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Abstract—Large-scale optimization with high dimensionality
and high computational cost becomes ubiquitous nowadays. To
tackle such challenging problems efficiently, devising distributed
evolutionary computation algorithms is imperative. To this end,
this paper proposes a distributed swarm optimizer based on
a special master–slave model. Specifically, in this distributed
optimizer, the master is mainly responsible for communication
with slaves, while each slave iterates a swarm to traverse the
solution space. An asynchronous and adaptive communication
strategy based on the request–response mechanism is especially
devised to let the slaves communicate with the master efficiently.
Particularly, the communication between the master and each
slave is adaptively triggered during the iteration. To aid the
slaves to search the space efficiently, an elite-guided learning
strategy is especially designed via utilizing elite particles in the
current swarm and historically best solutions found by different
slaves to guide the update of particles. Together, this distributed
optimizer asynchronously iterates multiple swarms to collabora-
tively seek the optimum in parallel. Extensive experiments on
a widely used large-scale benchmark set substantiate that the
distributed optimizer could: 1) achieve competitive effectiveness
in terms of solution quality as compared to the state-of-the-art
large-scale methods; 2) accelerate the execution of the algorithm
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in comparison with the sequential one and obtain almost linear
speedup as the number of cores increases; and 3) preserve a good
scalability to solve higher dimensional problems.

Index Terms—Distributed evolutionary algorithms, elite-
guided learning (EGL), high-dimensional problems, large-scale
optimization, particle swarm optimization (PSO).

I. INTRODUCTION

L
ARGE-SCALE optimization with high dimensionality

and high computational cost has become more and more

common in many research domains and engineering [1]–[4]

in the era of big data [5]. Faced with such difficult prob-

lems, traditional population-based metaheuristic algorithms

executed in serial would take hours or even days to find

the optimum [6]. This mainly results from two aspects. On

the one hand, due to the high time complexity of these

problems, it takes a long time to evaluate the fitness of an

individual. On the other hand, the solution space of these prob-

lems increases exponentially [7] and, thus, to traverse such

vast space, population-based metaheuristics, such as particle

swarm optimization (PSO) algorithms [8]–[10] and differen-

tial evolution (DE) algorithms [11]–[13], need to consume a

considerably large number of fitness evaluations to achieve

satisfactory performance. With these two challenges, the exe-

cution time of sequential metaheuristics is prolonged rapidly

when dealing with such problems and such time may even

become unbearable [14].

Fortunately, population-based metaheuristics generally pre-

serve inherent parallelism and, thus, developing parallel

and distributed metaheuristics is an efficient way to tackle

optimization problems with high computational cost. Recently,

this research direction has attracted increasing attention in

evolutionary computation community, leading to the develop-

ment of parallel metaheuristics [6]. However, most existing

studies directly extended traditional sequential metaheuris-

tics designed for low-dimensional problems in distributed

environments [6]. Faced with high-dimensional problems, tra-

ditional metaheuristics dramatically lose their effectiveness

and efficiency [15] and, thus, it is not effective to directly

employ existing distributed metaheuristics to cope with high-

dimensional problems. Consequently, to locate the optimum

in acceptable time, it is significant to develop distributed

metaheuristics with effective update mechanisms and effi-

cient communication schemes, which are suitable to solve

large-scale optimization problems.
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In the literature, to cope with large-scale optimization effec-

tively, many novel evolution mechanisms have been devised.

Broadly, these evolution mechanisms can be classified into

two categories [15]: 1) cooperative coevolution (CC) mecha-

nisms [16]–[18] and 2) novel update mechanisms for tradi-

tional metaheuristics [8]–[10]. The former aim to decompose

a high-dimensional problem into several smaller subprob-

lems and then optimize each subproblem separately [16].

In contrast, the latter still optimize all dimensions together

like traditional metaheuristics [19], [20], but incorporate new

update strategies to preserve high diversity [9], [10].

Though most existing evolution mechanisms have

shown promising performance in coping with large-scale

optimization, they are especially designed for sequential

environments but not for distributed environments. Despite

that some evolution mechanisms can be adapted to distributed

environments based on existing distributed models, they are

still confronted with many limitations. For instance, a few

studies have intuitively adapted some cooperative coevolu-

tionary algorithms (CCEAs) to distributed computing [21].

However, they are not capable of solving problems with

many interacting variables effectively (e.g., fully nonsep-

arable problems). Besides, a few studies have extended

some metaheuristics optimizing all variables together to dis-

tributed environments based on the master–slave distributed

model [6]. Nevertheless, such an adaptation would cause

a huge communication burden as will be demonstrated in the

experiments in Section IV.

Consequently, developing distributed metaheuristics with

effective evolution mechanisms and efficient communication

for large-scale optimization still deserves further investigation.

To this end, this paper proposes a distributed swarm optimizer

with a new update scheme and an adaptive communication

strategy to solve large-scale optimization problems efficiently.

