
A Distributed Shortest - Path Algorithm

Item Type text; Proceedings

Authors Humblet, Pierre A.

Publisher International Foundation for Telemetering

Journal International Telemetering Conference Proceedings

Rights Copyright © International Foundation for Telemetering

Download date 22/08/2022 22:48:15

Link to Item http://hdl.handle.net/10150/609766

http://hdl.handle.net/10150/609766

* This work was supported in part by the Advanced Research Projects Agency of the Department
of Defense under Grant N00014-75-C-1183 and in part by Codex Corporation, Newton, Mass.

A DISTRIBUTED SHORTEST - PATH ALGORITHM

Pierre A. Humblet*

Massachusetts Institute of Technology
Electronic Systems Laboratory

Room 35-203
Cambridge, Mass. 02139

ABSTRACT

The problem of routing in a data network is often treated by assigning traffic dependent
lengths to the links of the network and routing traffic from node i to node j along the
shortest path from i to j . We present a distributed algorithm in which the nodes cooperate
to find all shortest paths. It runs asynchronously in every node and does not require the
network topology, or even the number of nodes in the network, to be known a priori by the
nodes.

INTRODUCTION

The problem of routing in a computer network is often treated by assigning traffic
dependent lengths to the links of the network and routing the traffic from node i to node j
along the shortest path from i to j. If a central facility (like in TYMNET [1]) monitors the
traffic then the shortest paths can be computed at the central location by using classical
shortest path algorithms [2]. The difficulty arises when the traffic is measured locally, so
that each node knows only the lengths of its outgoing arcs. This is the case of the
ARPANET [3] which employs a distributed algorithm to estimate the shortest paths.
Errors in such estimates lead to inefficiencies, as explained in [3].

We present an algorithm in which the nodes cooperate to find all shortest paths. It works
well when the ratio of the longest to the smallest arc lengths is not too large, and can be
seen as a generalization of an algorithm due to Gallager [4] that finds paths containing as
few arcs as possible. Other distributed shortest path algorithms have been proposed
recently [5], [6], [7]. Comparisons between them awaits simulating them all on comparable
networks as worst case behavior is not a reliable indicator of the goodness of an algorithm.

We first describe precisely our model and assumptions. This is followed by an explanation
of the theoretical basis on which the algorithm rests, including sufficient conditions for its
correctness. We then describe the algorithm, explain how it can be optimized and give
simulation results.

Description of the Network

The network consists of a finite set N of N nodes, and a set A, included in N x N, of
directed arcs. To each arc (i,j) in A is assigned a number (real or 4) L((i,j)), called the
length of arc (i,j). We say that node i is upstream (downstream) of node j if (i,j),A
((j,i),A). A node can be both upstream and downstream of another node.

A chain is a finite sequence of nodes such that each node except the last is upstream of the
next node in the sequence. The length of a chain (i1, i2 , in) is defined as

. A loop is a chain that starts and ends with the same node. A path

is a chain that contains no loop.

We constraint the L(.)’s to be non-negative, and such that all loops have positive lengths.

D.B. Johnson [8] has noted that algorithms similar to the one given below work even if
negative lengths are allowed, but can then have very long running times.

Description of the Initial and Terminal States of Knowledge.

The desired terminal state of knowledge is for each node to know the first arc and the
length of a shortest path to each other node at finite distance.

The amount of initial knowledge that the algorithm given below requires to achieve this
goal is very small. If initially the computers at all nodes are eventually given a signal to
start, the identity of their nodes, the number of downstream nodes and the lengths of the
arcs to those nodes, then our objective will be achieved, but the algorithm will not
terminate!

In order for the algorithm to stop we require that either one of the following also be known
to each node i:

(a) the number of nodes located at finite distance from i

(b) an upperbound LMAX on the length of any arc of finite length.

From a data network point of view it is reasonable to assume that LMAX is given, as the
length of an arc is usually represented by a short binary number. In contrast, the number of
nodes located at finite distance is usually random, as nodes and links can fail. In the
version of the algorithm given below, we assume that LMAX is known.

THEORETICAL BASIS FOR THE ALGORITHM

It is easy to find the lengths and the second and terminal nodes of k + 1 shortest chains
starting at a node when knowing the lengths of its outgoing arcs and the lengths and
terminal nodes of k shortest chains starting at each of its downstream neighbors: if the set
of nodes downstream from node i is Ni, a k + 1st shortest chain starting at i has the form
(i,j), j,Ni, or (i,Cj), where Cj is one of k shortest chains outgoing from a node j,Ni.

