. The PADRES infrastructure supports
historic data access using subscriptions that unify the query for past and future

ACM Transactions on Web, Vol. V, No. N, October 2009.

18 . G. Li, V. Muthusamy, H.-A. Jacobsen

"~ Monitor an activity:
[class,eq,ACTIVITY_STATUS],
[process,eq,Process1],
[activityName,eq,"while"], [IID,isPresent],
[status,isPresent]

Trace a faulty process instance:
[class,eq,ACTIVITY_STATUS],
[activityName,eq,"activity2"], [1ID,eq,$X]
[status,eq,"FAILURE"]

&&
[class,eq,ACTIVITY_STATUS],
[activityName,isPresent], [IID,eq,$X]

. S Pause a process instance:

e T TP [class,AGENT_CTL],

L T [command,PAUSE], [agentID,isPresent],
. [process,"PAYROLL"], [IID,p001]

Fig. 11. PADRES monitor

events [Li et al. 2007]. Along with PADRES’s composite subscriptions feature [Li
and Jacobsen 2005], both executing and previously executed process instances can
be correlated and queried. For example, it is possible to monitor the status of new
process invocations by users who invoked the process at least ten times yesterday.

Another management scenario is to trace the execution of process instances that
exhibit some behavior. For example, the second set of ACTIVITY_STATUS sub-
scriptions' trace the invocations of every activity for those process instances whose
activity2 failed. Examining the execution of these instance can help diagnose the
failure or understand its consequences.

Advanced process control functions include suspending, resuming or stopping
running process instances. The target instances can be specified by instance id,
process id, or any constraints expressible by the pub/sub semantics. For exam-
ple, the AGENT_CTL publication in Figure 11 instructs all agents executing the
PAYROLL process to suspend the execution of instance p001.

These functions are useful especially when processes need to be updated on-
line. For example, a manager may suspend running process instances, dynamically
update certain activities in the process (by sending modified subscription, adver-
tisement, and activityinfo envelopes to activity agents), and resume the instances.
The agent-based execution in NINOS simplifies this task since only the agents cor-
responding to the modified activities need to participate in the process redefinition.
The other activities can continue executing the process.

As mentioned earlier, the provisioning of multiple instances of the same activity
agent type provides more process deployment choices, greater scalability potential,
and the ability to redeploy the activities assigned to a failed activity agent. For
example, in Figure 10, if the receive agent provisioned by Organization A fails, the
Receivel and Receivel activities can be redeployed to the receive agent provisioned
by Organization B using the management features described above. While the
mechanisms required to respond to failures are supported by NINOS, the automatic

1We use a composite subscription in this case.

ACM Transactions on Web, Vol. V, No. N, October 2009.

Distributed Architecture for Business Process Execution . 19

receivet
claim = INPUT
assign1
approval = UNKNOWN

invoke1 invoke2
wsA .process(claim) wsB.process(claim)
receive2 receive3
reportA = INPUT reportB = INPUT

assign2 assign3
scoreA = reportA.score scoreB = reportB.score

\/

switch1
if scoreA < 8 — case2
if scoreB < 8 — case2
otherwise — case1

assign4 assignd

‘ approval = YES ‘ ‘ approval = NO ‘

reply1
RESPONSE = approval

Fig. 12. Example loan application process

detection and correction of failures is left for future work. Towards this end, we
have investigated failure resilience in the PADRES network layer [Kazemzadeh and
Jacobsen 2009], and formalized well-defined semantics for the mobility of activity
agents [Hu et al. 2009].

3.7 Example

Consider a loan approval BPEL process in Figure 12. The process is triggered when
a loan application is received. In order to avoid approving risky loans, the process
invokes two external Web services that independently generate a credit report for
the loan applicant. Only if both credit rating services deem the applicant to be
credit worthy does the process approve the loan application.

Each activity in the BPEL process in Figure 12 is mapped to a NINOS agent,
and table IT details the advertisements and subscriptions issued by each agent, as
well the publications for a sample run of the process. Some of the agents in the
parallel branches of the process, such as the invoke2 and receive3 activities, are
omitted from Table II. Their messages would correspond to the messages issued by
the corresponding activities in the other branch.

Although there is a flow activity in the BPEL process in Figure 12, there is
no corresponding agent. Instead, the first activity in each branch of the flow are
triggered when the final activity before the flow activity completes. Similarly, it is
possible to eliminate the switch activity by having the first activities in each branch
of the switch subscribe to their respective conditions directly. The switch activity

ACM Transactions on Web, Vol. V, No. N, October 2009.

20 :

is assigned to an agent in Table II to illustrate what its message

G. Li, V. Muthusamy, H.-A. Jacobsen

would look like.