Specifically, we adopt a special master–slave model, where

the master is responsible for the communication with the

slaves, while each slave iterates a swarm to traverse the high-

dimensional space. To let the slaves communicate with the

master efficiently, an adaptive communication strategy based

on the request–response mechanism is specifically designed.

In particular, the communication between the master and each

slave is triggered adaptively according to the search state of

the associated swarm during the iteration. By this means,

each slave communicates with the master independently and

asynchronously and, thus, little waiting time exists during the

communication between the master and the slaves.

Besides, to aid the swarms in the slaves to traverse the high-

dimensional space efficiently in the distributed environment,

we especially design an elite-guided learning (EGL) strategy,

which utilizes elite particles in the current swarm and his-

torically best solutions found by different slaves to guide the

update of particles. In this way, high swarm diversity could be

preserved to let particles escape from local areas during the

iteration.

Altogether, we name this distributed optimizer as distributed

elite-guided learning swarm optimizer (DEGLSO). With the

above two strategies, this distributed optimizer asynchronously

iterates multiple swarms in parallel to seek the optimum of

a high-dimensional problem. To verify its effectiveness and

efficiency, experiments are conducted on the CEC’2013 large-

scale benchmark set [22] to evaluate its performance in terms

of solution quality, execution time, speedup, and scalability

via comparing with state-of-the-art large-scale metaheuristics.

The rest of this paper is organized as follows. Section II

reviews the related metaheuristics. Then, the devised dis-

tributed swarm optimizer is elucidated in Section III. In

Section IV, a series of experiments is conducted to verify

its effectiveness and efficiency. At last, Section V concludes

this paper.

II. RELATED WORK

A. Parallel and Distributed Metaheuristics

In the literature, many parallel and distributed metaheuris-

tics have been developed to tackle optimization problems

with high time complexity based on different distributed

models [6]. Broadly, distributed models used in exist-

ing distributed metaheuristics can be classified into four

main categories [6]: 1) master–slave models [23]; 2) island

models [24], [25]; 3) cellular models [26], [27]; and 4) hier-

archical models [28].

The master–slave model maintains only one master pro-

cess but several slave processes [23]. Originally, the master

is only responsible for the update of the population, while

the slaves are to evaluate the fitness of individuals. After

updating the population, the master sends several individ-

uals to each slave, and the slaves compute the fitness of

the allocated individuals and then send the calculated fitness

back to the master. To improve the efficiency of this model,

researchers extended the original model to a coarse-grained

one [29], where each slave iterates a subpopulation and sends

the global best position found so far to the master, while the

master receives the global best positions from all slaves, deter-

mines the best one and then sends it to all slaves. As for

the communication between the master and the slaves, most

master–slave-based parallel metaheuristics adopt synchronous

communication schemes [6]. A few of this kind of distributed

metaheuristics [30] also adopt asynchronous communication

strategies.

The island model [24], [25] is a spatially distributed model.

In this model, each island maintains a subpopulation and

communicates with each other using a certain migration mech-

anism. Particularly, this model seriously relies on the adopted

migration mechanism, including the migration frequency, the

selection of the immigrants, etc. [31]. Except for the migra-

tion mechanism, this distributed model is also very sensi-

tive to the topologies that arrange the islands [6]. In the

original island model, islands are arranged by a complete

graph, which would cause a high communication burden.

Recently, researchers have utilized network topologies, such

as ring and torus, to arrange islands to improve the effi-

ciency of this model [32], [33]. As for the communication

between islands, both synchronous and asynchronous com-

munication strategies have been utilized in the literature. For

synchronous island models, the global best solution found by

each island is exchanged periodically at a specific interval of
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generations [33]. For asynchronous ones, each island could

receive information sent from other islands as soon as it is

ready [34].

The cellular model [26], [27] maintains only one population

but arranges individuals onto grids with one grid occupy-

ing one or several individuals. In this model, individuals

are updated by their corresponding neighbors determined by

the topology that arranges individuals onto grids. In the

literature, a lot of effort has been devoted to develop cellular-

based distributed metaheuristics with different topologies, such

as linear topology [35], toroid topology [36], and regular

lattices [26]. Similar to island models, both synchronous and

asynchronous communication strategies have been utilized in

this model [37].

The hierarchical model [28] generally combines two or

more distributed models stated above hierarchically, so that the

advantages of different models can be inherited. Three kinds

of hybrids exist. The first is the island–master–slave hybrid

model [38], where the first layer adopts the island model to

evolve multiple subpopulations and the second layer utilizes

the master–slave model operated on each island in the first

layer. Another is the island–cellular hybrid model [28], which

is similar to the first one. The only difference is that the second

layer takes advantage of the cellular model and thus individu-

als in each island in the first layer are arranged onto the grids

of the cellular model. The other is the island–island hybrid

model [39], where the second layer uses another island model

and thus the population in each island in the first layer is fur-

ther divided into subpopulations evolved by the islands in the

second layer.