Thus, if the number of chains of length less than x is finite for all x (a sufficient condition
for this is that all loops have positive length), then, by generating recursively all chains in
order of increasing length, we can find the shortest paths to all nodes located at finite
distance, and the first arcs of those paths. The algorithm can stop at a node when the
length of the longest known chain is greater than the length of the longest known path
+ LMAX, as the shortest paths to all nodes located at finite distance are then found.

One might wonder why we do not generate immediately all shortest paths. Unfortunately it
is not always possible to find k + 1 shortest paths starting at a node when knowing only
the lengths of its outgoing arcs and k shortest paths starting at each of its downstream
neighbors. However, it is possible to generate recursively a relatively small set of chains
containing all paths of interest, as follows.

At step 0, node i knows the distance to itself (0) and the length (L((i,j))) of

its shortest outgoing path. It transmits these facts to its upstream neighors. The algorithm
proceeds recursively:if at step k + 1 node i has received from all nodes j, Ni the lengths
and destinations of all shortest paths shorter than Rk

j , and node i has also received the Rk
j’s,

then it can compute (L((i,j))+ Rk
j). Moreover, let Nin be the set of

downstream neighbors of i that have transmitted the lengths djn of their shortest paths to
node n. Node i can compute (L((i,j)) + djn). If

then din is the length of the shortest path from i to n. Node i finds in din for all n,N with
non-empty Nin and transmits to its upstream neighors the lengths and destinations of all
shortest paths discovered during step k + 1, and also Rk

j
+1 .

It is easy to verify that if the length of all loops are positive, then as k grows, Rk
j becomes

greater than the length of any finite shortest path. The algorithm can stop when Rk
j has

grown by more than LMAX, without any new shortest path having been found.

The algorithm that follows implements what has just been outlined with one important
difference: it runs asynchronously in every node. A step at a node i is then the amount of
time between two successive transmissions of the Ri’s.

THE ALGORITHM

We first describe the computing resources and data structures at each node, and the
meaning of the symbols in relation with what was explained previously. We then define the
instruction BROADCAST that we will use later, give the initialization and main routines of
the algorithm, and show how it can be improved.

Description of the Computing Resources

Each node of the network contains a computer capable of adding, subtracting, storing and
retrieving numbers, and branching on positive and zero results. We will first assume that
the amount of available memory is infinite, but we will show later that at most Ni(2N + 1)
plus a few numbers need to be stored in node i, where Ni is the number of nodes that are
downstream of node i.

Computers at different nodes need not be synchronized, but we require that computers be
able to write into the memory of computers located upstream. In the context of data
networks, this would be done by having a node send a message to an upstream neighbor;
this is easiest when all links are duplex.

Data Structure at Node i

Every node i must have memory space for the following

a) the variables LMAX, Ni and LP. LMAX is defined as an upperbound on the length of an
arc of finite length and Ni is tne number of nodes downstream of node i. LP represents the
length of the longest known shortest path.
b) the numbers D(j) and the arc index BA(j) , j,N. When the algorithm terminates, D(j) is
set to the distance from i to j and BA(j) is set to the index of the first arc on a shortest path
to j, if D(j) < 4.
c) the numbers I((i,j)) and 0((i,j)) and the arrays Q((i,j),.) , (i,j),A. I((i,j)) and 0((i,j)) are
“write” and “read” pointers pointing to elements of Q((i,j),). Q((i,j),.) contains the

sequence of chain lengths and chain terminal nodes broadcast by node j, except that
Q((i,j),1) is initially set to zero.

The Instruction BROADCAST (B) at Node i

B is either a distance or a node label. In every node j such that (i,i),A:

B1 Q((j,i), I((j,i)) + 1)7 B

B2 I((j,i)) 7 I((j,i)) + 1

It is important that instruction B2 be executed after instruction B1 as can be seen by
examining lines M9 to M11 of the main routine below.

The Initialization Routine at Node i

LP 70
Q((i,j),1) 7 0 (i,j),A
I((i,j)) 7 1 (i,j),A
O((i,j)) 7 1 (i,j),A
D(j) 7 4 j,N
D(i) 7 0
BROADCAST (i)
IF (Ni = 0) then

begin
BROADCAST (4)
stop
end

go to main routine

The Main Routine at Node i

Minimization of the Communication and Storage Costs

In place of transmitting the lengths x in lines M8 and M17, it is enough to transmit the
difference between x and the sum of the differences previously transmitted. As such a
difference is not greater than LMAX, it can be represented by a short binary number. Also,
differences equal to zero need not be transmitted at all.