[process,eq,"loan"],
[activityName,eq, "assigni"],
[IID,eq,$X1,

[status,eq, "SUCCESS"]

&&

[class,eq, VARIABLE_UPDATE] ,
[process,eq,"loan"],
[activityName,eq,"receivel"],
[IID,eq,$X],
[variableName,eq, "claim"]

[process,eq,"loan"],
[activityName,eq, "invokel"],
[IID,isPresent],
[status,isPresent]

Activity] Subscription Advertisement Sample Publication
(trigger)| - [class,eq,TRIGGER], [class,TRIGGER],
[process,eq,"loan"], [process,"loan"],
[IID,isPresent] [IID,"g001"], <<CLAIM>>
receivel | [class,eq,TRIGGER], [class,eq,ACTIVITY_STATUS], [class,ACTIVITY_STATUS],
[process,eq,"loan"], [process,eq,"loan"], [process,"loan"],
[IID,isPresent] [activityName,eq,"receivel"], | [activityName,"receivel"],
[IID,isPresent], [11ID,"g0o01"],
[status,isPresent] [status,"SUCCESS"]
[class,eq, VARIABLE_UPDATE] , [class,VARIABLE UPDATE],
[process,eq,"loan"], [process,"loan"],
[activityName,eq, "receivel"], | [activityName,"receivel"],
[IID,isPresent], [11ID,"g0o01"],
[variableName,eq,"claim"] [variableName,"claim"],
<<CLAIM>>
assignl [class,eq,ACTIVITY_STATUS], [class,eq,ACTIVITY_STATUS], [class,ACTIVITY_STATUS],
[process,eq,"loan"], [process,eq,"loan"], [process,"loan"],
[activityName,eq, "receivel"], [activityName,eq,"assigni"], [activityName,"assigni"],
[IID,isPresent], [IID,isPresent], [1ID,"g0o01"],
[status,eq, "SUCCESS"] [status,isPresent] [status,"SUCCESS"]
[class,eq, VARTABLE_UPDATE] , [class,VARIABLE UPDATE],
[process,eq,"loan"], [process,"loan"],
[activityName,eq,"assigni"], [activityName,"assigni"],
[IID,isPresent], [11ID,"g0o01"],
[variableName,eq, "approval"] [variableName, "approval"],
<<RESULT>>
flowl - - -
invokel [class,eq,ACTIVITY_STATUS], [class,eq,ACTIVITY_STATUS], [class,ACTIVITY_STATUS],

[process,"loan"],
[activityName, "invokel"],
[IID,isPresent],

[status, "SUCCESS"]

[process,eq,"loan"],
[activityName,eq, "wsA"],
[IID,isPresent],
[status,eq, "SUCCESS"]

[process,eq,"loan"],
[activityName,eq, "receive2"],
[IID,isPresent],
[status,isPresent]

[class,eq, VARTABLE_UPDATE] ,
[process,eq,"loan"],
[activityName,eq, "receive2"],
[IID,isPresent],
[variableName,eq, "reportA"]

wsA [class,eq,ACTIVITY_STATUS], [class,eq,ACTIVITY_STATUS], [class,ACTIVITY_STATUS],
[process,eq,"loan"], [process,eq,"loan"], [process,"loan"],
[activityName,eq, "invokel"], [activityName,eq, "wsA"], [activityName,"wsA"],
[IID,eq,$X1, [IID,isPresent], [1ID,eq,"g001"],
[status,eq, "SUCCESS"] [status,isPresent] [status,eq, "SUCCESS"],
&& <<RESULT>>
[class,eq, VARTABLE_UPDATE] ,
[process,eq,"loan"],
[activityName,eq,"receivel"],
[IID,eq,$X1,
[variableName,eq, "claim"]

receive2 | [class,eq,ACTIVITY_STATUS], [class,eq,ACTIVITY_STATUS], [class,ACTIVITY_STATUS],

[process,"loan"],
[activityName, "receive2"],
[11ID,"g0o01"],

[status, "SUCCESS"]

[class,VARIABLE UPDATE],
[process,"loan"],
[activityName, "receive2"],
[11ID,"g0o01"],
[variableName, "reportA"],
<<RESULT>>

ACM Transactions on Web, Vol. V, No. N, October 2009.

Distributed Architecture for Business Process Execution . 21

assign2 [class,eq,ACTIVITY_STATUS], [class,eq,ACTIVITY_STATUS], [class,ACTIVITY_STATUS],
[process,eq,"loan"], [process,eq,"loan"], [process,"loan"],
[activityName,eq, "receive2"], [activityName,eq, "assign2"], [activityName,"assign2"],
[IID,eq,$X1, [IID,isPresent], [1ID,"g0o01"],
[status,eq, "SUCCESS"] [status,isPresent] [status,"SUCCESS"]
&&
[class,eq, VARTABLE_UPDATE] , [class,eq, VARTABLE_UPDATE] , [class,VARIABLE UPDATE],
[process,eq,"loan"], [process,eq,"loan"], [process,"loan"],
[activityName,eq, "receive2"], [activityName,eq, "assign2"], [activityName,"assign2"],
[IID,eq,$X]1, [IID,isPresent], [1ID,"g0o01"],
[variableName,eq, "reportA"] [variableName,eq, "scoreA"] [variableName,"scoreA"],