Based on these distributed models, many distributed meta-

heuristics have been designed via incorporating different

traditional metaheuristics [6]. However, most of them only

remain efficient and effective in low-dimensional space. When

handling high-dimensional problems, their effectiveness and

efficiency dramatically degrade [15].

B. Large-Scale Optimization

In the literature, the evolution mechanisms for large-scale

optimization mainly lie in the two following aspects [15].

1) Cooperative Coevolution Mechanisms: CCEAs uti-

lize the divide-and-conquer method to partition a high-

dimensional problem into several smaller subproblems and

then optimize each subproblem separately [16], [40]. Since

interacted variables generally interfere with each other during

the optimization, the decomposition strategy has been proven

to play a crucial role in CCEAs [16], [41], [42].

Theoretically, the ideal decomposition strategy is to group

interdependent variables into the same subproblem. However,

in most cases, the prior knowledge about variable interdepen-

dency in an optimization problem is not available. As a result,

current research on CCEAs mainly concentrates on devising

effective decomposition strategies to divide high-dimensional

problems as accurately as possible. Broadly, existing decom-

position strategies can be classified into two categories [15]:

1) dynamic decomposition strategies [42]–[44] and 2) static

decomposition strategies [16], [45].

Dynamic decomposition strategies are usually exe-

cuted in each generation along with optimizers and,

thus, the variable decomposition may be different in dif-

ferent generations [15]. In the literature, two kinds of

dynamic decomposition strategies exist, namely random-

based decomposition [17], [42], [46] and learning-based

decomposition [44], [47], [48]. The former strategies ran-

domly divide variables into groups without taking variable

interaction into consideration [17], [42], [46] and thus

they perform poorly on problems with more than two

interdependent variables. The latter strategies make use

of evolutionary information to learn variable interdepen-

dency and then divide variables into groups [44], [47]. For

instance, in [47], an adaptive variable partition technique was

developed based on the correlation coefficients of the top half

individuals.

Unlike dynamic decomposition, static decomposition is

executed before optimization based on variable interaction

detection [16] and in the optimization stage, the variable

decomposition is fixed. One typical static grouping approach

is the differential grouping strategy (DG) [16], which utilizes

partial difference between functional values to detect variable

interdependency. However, this approach can only detect direct

linkages between variables. To detect direct and indirect vari-

able dependency simultaneously, extended DG (XDG) [49]

and global DG (GDG) [45] were further developed based

on DG. Though the above DG variants could partition vari-

ables into groups satisfactorily, they cost up to O(D2) (D is

the dimension size) fitness evaluations in the decomposition

stage. Thus, if only given limited total fitness evaluations,

the number of fitness evaluations used for optimization is

greatly reduced. To alleviate this predicament, many attempts

have been made to reduce the cost of fitness evaluations

in the decomposition stage. For instance, a recursive DG

method (RDG) [50] was developed based on the idea of binary

search. Particularly, it reduces the used fitness evaluations from

O(D2) to O(Dlog(D)).

2) Novel Update Mechanisms for Traditional

Metaheuristics: In this direction, plenty of novel update

schemes have been developed to aid traditional metaheuristics

to preserve high search diversity during the optimization,

so that local traps can be avoided. In this section, we only

review representative variants of PSO and DE in tackling

large-scale optimization, because they are the most developed

ones in this direction [15].

With respect to PSO, in the classical update scheme, each

particle is guided by its own experience and the social

experience of the swarm with the following update formula:

vd
i ← wvd

i + c1r1

(

pbestdi − xd
i

)

+ c2r2

(

gbestd − xd
i

)

(1)

xd
i ← xd

i + vd
i (2)

where xi = [x1
i , . . . , xd

i , . . . , xD
i ] and vi = [v1

i , . . . , vd
i , . . . , vD

i ]

are the position and the velocity of the ith parti-

cle, respectively. D is the dimension size. pbesti =

[pbest1i , . . . , pbestdi , . . . , pbestDi ] and gbest = [gbest1, . . . ,

gbestd, . . . , gbestD] are the personal best position of the ith

particle and the global best position found by the swarm,
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respectively. As for the parameters, w is the inertia weight,

c1 and c2 are two acceleration coefficients, and r1 as well

as r2 is uniformly randomized within [0, 1]. When solving

large-scale optimization problems, this classic update scheme

usually loses its effectiveness. Oldewage [51] found that the

velocity clamping and the parameter settings in (1) have great

influence on PSO in solving high-dimensional problems.

However, compared with parameters, the update strategy

generally plays a more important role in PSO [10]. Therefore,

to adapt PSO to solve large-scale optimization problems, many

researchers have developed a variety of novel update schemes.