The amount of required memory space can be reduced by noting that if two adjacent
elements of Q((i,j),·) are lengths, the smallest one can be discarded. Thus Q((i,j),·) need to
have size 2N only, as it will contain at most N destinations and N lengths. Moreover, the
0((i,j))-1 first elements of Q((i,j),·) can be discarded, so that typically Q((i,j),·) contains
much less than 2N elements and dynamic storage schemes could be used.

SIMULATION RESULTS

Three quantities are important in distributed algorithms: the amount of computation at each
node, the amount of communication (number of bits transmitted) on each link, and the time
to completion. This last quantity is often dominated by the time it takes to exchange
messages between nodes. Thus an algorithm in which many short messages are exchanged

will generally take more time than an algorithm in which few long messages are
exchanged, even if their communication costs are equal.

If the smallest arc length is 1, and the largest is LMAX, it is easy to see that the amount of
computation at node i is no more than of the order of Ni . N.LMAX. and the amount of
communication per link is no more than of the order of N log(N) + N.LMAX. log(LMAX)
bits. However, as with other algorithms of this type [10], the typical behavior is much less.

In order to get rough estimates of performances, we have simulated the algorithm under the
following conditions. We used the topology of the ARPANET at a time when it had 55
nodes and 69 duplex links [9, Fig. 1]. We assigned to each arc independently a random
integer length uniformly distributed between 1 and LMAX. We optimized the output
sequence as explained earlier, and divided it into packets, including in a packet the output
produced between two “waits” (line M9). The time of transmission of a packet was chosen
as deterministic (1 time unit) in one case, and randomly chosen from an exponential
distribution of mean 1, truncated at 10, in another case. The algorithm was initiated at a
randomly selected node, then each node signaled to its neighbors that it was time to start.
Results are summarized below as a function of LMAX. Although their sensitivity to the
various assumptions is unknown, the number of destinations and lengths transmitted is
encouragingly small, considering that the exact shortest paths are obtained. More precise
results await the simulation of a complete network (including the data traffic, and having
the arc lengths depend on the measured traffic) or the implementation of the algorithm in a
working network.

LMAX Average Number
of packets
transmitted per
link

Average Number
of destinations
transmitted per
link

Average Number
of lengths
transmitted per
link

Time to Completion
Deterministic Random
Transmission Transmission
Times Times

1 11.8 55 10.6 20 35.9

10 19.5 55 39.1 36.5 63.4

100 29.7 55 75.4 64.5 76.0

Communications costs are not significantly different for deterministic and random
transmission times, we give only their averages.

REFERENCES

[1] Schwartz, Mischa, et al, “Terminal-Oriented Computer-Communication Networks,”
Proceedings of the IEEE, Vol. 60, November 1972, pp. 1408-1423.

[2] Lawler, Eugene, Combinatorial Optimization; Networks and Matroids, Holt,
Rinehart and Winston, New York, 1976.

[3] Kleinrock, Leonard and H. Opderbeck, “Throughput in the ARPANET-Protocols
and Measurement,” IEEE Trans. Commun., Vol.COM-25, January 1977,
pp 95-104.

[4] Gallager, Robert, Personal Communication, probably also in the folkart.

[5] Segall, Adrian, et al., “A Recoverable Protocol for Loop-free Distributed Routing,”
Proceedings of the International Conference on Communications, Toronto, Canada,
1978.

[6] Friedman, Daniel, “Communication Complexity of Distributed Shortest Path
Algorithms M.S. Thesis in preparation, Massachusetts Institute of Technology,
Cambridge, Mass.

[7] Gallager, Robert, Personal Communication.

[8]- Johnson, Donald, “A Note on Dijkstra’s Shortest Path Algorithm”, J. ACM, Vol.
20, 1973, pp. 385-388.

[9] Gerla, Mario and L. Kleinrock, “On the Topological Design of Distributed
Computer-Networks”, IEEE Trans. Commun., Vol. COM-25, January 1977,
pp. 48,60.

[10] Gilsinn, J. and C. Witzgall, “A Performance Comparison of Labeling Algorithms for
Calculating Shortest Path Trees”, NBS Technical Note 772, U.S. Department of
Commerce, 1973.