<<APPROVAL>>

switchl [class,eq,ACTIVITY_STATUS], [class,eq,SWITCH.CASE_TRIGGER]|, [class,SWITCH_CASE.TRIGGER],
[process,eq,"loan"], [process,eq,"loan"], [process,"loan"],
[activityName,eq, "assign2"], [activityName,eq,"switch1"], [activityName,"switch1"],
[IID,eq,$X]1, [IID,isPresent], [1ID,"g0o01"],
[status,eq, "SUCCESS"] [triggeredActivity,isPresent] | [triggeredActivity,"assign4"]
&&
[class,eq, VARIABLE_UPDATE],
[process,eq,"loan"],
[activityName,eq,"assign2"],
[IID,eq,$X],
[variableName,eq,"scoreA"]
&&
[class,eq,ACTIVITY_STATUS],
[process,eq,"loan"],
[activityName,eq,"assign3"],
[IID,eq,$X1,
[status,eq, "SUCCESS"]
&&
[class,eq, VARTABLE_UPDATE] ,
[process,eq,"loan"],
[activityName,eq, "assign3"],
[IID,eq,$X1,
[variableName,eq,"scoreB"]

assignd [class,eq, SWITCH_CASE_TRIGGER], [class,eq,ACTIVITY_STATUS], [class,ACTIVITY_STATUS],

[process,eq,"loan"],
[activityName,eq,"switchl"],
[IID,isPresent],
[triggeredActivity,eq, "assign4"]

[process,eq,"loan"],
[activityName,eq,"assign4"],
[IID,isPresent],
[status,isPresent]

[class,eq, VARTABLE_UPDATE] ,
[process,eq,"loan"],
[activityName,eq, "assignd"],
[IID,isPresent],
[variableName,eq, "approval"]

[process,"loan"],
[activityName,"assign4"],
[IID,"go01"],

[status, "SUCCESS"]

[class,VARIABLE_UPDATE],
[process,"loan"],
[activityName,"assign4"],
[11ID,"g0o01"],
[variableName, "approval"],
<<YES>>

ACM Transactions on Web, Vol. V, No. N, October 2009.

22 . G. Li, V. Muthusamy, H.-A. Jacobsen

replyl ([class,eq,REPLY], [class,REPLY],
[class,eq,ACTIVITY_STATUS], [process,eq,"loan"], [process,"loan"],
[process,eq,"loan"], [IID,isPresent], [1ID,"g0o01"],
[activityName,eq, "assign4"], [status,isPresent] [status,"SUCCESS"],
[1ID,eq,$X1, <<approval>>
[status,eq, "SUCCESS"]
&&

[class,eq, VARIABLE_UPDATE],
[process,eq,"loan"],
[activityName,eq,"assign4"],
[IID,eq,$X],
[variableName,eq, "approval]
)

I

(

[class,eq,ACTIVITY_STATUS],
[process,eq,"loan"],
[activityName,eq, "assign5"],
[1ID,eq,$X1,

[status,eq, "SUCCESS"]

&&

[class,eq, VARIABLE_UPDATE],
[process,eq,"loan"],
[activityName,eq,"assign5"],
[IID,eq,$X],
[variableName,eq, "approval"]

)

Table II: Agent messages for loan application process in Figure 12

3.8 Architectural benefits

There are several capabilities offered by the distributed NINOS execution engine
that are either not present in traditional centralized processing architectures or are
more difficult to achieve. This section points out some of these qualitative benefits,
deferring the quantitative performance benefits to Section 4.

One benefit is that fine-grained monitoring of a running process requires no addi-
tional effort, and little overhead. Since process activities are triggered by ordinary
pub/sub messages, it is possible to non-intrusively subscribe to these messages and
make detailed observations of running processes such as an activity’s invocation
rate, a branch’s execution probabilities, or a process’s critical path. The monitor-
ing does not require adding any additional instrumentation code to the process,
and the multicast message propagation in PADRES ensures that only the minimal
number of additional messages are sent over the network.

The NINOS architecture also naturally supports cross-organizational processes,
where portions of a process span different administrative domains. For example,
the portion of a loan application process that accesses confidential customer credit
information may be required to execute within the accounting department. In
NINOS, the relevant activities can easily be deployed on the resources administered
by the appropriate department.

Related to the above point, NINOS also supports both orchestration and chore-
ography styles of process execution. In fact, in NINOS a BPEL orchestration is
mapped into a choreography involving a number of agents.

The NINOS architecture supports the capability to modify portions of a process
while it is still executing. For example, the processing logic of a particular activity
can be changed by deploying a replacement activity agent, having the new agent

ACM Transactions on Web, Vol. V, No. N, October 2009.

Distributed Architecture for Business Process Execution . 23

issue the necessary subscriptions and advertisements, and have the original agent
unsubscribe. It is even possible to modify the control logic of a portion of a pro-
cess using the same techniques to insert a new process fragment into an existing
process. Since the process is distributed, this process modification technique allows
the remainder of the process to continue executing while one portion of it is being
altered.

The NINOS execution engine exploits the PADRES complex event processing
capabilities to offload certain process execution tasks to the PADRES broker net-
work. For example, activities that are triggered by multiple publications issue
a composite subscription for these publications. The publications that contribute
to matching the composite subscription are collected and correlated in the broker
network itself. This benefits the agents who can avoid processing cost of the corre-
lation, and reduces network traffic by letting the broker network decide the optimal
point to collect and correlate the publications.