For instance, Zhao et al. [52] developed a dynamic multiswarm

PSO along with the quasi-Newton method as the local search

method, leading to DMS-L-PSO. Specifically, this optimizer

randomly partitions the whole swarm into smaller subswarms

in each generation. Hsieh et al. [53] proposed an efficient pop-

ulation utilization strategy for PSO, leading to EPUS-PSO. In

particular, a population size managing approach and a solution

sharing approach were devised to improve the search abil-

ities of particles in EPUS-PSO. García-Nieto and Alba [54]

devised a velocity modulation method and a restarting mech-

anism for PSO. With the aid of these two techniques, the

developed PSO variant could effectively avoid premature con-

vergence and redirect particles to promising areas in the search

space. A multiswarm PSO based on a competition scheme was

devised in [55]. In this PSO variant, two swarms are main-

tained and particles in the two swarms compete with each

other. Then, each loser is updated via a convergence strategy,

while each winner is updated by a mutation strategy.

The above studies mainly adopt multipopulation strategies

or restarting mechanisms to promote the search diversity of

PSO, so that falling into local traps could be avoided. In par-

ticular, they all utilize the historically best positions, such as

pbest, nbest, and gbest, to update particles as the classical

PSO [56], [57]. Nevertheless, these best positions may remain

unchanged for many generations during the iteration and, thus,

have great limitations in diversity maintenance [10].

To further promote the diversity of the swarm, some

researchers introduced new exemplars to replace pbest, nbest,

or gbest to guide the update of particles. For instance,

Cheng and Jin [10] developed a competitive swarm opti-

mizer (CSO). In this optimizer, particles are randomly

arranged into pairs and the paired particles compete with each

other. Then, the loser is guided by the winner, while the winner

is not updated. In particular, the loser is updated as follows:

vd
l ← r1vd

l + r2

(

xd
w − xd

l

)

+ φr3

(

x̄d − xd
l

)

(3)

xd
l ← xd

l + vd
l (4)

where xl = [x1
l , . . . , xd

l , . . . , xD
l ] and vl = [v1

l , . . . , vd
l , . . . , vD

l ]

are the position and the velocity of the loser, respectively.

xw = [x1
w, . . . , xd

w, . . . , xD
w] is the position of the correspond-

ing winner of the loser and x̄ = [x̄1, . . . , x̄d, . . . , x̄D] is the

mean position of the whole swarm. r1, r2, and r3 are three

random numbers uniformly generated within [0, 1]. φ is

a control parameter within [0, 1], which is in charge of the

influence of x̄.

In addition, in [58], a level-based learning swarm opti-

mizer (LLSO) was proposed, which shares the similar update

formula as CSO in (3). Different from CSO, particles in LLSO

are divided into different levels according to their fitness values

and then the ones in lower levels are guided by two superior

particles randomly selected from two different higher lev-

els. Since particles are updated generation by generation, the

exemplars of updated particles in both CSO and LLSO are dif-

ferent in different generations. Therefore, both of them could

preserve high diversity during the optimization, leading to their

promising performance in handling large-scale optimization.

For DE, various novel mutation schemes have been designed

to adapt DE to handle high-dimensional problems. For exam-

ple, Wang et al. devised a generalized opposition-based

learning strategy and hybridized it into the classical DE

to update the population, leading to a generalized opposi-

tion DE (GODE) [13]. Weber et al. [12] developed a shuffle

or update parallel DE (SOUPDE) via dividing individu-

als into subpopulations randomly with a probability during

the optimization. Zhao et al. [11] hybridized the self-adaptive

strategy in JADE [59] and a modified multitrajectory search

algorithm to solve large-scale optimization problems, leading

to a self-adaptive DE named SaDE-MMTS. In [60], an elite

opposition-based DE (EOBDE) was devised by employing the

opposite learning strategy to some selected elites with a cer-

tain probability. Ali et al. [61] first divided the population into

independent subgroups, and then utilized different mutation

strategies to update the subgroups. With this update scheme,

the population diversity of DE could be largely boosted.

Though the above methods have shown good performance

in solving large-scale optimization problems, they are designed

for serial environments, but not for distributed environments.

A few studies intuitively adapted some large-scale metaheuris-

tics to distributed environments [21], using the aforementioned

distributed models [6]. However, such adaption would cause

a huge communication burden. To alleviate this predicament,

this paper proposes a distributed swarm optimizer (named

DEGLSO) with a new update scheme and an adaptive com-

munication strategy to deal with large-scale optimization.

III. DISTRIBUTED SWARM OPTIMIZER

In this section, the proposed distributed swarm optimizer

DEGLSO is elaborated in detail. Specifically, we first elu-

cidate its framework and the EGL strategy in Section III-A.

Section III-B states the adaptive communication strategy

designed for efficient information exchange. In Section III-C,

the implementation of DEGLSO is presented. At last, to make

comparisons, the serial version of DEGLSO, named SEGLSO,

is presented in Section III-D.

A. DEGLSO

1) Framework: The framework of DEGLSO is presented

in Fig. 1. In this distributed optimizer, a special master–slave

model is adopted. Particularly, in this model, only one mas-

ter process exists, which is mainly in charge of information
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exchange, and multiple slave processes, each of which iter-

ates a small swarm, cooperate with each other to search the

high-dimensional space.

Concretely, the master maintains an archive A to store the

global best positions found by the slaves. It does nothing but

takes charge of information exchange among slaves. In terms

of the slaves, each of them iterates a swarm based on the

proposed EGL to be described next to find the optimum. In

this paper, the archive size in the master and the swarm size

in the slaves are set the same and denoted as NP. The details

of the master and the slaves are elaborated as follows.

1) As for the master, after it receives the gbests sent from

the slaves, it places them into the archive A. Once A

is full, a random individual is first selected from the

archive and is then compared with the received one. If

the received individual is better, it replaces the selected

one; otherwise, it is discarded. Such a strategy not only

facilitates high diversity maintenance, but also takes

little time in updating A, which is beneficial for reduc-

ing the computational cost of the master. It should be

mentioned that instead of only using the best among

these gbests sent from the slaves like in [29], an archive

of gbests from the slaves are maintained for the sake

of high diversity preservation. Specifically, by means of

preserving multiple gbests sent from slaves, the mas-

ter could send different information to different slaves,

and thus affords diverse information exchange between

slaves. In this manner, the slaves could avoid receiving

uniform information and thus they have great chance to

search the high-dimensional space in different directions,

avoiding converging to the same area. The usefulness

of the archive A in the master will be verified in the

experiments in Section III in the supplementary material.

2) As for the slaves, each of them also maintains an archive

P, whose size is set to M, to store the received individ-

uals from the master. Once the archive of a slave is

full, the received individual is compared with the worst

one in P. If the received individual is better, it replaces

the worst one; otherwise, it is abandoned. Such a main-

tenance mechanism could ensure the archive of each

slave always keeps the most promising individuals found

historically by the slaves, which may facilitate fast con-

vergence. It should be mentioned that instead of using

the received individual from the master to replace the

worst one in the swarm in the corresponding slave like

in [29], an archive is utilized to store the received indi-

viduals and then is used in EGL to update the swarm.

In this way, different exchanged information from other

slaves could be preserved to aid the search of the swarm.

Therefore, high diversity in exemplar selection could be

maintained and high search diversity could be preserved

during the optimization. Experiments in Section III in

the supplementary material will verify the usefulness of

the archives in the slaves.

Remark 1: It should be noticed that the archive tech-

nique has been widely employed to assist metaheuristics to

tackle various optimization problems, like single-objective

optimization problems [59], [62]; dynamic optimization

Fig. 1. Framework of DEGLSO.

problems [63], [64]; and multiobjective optimization

problems [65], [66]. In single-objective optimization, an

archive is generally utilized to store promising individuals

during the optimization [59], [62]. By taking advantage of the

information stored in the archive, either the diversity or the

convergence of metaheuristics could be enhanced [59], [62].

In dynamic optimization, an archive is usually maintained

to store the best solutions found when the environment

change occurs [63], [64]. The archive is utilized mainly to

assist metaheuristics to react to the change of the environ-

ment quickly [63], [64]. In multiobjective optimization, an

archive is usually maintained to store the nondominated

solutions [65], [66]. In some cases, these archives are also

updated by a certain multiobjective metaheuristic [65], [66].

Different from existing archive techniques, this paper

maintains multiple archives in the distributed environment.

Specifically, one archive is maintained in the master to store

the gbests found so far by all slaves, and one archive is main-

tained in each slave to store the introduced information from

the master. The archive in the master is mainly utilized to

realize the communication between slaves, and it provides

diverse information exchange between slaves, which is bene-

ficial for the slaves to avoid converging to the same area. The

archive in each slave is mainly for preserving diverse promis-

ing information introduced from the master, and it provides

extra diverse exemplar selection for the update of particles in

EGL. Overall, we can see that these two kinds of archives

are mainly utilized to promote the diversity of the distributed

swarm optimizer. The effectiveness of these two kinds of

archives will be verified in Section III in the supplementary

material.

2) Elite-Guided Learning: To help the swarms in the slaves

traverse the high-dimensional space efficiently in the dis-

tributed environment, we devise an EGL strategy to guide the

update of particles in each slave.

According to Darwin’s “survival-of-the-fittest”

principle [67], [68], the top fittest individuals, namely

elites, generally preserve greater chances to survive and more

valuable evolutionary information than others. Inspired from

this, we divide the swarm in each slave into two separate
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sets: 1) the elite set ES containing M elites in the swarm

and 2) the nonelite set NES consisting of the rest (NP-M)

particles. Since the elites in ES are the best particles in the

current swarm, they preserve the most useful information to

guide the swarm. Thus, they directly enter the next generation.