The decomposition of a process into fine-grained components affords more precise
control over load balancing or replication needs. For example, a single activity in
a process may be the bottleneck that limits the processing time of the process.
Instead of replicating the entire process, only the bottleneck activity needs to be
duplicated. The details of realizing this are out of the scope of this article, but are
made possible by the distributed NINOS execution architecture.

The distributed execution of activities in a process is also potentially more scal-
able by taking advantage of available distributed resources. Furthermore, due to
the fine granularity of the individual execution agents, the system is able to utilize
even relatively small resources. For example, certain activities in a process may be
very lightweight and the associated agent could be deployed on a relatively under-
powered machine; it is not necessary to find a machine that can execute the entire
process.

One potential critique of the NINOS architecture is that it requires each organi-
zation to deploy a federation of PADRES brokers. However, this is conceptually no
different from a process choreography where multiple organizations collaborate to
execute a business process. In such choreography scenarios, the process spans ad-
ministrative domains and there is no centralized coordinator, perhaps because the
organizations cannot agree on one trusted central entity. Instead, each organization
administers its own process execution engine, with standards such as BPMN [White
2004] and the family of Web service specifications facilitating the interoperability
among the participants. In a similar manner, the brokers in the NINOS architec-
ture can use messaging and event processing standards such as the Java Messaging
Service (JMS), Advanced Message Queuing Protocol (AMQP), or WS-Notification
allowing each organization to deploy their choice of technology. It should also be
reiterated that it is perfectly sensible to deploy the NINOS architecture on a single
machine and only add additional resources as required.

Many of the benefits of the NINOS architecture stem from the distributed nature
of the execution engine, where a large process is broken down into fine-grained
activities which are each executed by an autonomous agent.

ACM Transactions on Web, Vol. V, No. N, October 2009.

24 . G. Li, V. Muthusamy, H.-A. Jacobsen

4. EVALUATION

This section quantitatively evaluates the distributed NINOS process execution ar-
chitecture. In particular, it is compared to centralized and clustered architectures.
A variety of parameters are varied to attempt to understand the conditions for
which each architecture is well suited.

4.1 Experimental setup

NINOS is implemented in Java over the PADRES distributed content-based pub/
sub system. The evaluations are conducted in a dedicated network of 20 machines,
each equipped with 4GB of memory and 1.86GHz CPUs. In all the tests, in addi-
tion to the deployed activity agents, there is a process management client, and a
service request client that invokes process instances. Since there are no accepted
benchmarks in this field, the delivery service business process described in Figure 2
is used.

The centralized, clustered and distributed execution deployments are compared.
In the centralized scenario, activity agents reside on the same machine, connecting
to a single PADRES broker. This deployment serves as a baseline and emulates
a centralized execution engine. The clustered scenario attempts to increase the
scalability of the system by deploying multiple centralized engines. In the evalua-
tions, two sets of activity agents are deployed, with each set of agents connected to
a different broker. A load balancer directs requests evenly across the two process
engines, each of which independently execute the requests. For the distributed sce-
nario, a 30 broker network is deployed with the agents connecting to the various
brokers. The broker network has a maximum diameter of six hops, and there are
12 edge brokers and 18 inner brokers, the latter of which have a degree between
two and four.

In all three deployments, two Web service agents act as proxies to the two external
Web services invoked by the process. Since the availability of external Web services
is independent of the architecture of the execution, in all three deployments, the
number of Web services is fixed at two. Notably, even though multiple copies of
activity agents are deployed for the clustered scenario, these agents still share the
two external Web services.

The metrics of interest are the average process execution time and the average
system throughput while varying the request rate, the delay of the external Web
services, and the size of the messages. The process execution time is defined as the
duration from the issue of a request by a client to the receipt of the corresponding
response by the client, and the throughput is the number of process instances
completed per minute. The default values for request rate, Web service execution
time, and message size are 500/min, 100 ms, and 512 bytes, respectively.

4.2 Request rate

This experiment varies the process invocation rate, where each invocation generates
a process instance, and measure the average execution time and throughput. As
shown in Figure 13, for lower request rates, the centralized approach offers the
best execution time, with improvements of 9% and 20% over the clustered and
the distributed deployments, respectively. This is because the overhead of the

ACM Transactions on Web, Vol. V, No. N, October 2009.