This matches Darwin’s “survival-of-the-fittest” principle, and

is helpful for protecting promising information from being

lost or weakened during the optimization. Therefore, only the

(NP-M) particles in NES are updated in each generation.

Since the elites in ES preserve the most useful information

to update the swarm, they can be utilized to guide the update of

the particles in NES. Therefore, the update of these particles is

vd
i ← r1vd

i + r2

(

xd
elrand

− xd
i

)

+ φr3

(

x̂d
ES − xd

i

)

(5)

xd
i ← xd

i + vd
i (6)

where xi = [x1
i , . . . , xd

i , . . . , xD
i ] and vi = [v1

i , . . . , vd
i , . . . , vD

i ]

are the position and velocity of the ith particle in NES

respectively; xelrand
= [x1

elrand
, . . . , xd

elrand
, . . . , xD

elrand
] is an elite

randomly selected from ES ∪ P, and is better than xi; and

x̂ES = [x̂1
ES, . . . , x̂d

ES, . . . , x̂D
ES] is the means position of the

elites and is computed as follows:

x̂d
ES =

1

M

M
∑

j=1

xd
ESj

(7)

where xESj = [x1
ESj

, . . . , xd
ESj

, . . . , xD
ESj

] is the jth elite in ES,

r1, r2, and r3 are three uniformly generated numbers in [0, 1],

φ in charge of the influence of x̂ES is a control parameter in

[0, 1].

In (5), the following techniques should deserve attention.

1) The first exemplar xelrand
in (5) is randomly selected from

ES ∪ P not just from ES. For one thing, with this tech-

nique, the useful information from other slaves, which

is stored in P, could be made full use of to update the

swarm in the slave. For another, 2M candidate exemplars

could be potentially utilized to guide the update of these

particles, and thus high diversity may be maintained.

2) The selected exemplar xelrand
should be better than xi.

By this means, each xi in NES is always guided by

better particles, and thus could approach to promising

areas fast, which facilitates fast convergence. Therefore,

if the selected xelrand
is worse than xi (which only may

occur when the selected exemplar comes from P), a new

xelrand
is randomly selected from ES∪P until it is better

than xi.

3) As for another exemplar in (5), the particles in NES

share the social knowledge via the mean position of the

elites in ES. Since the elites in ES in two successive

generations may be different, the mean position x̂ES may

be different in different generations. This is beneficial for

diversity preservation. Besides, the mean position x̂ES of

these elites can be a good distribution estimation of the

swarm in the current generation. Utilizing it as the social

exemplar is beneficial for finding promising areas fast.

In summary, the devised EGL can potentially let DEGLSO

compromise diversity maintenance and fast convergence well

to search the high-dimensional space. Such a good compro-

mise will be verified in Section III in the supplementary

material.

As for the parameters, only two extra parameters (the num-

ber of elites M and the control parameter φ) are introduced

in DEGLSO. Taking deep insight into the influence of φ on

DEGLSO, we find that a large value of φ could promote the

influence of x̂ES on the update of particles, which is bene-

ficial for preventing the updated particle from being greedily

attracted by the selected elite xelrand
. Such prevention is helpful

when xelrand
falls into local areas. Nevertheless, a small value

of φ could weaken the aforementioned prevention, which is

profitable when xelrand
is close to the globally optimal areas

and thus exploitation is strongly needed. Together, we can see

that a large φ is preferred at the early optimization stages when

the swarm explores the search space and a small φ is needed

at the late stages when the swarm exploits the searching areas.

Bearing the above consideration in mind and inspired from

the linear adaption of the inertia weight in PSO [56], we

design a linear adjustment strategy for φ, which is defined

as follows:

φg = 0.5

(

1 −
g

Gmax

)

(8)

where g is the current generation index and Gmax is the

maximal number of generations.

Overall, we can see that since the elites in ES directly

enter the next generation, the most promising information is

preserved. After the particles in NES are updated, new bet-

ter particles could become elites and enter ES, while those

obsolete “elites” in the last generation have to walk out of ES

and go into NES and then will be updated. As a result, elites

in ES become better and better during the iteration, and thus

they may converge to the optimum of the optimized problem.

Remark 2: Compared with the classical PSO (1), the

recently proposed CSO (3) and LLSO, the proposed EGL (5)

differs from them in the following four aspects.

First, from the viewpoint of the frameworks of these PSO

variants, EGL, CSO, and LLSO are totally different from the

classical PSO. Instead of using historically best positions to

guide the update of the swarm in PSO, the three PSO vari-

ants directly utilize particles in the current swarm to guide

the update of the swarm. Specifically, in CSO, particles are

randomly paired together and then the loser in the paired par-

ticles is guided by the winner, while the winner is not updated

and directly enters the next generation. In LLSO, particles are

divided into multiple levels according to their fitness. Then,

particles in lower levels are guided by those from higher levels.

In DEGLSO, particles in each slave are divided into two sep-

arate sets (namely the elite set ES and the nonelite set NES)

according to their fitness. Besides, only particles in NES are

updated by learning from those in ES and the solutions stored

in the archive P, which are introduced from the master.

Second, as for the first exemplar, DEGLSO, CSO, and

LLSO utilize superior particles in the current swarm to update

inferior ones, while the classical PSO utilizes the personal best

position (pbest) to guide the update of one particle. On the one
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side, superior particles may be different in different genera-

tions; on the other side, the first exemplar guiding the update of

one inferior particle is randomly selected from superior ones.

Thus, the selection diversity of the first exemplar in DEGLSO,

CSO, and LLSO is much higher than that in PSO, because

pbest may remain unchanged for many generations especially

in the later stage of the optimization. Compared with CSO

and LLSO, DEGLSO further promotes the selection diversity

of the first exemplar via selecting it from the archive P in each

slave, which preserves useful information collected from other

slaves.

Third, with respect to the second exemplar, both DEGLSO

and CSO share the social knowledge via mean positions of

either the whole population (CSO) or the elites (DEGLSO),

while LLSO still adopts superior particles in the current swarm

to update particles. Nevertheless, the classical PSO shares the

social knowledge via the global best position (gbest) found so

far by the swarm. Unlike gbest, which may remain unchanged

in many generations, the mean positions in both DEGLSO and

CSO and superior particles in LLSO may be different in dif-

ferent generations due to the update of particles. Therefore,

the second exemplar in DEGLSO, CSO, and LLSO could

assist them to maintain higher diversity than the classical

PSO. Unlike CSO and LLSO, DEGLSO utilizes the mean

position of the elites in the current swarm as the second exem-

plar. Particularly, this mean position can be taken as a good

distribution estimation of the current swarm. Utilizing it as the

second exemplar may be beneficial for the optimizer to find

promising areas fast.

Fourth, the proposed EGL in (5) is specifically designed

for distributed environments. In particular, the division of the

swarm into ES and NES makes it possible to devise an adap-

tive communication strategy for efficient information exchange

between slaves, which will be introduced in the next section.

Remark 3: It deserves attention that the elite-based update

mechanisms have been widely utilized in the literature.

Broadly speaking, two kinds of elite-based update mecha-

nisms exist in optimizing single-objective problems. One is

the explicit elite-guided update, like in JADE [59] and the

other is the implicit elite-guided update, like in estimation of

distribution algorithms (EDAs) [69]. In the former, the top p

best individuals (namely elites) in the population are utilized to

generate offspring, while in the latter, the elites are generally

utilized to estimate the distribution of the population and then

offspring are generated based on the estimated distribution.

The proposed EGL belongs to the former kind of elite-based

update. However, the differences between JADE [59] and the

proposed EGL are twofold. First, in EGL, the elites are not

updated, but directly enter the next generation to protect use-

ful information from being lost or weakened. Nevertheless, in

JADE, the elites are also updated. Second, in DEGLSO, the

elite set ES is further utilized to devise an adaptive commu-

nication strategy for efficient information exchange between

slaves, which will be introduced in the next section.

B. Adaptive Communication

In distributed models, one of the most important compo-

nents is the communication strategy, which has a significant

effect on the performance of distributed metaheuristics with

respect to both the solution quality and the execution time [6].

In particular, for the master–slave distributed model, a good

communication strategy should appropriately provide solutions

to two issues: 1) when the slaves make communication with

the master and 2) what the slaves exchange with the master.

To make the slaves communicate with the master efficiently,

we devise an adaptive communication strategy, which could

afford proper solutions to the above two issues. As shown in

Fig. 1, there are two kinds of information exchange between

the master and the slaves in DEGLSO: 1) each slave sends

gbest found by the associated swarm to the master, so that

different gbests found by different slaves can be preserved

in the archive (A) in the master and then can be introduced

to the slaves in the next kind of information exchange and

2) each slave introduces an individual from the master to aid

the related swarm to update.

In terms of the former exchange, to save communication

time, first, we let each slave communicate with the master

independently. Then, the delivery of gbest to the master for

each slave is triggered when gbest found by the related swarm

is updated. In this way, this kind of communication is asyn-

chronous and triggered adaptively during the optimization.

Therefore, much waiting time could be saved.