Distributed Architecture for Business Process Execution . 25

1800 T T T

300 T

T
tralized

1 T " Cent T T T
; Clustered with 2 replicas < L Cantralized]
1600 0.8 - H 1 Distributed 1 Clustered with 2 replicas -------
250 [Distributed 1
1400 (06 H 1 A — ;
_ 0al ;] =
E 0.2 | — =
b 1000 1 P 1 E_ |
% 800 50 100 150 200 250 | _g’
3
2 e o B
z g = 1
= {
400 1 50 i
200 R
0 | | | | |
°
° 1000 2000 3000 2000 5000 6000 0 1000 2000 3000 4000 5000 6000
Request rate (/min) Request rate (/min)

Fig. 13. Varying request rates

250 T T T T T T T
1 T T T Centralized 50 ' ' 'Centralized
...... entralized
Clustered W"hDZ,S':,Ell'ﬁZS . Clustered with 2 replicas ««-----+
4 - Distributed
40 | B
e <
:] £
= 1 = 30 4
o =3
8 £
& S .
© 200 7 3 20 Requestrate = 50/min
z =
< =
4 10 3
)))) 0 L L L L L L L L L
0 200 400 600 800 1000 1200 1400 1600 1800 2000 0 200 400 600 800 1000 1200 1400 1600 1800 2000
External serivice time (ms) External serivice time (ms)

Fig. 14. Varying Web service execution time (50 requests/min)

workload balancer in the clustered approach and the communication overhead of
traversing the broker network in the distributed setup are not negligible. When the
request rates are higher than 300/min, however, the clustered and the distributed
approaches are faster, with 34% and 67% better execution times, respectively, over
the centralized scenario at the highest request rate of 6000/min.

The throughput results in Figure 13 show that the distributed and clustered
approaches, whose maximum throughput are similar, outperform the centralized
one, with a roughly 49% increase in maximum throughput. Notice that for low
request rates of around 200/min, the throughput of all the three approaches are
almost the same as the request rate because none of the approaches reach their
maximum throughput. The virtually identical throughput at higher request rates
for the clustered and distributed deployments is because the external Web services
invoked by the process are the bottleneck. Since there are no replicas of these Web
services, and they are shared among the process instances, the Web services limit
the maximum throughput.

Note that a Web service behaving as a throughput bottleneck does not imply it is
also a latency bottleneck. For example, even if the processing rate of a Web service
is bound, the additional time it takes to execute the remainder of the activities in
the process will differ in the distributed and clustered architectures. Therefore, the
latency and throughput results in Figure 13 are not inconsistent.

ACM Transactions on Web, Vol. V, No. N, October 2009.

26 . G. Li, V. Muthusamy, H.-A. Jacobsen

6000 T T T T T T T T T 1000
T T T T e i zed 2 | © - Cenralized
80 - 1 Dstrbued i Clustered with 2 replicas -------
5000 |- 1 Distributed
800 B
60 - 1 _
= . =
L4000 F 4o e 4 £ 1
g S 600 H 4
S 20 g = '
S 3000 - 4 =3
a(’ 0 Ly | . | . 5 i .
. 20 25 30 3540 45_.50 3 400 (| Request rate = 1000/min h
Z 2000 - g = 3
F ,
200 N\ E
1000 |- 4
) Request rate = 1000/min N
At} L L L L L L L L

0 200 400 600 800 1000 1200 1400 1600 1800 2000 0 200 400 600 800 1000120014001600 18002000
External serivice time (ms) External serivice time (ms)

Fig. 15. Varying Web service execution time (1000 requests/min)

4.3 Web service delay

To better understand the effects of the external Web services on both process execu-
tion time and throughput, this experiment varies the Web service delay from 20 ms
to 2 sec with two different request rates. With a lower request rate of 50/min, the
results in Figure 14 show that, as expected, a longer Web service delay increases
the average execution time for all three deployment scenarios. When the delay
is small, the centralized approach performs the best by avoiding the communica-
tion overhead present in the other two approaches. On the other hand, when the
Web service delay increases, the distributed approach performs the best, with 49%
and 70% improvements in execution time over the clustered and the centralized
scenarios, respectively.

A large Web service delay requires the execution engine to handle many concur-
rent process instances, which increases the memory and processing requirements
on the system. The increased number of process instances are balanced among
two clusters in the clustered scenario, resulting in up to a 41% improvement in
execution time compared to the centralized approach.

With a much higher request rate of 1000/min, the results in Figure 15 show
that the centralized approach performs the worst and the distributed deployment
the best regardless of the Web service delay. Recall from Figure 13 that all three
deployment scenarios achieved their maximum throughput at a request rate of
approximately 1000/min. At this point process instances begin to queue up at
activity agents and Web services, and the contribution of this queueing delay on
the process execution time dominates the communication overhead present in the
clustered and distributed deployments. As in the case with a lower request rate,
the clustered and distributed deployments disperse the request load among the
additional resources available to them and achieve faster execution times than the
centralized scenario. As well, the throughput results in Figure 15 are consistent with
the observations from Figure 13, with the throughput benefits of the distributed
and clustered deployments disappearing when the Web service delays are increased
to a point where the Web service becomes a bottleneck.

4.4 Message size

The amount of data transferred between activities in a BPEL process may vary.
This experiment investigates the impact of the inter-activity message size for the

ACM Transactions on Web, Vol. V, No. N, October 2009.

Distributed Architecture for Business Process Execution . 27

0.4 T T — 55 T T T
Centralized Centralized
Clustered with 2 replicas -----:-- 5o [Clustered with-2renlicas:
0.38 |- Distributed 1 Distributed
2 Z st i
© 036 E £
£ " =
[t Request rate = 50/min = 40 b B
g 034r k =
05 e '§7 35 Request rate = 50/min -
5, 032 i 3
=l L 4
E £
03 F E pran i
0.28 ! L L L L 20 L L L L L
0 50000 100000 150000 200000 250000 0 50000 100000 150000 200000 250000
Message size (bytes) Message size (bytes)
Fig. 16. Varying message size (50 requests/min)
100 T T —T 290 T T —T
G ized—— 1 - Cenvalized. :
90 Clustered with 2 replicas ------- 4 280 | Clustered with 2 replicas -
Distributed | Distributed B
P 270
0 L | —_
by £ 260 - R
£ 70 R = L i
i p 250
8 60 Request rate = 500/min B _%— 240 B
& sol | 2 230 | Request rate = 500/min g
. o
) o [T ,-E 200 b i
< 210 E
30 - b 200 |- R
20 N . L L L 190 T T T T
0 50000 100000 150000 200000 250000 0 50000 100000 150000 200000 250000
Message size (bytes) Message size (bytes)

Fig. 17. Varying message size (500 requests/min)

three deployment scenarios. The results in Figures 16 and 17 indicate that varying
the message size, even with different request rates, has little effect on either the
process execution time or the throughput in any of the three deployment scenarios.
However, the distributed case performs the worst with a request rate of 50/min
because of the communication overhead and performs the best with a request rate of
500/min because the request queueing times dominate the communication overhead.

When the request rate is low (Figure 16), all three deployment scenarios main-
tain a throughput that roughly equals the request rate. However, the centralized
deployment becomes overloaded with higher requests rates (Figure 17), with the
clustered and distributed approaches achieving about 48% better throughput fig-
ures. As with latency, the results show that the communication and processing
overheads of traversing a larger broker network is not significant with message sizes
up to 256 kbytes.

Larger messages influence performance in two key ways: an increase in the net-
work overhead when transmitting messages, and an increase in the computation
overhead when processing messages. Now, it is not clear to what extent the sta-
ble results in Figures 16 and 17 are generalizable to WAN deployments with slower
network links, but the compute resources of the machines in the experiment are not
unreasonable in commodity hardware, let alone enterprise servers. Therefore, the
observation that the processing overhead is largely independent of the message sizes
evaluated is likely a more universal phenomenon. This is understood by noticing
that a significant portion of the processing overhead is attributable to the pub/sub

ACM Transactions on Web, Vol. V, No. N, October 2009.

28 . G. Li, V. Muthusamy, H.-A. Jacobsen

Receive

BPEL Process

L L L L 1
[Assign | [Asign] [Assign | [Assign | Assign

Sequence Sequence
Aciviyd
Ay 6|, ..

L L L
[Assign] [(Assign] ["Assign | [Assign | [Assign |

\ [[[\
Reply

Fig. 18. Parallel business process

matching of the messages, and the PADRES matching engine we use only performs
matching on the attributes and predicates in the message header; the payload is
not processed. To exploit this, the BPEL process transformation in NINOS only
encodes the process control flow details as pub/sub attributes and predicates, and
leaves the process data in the payload. In particular, VARIABLE_UPDATE publi-
cations include the variable’s name as a pub/sub attribute, but store the variable’s
value in the message payload. In this way, variations in message size caused by
variable data values do not significantly influence the pub/sub matching time.

4.5 Parallelism

As processes may exhibit different degrees of parallelism, this experiment compares
two processes: one containing many activities with ten parallel branches, as shown
in Figure 18, and another with the same number activities but with only two parallel
branches. To isolate the effects of process parallelism, no external Web services are
invoked by either process.

With the highly parallel process, the distributed deployment offers significantly
better execution time performance as shown in Figure 19(a). When the request
rate is less than 100/min, we observe a trend similar to Figure 13, where the
distributed approach performs worse because of the additional network overhead.
This is understandable since higher request rates result in more activities executing
in parallel, and more opportunities for the distributed deployment to take advantage
of the additional resources available to it. At the highest request rates evaluated, the
distributed scenario executed the parallel process 79% faster than the centralized
approach, and the clustered deployment improved over the centralized one by about
71%.

With the more sequential process, on the other hand, the benefits of additional
resources diminishes. It turns out that there is not enough parallelism in this
particular process for the distributed deployment to benefit from, and the clustered

ACM Transactions on Web, Vol. V, No. N, October 2009.

Distributed Architecture for Business Process Execution . 29

Centralized entralized

5000 {10 T T I

T T
d with 2 replicas ------- /] 5000 |10 T T T fostered with 2 replicas -
Distributed Distributed

4000 - 4000 ¢ |

3000 - 3000 -

o N & o ®
o N & o ®

2000 - 2000 -

Avg. Exec. Time (s)
Avg. Exec. Time (s)

1000 [1000 [

0 SR ol
0 200 400 600 800 1000 1200 1400 1600 1800 2000 0 200 400 600 800 1000 1200 1400 1600 1800 2000
Request rate (/min) Request rate (/min)

(a) Parallel (b) Sequence

Fig. 19. Average execution time

approach actually achieves the best execution time. The results in Figure 19(b)
indicate that at the request rate of 2000/min, the clustered approach is 64% faster
than the centralized one, whereas the distributed deployment is only 42% better.

Since there are no Web service requests in the processes, which might limit the
maximum throughput, the clustered approach has the best throughput with 25%
and 41% improvement for the highly parallel and the less parallel processes, com-
pared to the distributed approach.

According to the results, the distributed approach is better able to achieve low
process execution times with processes characterized by many parallel flows and in
situations where the request rates are high. Otherwise, there is not enough paral-
lelism to exploit the distributed resources available and the distribution overhead
may actually impair the performance. In such situations the centralized or clustered
architectures may perform better.

5. CONCLUSIONS

In this paper, we first we propose a distributed business process execution architec-
ture, based on a pub/sub infrastructure, using light-weight activity agents to carry
out business process execution in a distributed environment. The pub/sub layer
simplifies the interaction among agents, and reduces the cost of maintaining execu-
tion state for running process instances. Second, we describe how BPEL activities
can be mapped to pub/sub semantics that realize the process control flow among
activity agents. These agents are loosely coupled in the pub/sub layer, which makes
our agent-based BPEL engine more flexible and customizable. Third, we present
how to deploy processes into the agent network, initiate a process instance, and
manage the process execution. The process deployment, execution and manage-
ment are performed through the pub/sub layer taking advantage of the even-driven
and the loosely coupled nature of the pub/sub infrastructure. Finally, we carry out
a set of experiments comparing our distributed agent-based engine with a central-
ized orchestration scenario and a clustered scenario. The evaluation indicates that
the benefit of the distributed approach is more apparent under a higher process
request workload, say over 300 requests per minute. In addition, the distributed

ACM Transactions on Web, Vol. V, No. N, October 2009.

30 . G. Li, V. Muthusamy, H.-A. Jacobsen

approach is well suited to execute highly parallel processes that are not feasible in
a centralized deployment.

For future work, we would like to explore more experiments with larger business
processes and broker topologies, and study the movement of activity agents in order
to satisfy certain goals or constraints. For example, the average execution time
may be minimized by moving tightly coupled activity agents close to one another.
Moreover, it is interesting to study more advanced techniques for the validation of
BPEL process specifications, such as model checking and simulations for process
execution and debugging in the distributed environment.

Acknowledgments

This research was supported by IBM’s Center for Advanced Studies and Bell
Canada’s Bell University Laboratories R&D program, and builds on the PADRES
research project sponsored by CA, Sun Microsystems, the Ontario Centers of Ex-
cellence, the Canada Foundation for Innovation, the Ontario Innovation Trust, and
the Natural Sciences and Engineering Research Council of Canada. We would also
like to thank Serge Mankovskii from CA and our colleagues including Balasubra-
maneyam Maniymaran, Pengcheng Wan, and Chunyang Ye for providing valuable
feedback on earlier versions of this manuscript.

REFERENCES

ABaDI, D. J., AHMAD, Y., BALAZINSKA, M., CETINTEMEL, U., CHERNIACK, M., HwaNG, J.-H.,
LINDNER, W., MASKEY, A. S., RASIN, A., RYVKINA, E., TATBUL, N., XING, Y., AND ZDONIK, S.
2005. The Design of the Borealis Stream Processing Engine. In Proceedings of the Conference
on Innovative Data Systems Research (CIDR 2005). Asilomar, CA.

ALONSO, G., AGRAWAL, D., ABBADI, A. E., MoHan, C., GUNTHOR, R., AND KamATH, M. 1995.
Exotica/FMQM: A persistent message-based architecture for distributed workflow manage-
ment. In Proceedings of the IFIP Working Conference on Information Systems Development
for Decentralized Organizations (IFIP 1995). Trondheim, Norway.

CARZANIGA, A., ROSENBLUM, D. S.; AND WOLF, A. L. 2001. Design and evaluation of a wide-area
event notification service. ACM Transactions on Computer Systems 19, 3 (Aug.), 332-383.
CasATI, F. AND DISCENZA, A. 2001. Modeling and managing interactions among business pro-
cesses. Journal of Systems Integration 10, 2 (Apr.), 145-168. Special Issue: Coordination as a

Paradigm for Systems Integration.

CHANDRASEKARAN, S.; COOPER, O., DESHPANDE, A., FRANKLIN, M. J., HELLERSTEIN, J. M.,
Hong, W., KRISHNAMURTHY, S., MADDEN, S. R., REiss, F., AND SHAH, M. A. 2003. Tele-
graphCQ: continuous dataflow processing. In Proceedings of the 2003 ACM SIGMOD Inter-
national Conference on Management of Data (SIGMOD 2003). San Diego, California.

Cuau, T., MUTHUSAMY, V., JACOBSEN, H.-A., LiTaNI, E., CHAN, A., AND COULTHARD, P. 2008.
Automating SLA modeling. In Proceedings of the 2008 Conference of the Center for Advanced
Studies on Collaborative Research (CASCON 2008). Toronto, Canada.

FABRET, F., JACOBSEN, H. A., LLIRBAT, F., PEREIRA, J., Ross, K. A., AND SHAsHA, D. 2001.
Filtering algorithms and implementation for very fast publish/subscribe systems. In Proceedings
of the 2001 ACM SIGMOD International Conference on Management of Data (SIGMOD
2001). Santa Barbara, California, United States.

FIDLER, E., JACOBSEN, H.-A., L1, G., AND MANKOVSKI, S. 2005. The PADRES distributed pub-
lish/subscribe system. In Feature Interactions in Telecommunications and Software Systems
VIII (ICFI 2005). Leicester, UK.

Hu, S., MuTHUSAMY, V., L1, G.;, AND JACOBSEN, H.-A. 2009. Transactional mobility in distributed
content-based publish/subscribe systems. In Proceedings of the 2009 IEEE International Con-
ference on Distributed Computing Systems (ICDCS 2009). Montreal, Canada.

ACM Transactions on Web, Vol. V, No. N, October 2009.

Distributed Architecture for Business Process Execution . 31

JAcOBSEN, H.-A. The PADRES project. http://padres.msrg.utoronto.ca.

KAzEMZADEH, R. S. AND JACOBSEN, H.-A. 2009. Reliable and highly available distributed pub-
lish/subscribe service. In Proceedings of 2009 IEEE International Symposium on Reliable
Distributed Systems (SRDS 2009). Niagara Falls, New York.

KuMmAR, V., ZHONGTANG, C., COOPER, B. F., EISENHAUER, G., SCHWAN, K., MANSOUR, M.,
SESHASAYEE, B., AND WIDENER, P. 2006. Implementing diverse messaging models with self-
managing properties using IFLOW. In Proceedings of the 2006 IEEE International Conference
on Autonomic Computing (ICAC 2006). Dublin, Ireland.

L1, G., CHEUNG, A., Hou, S., Hu, S., MUTHUSAMY, V., SHERAFAT, R., WUN, A., JACOBSEN,
H.-A., AND MANOVSKI, S. 2007. Historic data access in publish/subscribe. In Proceedings of
the 2007 International Conference on Distributed Event-based Systems (DEBS 2007). Toronto,
Canada.

L1, G. AND JACOBSEN, H.-A. 2005. Composite subscriptions in content-based publish/subscribe
systems. In Proceedings of the 2005 ACM/IFIP/USENIX International Conference on Mid-
dleware (Middleware 2005). Grenoble, France.

L1, G., MUTHUSAMY, V., AND JACOBSEN, H.-A. 2008. Adaptive content-based routing in general
overlay topologies. In Proceedings of the 2008 ACM/IFIP/USENIX International Conference
on Middleware (Middleware 2008). Leuven, Belgium.

MutH, P., WODTKE, D., WEISENFELS, J., DITTRICH, A. K., AND WEIKUM, G. 1998. From cen-
tralized workflow specification to distributed workflow execution. Journal of Intelligent Infor-
mation Systems 10, 2, 159-184.

MUTHUSAMY, V., JACOBSEN, H.-A., CHAU, T., CHAN, A.; AND COULTHARD, P. 2009. SLA-driven
business process management in SOA. In Proceedings of the 2009 Conference of the Center
for Advanced Studies on Collaborative Research (CASCON 2009). Toronto, Canada.

NANDA, M. G., CHANDRA, S., AND SARKAR, V. 2004. Decentralizing execution of composite
web services. In Proceedings of the 2004 ACM SIGPLAN Conference on Object-Oriented
Programming, Systems, Languages, and Applications (OOPSLA 2004). Vancouver, Canada.

PierzucH, P. R., LEDLIE, J., SHNEIDMAN, J., RoussopouLos, M., WELSH, M., AND SELTZER,
M. 1. 2006. Network-aware operator placement for stream-processing systems. In Proceedings
of the 2006 International Conference on Data Engineering (ICDE 2006). Atlanta, GA, USA.

WHITE, S. 2004. Introduction to BPMN. http://www.bpmn.org/Documents/Introduction’20to%
20BPMN . pdf.

WODTKE, D., WEISSENFELS, J., WEIKUM, G., AND DITTRICH, A. K. 1996. The mentor project:
Steps toward enterprise-wide workflow management. In Proceedings of the 1996 International
Conference on Data Engineering (ICDE 1996). New Orleans, Louisiana.

WUN, A. AND JACOBSEN, H.-A. 2007. A policy management framework for content-based pub-
lish/subscribe middleware. In Proceedings of the 2007 ACM/IFIP/USENIX International Con-
ference on Middleware (Middleware 2007). Springer-Verlag New York, Inc., Newport Beach,
California.

YEUNG CHEUNG, A. K. AND JACOBSEN, H.-A. 2006. Dynamic load balancing in distributed
content-based publish/subscribe. In Proceedings of the 2006 ACM/IFIP/USENIX Interna-
tional Conference on Middleware (Middleware 2006). Melbourne, Australia.

ACM Transactions on Web, Vol. V, No. N, October 2009.