With respect to the latter, to save communication time, we

also design an asynchronous communication strategy based on

the request–response mechanism. First, for each slave, when

overlap exists in the elites of the associated swarm between

two consecutive generations, namely, ESg−1∩ESg �= ∅ (where

ESg−1 and ESg are the elite sets of the last generation and the

current generation, respectively), this slave sends a request

to the master to introduce one individual to aid the swarm

to update. Then, after receiving the request from the slave,

the master randomly selects an individual from archive A and

sends this individual along with its fitness to the corresponding

slave. In this manner, each slave introduces one individual

from the master independently as well. It should be mentioned

that such communication is adaptively triggered by ESg−1 ∩

ESg �= ∅ based on the following consideration. When ESg−1∩

ESg = ∅, all elites found in the last generation are out-of-

date and replaced by the new ones found in this generation.

Therefore, the ability of the swarm in finding better solutions

using current information is strong and thus no introduction of

individuals from the master is needed. However, when ESg−1∩

ESg �= ∅, the ability of the swarm to find more promising areas

is limited. Thus, before it is too late to help the swarm enhance

its ability, the slave immediately sends a request to the master

to introduce individuals once ESg−1 ∩ ESg �= ∅. We can take

ESg−1 ∩ ESg as a measure to percept the search ability of the

swarm.

Remark 4: By means of the above two schemes, the slaves

could communicate with the master efficiently. Particularly, the

developed communication strategy has the following features.

1) The communication is asynchronously and indepen-

dently conducted between the slaves and the master,

leading to great reduction in the waiting time. In particu-

lar, all communication is adaptively triggered according

to the requirement of the search process.
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2) Only one individual is sent and received in each time

of communication, which could save a lot of time in

communication and is also beneficial for DEGLSO to

adapt to a large number of cores.

3) Each slave introduces one candidate from the master

adaptively according to its own search state measured

by ESg−1 ∩ ESg �= ∅. This adaptiveness could avoid

too frequent or too little information exchange, both of

which are not beneficial for the update of particles.

4) Since each slave communicates with the master inde-

pendently and asynchronously, it is possible to make

DEGLSO adapt to clusters with heterogeneous comput-

ers, which is considerably common in the real-world

applications.

C. Implementation

We utilize message passing interface (MPI) as the tool

to implement the devised DEGLSO. Specifically, the pro-

cedures of the master and the slaves are presented in

Algorithms S1 and S2 in the supplementary material,

respectively.

From Algorithm S1 in the supplementary material, we

can see that the master does nothing but receives and sends

information from and to the slaves. During the communica-

tion between the master and the slaves, three cases occur.

In case 1 (lines 8–12), the master receives gbest found by

the associated swarm when the slave terminates, which is

corresponding to line 23 in Algorithm S2 in the supplemen-

tary material. Then, it compares these gbests and obtains the

final gbest of DEGLSO. In case 2 (lines 13–19), the mas-

ter receives gbest from a slave during the iteration, which is

associated with line 6 in Algorithm S2 in the supplemen-

tary material. After receiving this data, the master updates

the archive (A) either using a random replacement strategy

along with an elite mechanism once A is full or directly

putting it into A when A is not full. In case 3 (lines

20–22), the master receives the request from one slave requir-

ing to introduce candidates, which corresponds to line 9

in Algorithm S2 in the supplementary material. Then, the

master randomly selects an individual from A and sends

this individual along with its fitness to the corresponding

slave.

From Algorithm S2 in the supplementary material, we can

see that each slave iterates a swarm using the proposed EGL

to locate promising solutions. Besides, an archive P of size M

is also maintained by each slave to store the individuals intro-

duced from the master. To exchange information, each slave

sends gbest found by the swarm to the master (line 6, triggered

when gbest is updated) and then requests to introduce candi-

dates from the master (lines 9 and 10, triggered when ESg−1 ∩

ESg �= ∅). After receiving the data from the master, the slave

will either put the received individual into P using the principle

of replacing the worst when P is full (lines 11–13) or directly

place the received individual into P when P is not full (line 15).

Subsequently, particles in NES are updated using EGL

(lines 18–20).

Compared with existing master–slave-based distributed

metaheuristics, three differences can be noticed in DEGLSO.

1) With the adaptive communication strategy, the

distributed model in DEGLSO is asynchronous.

However, in most existing master–slave-based parallel

metaheuristics [6], [23], the distributed models are

synchronous, where the master stops and waits to

receive information from all slaves before proceeding

to the next generation, and each slave must wait until

the master finishes sending information to those slaves

ahead of it. However, in DEGLSO, the master waits

only when there is no slave sending information to

it. Once there is such a slave, it will receive the

information and conduct operations corresponding to

one of the three cases (cases 1–3) in Algorithm S1 in

the supplementary material. Besides, one slave waits

only when it sends a request to the master to introduce

candidate individuals. Therefore, DEGLSO takes little

waiting time.

2) In DEGLSO, the master takes charge of information

exchange, while the slaves asynchronously iterate the

swarms to find the optimum. However, in most existing

master–slave-based distributed metaheuristics [6], [23],

the master iterates the swarm and the slaves are to

evaluate the fitness of the allocated individuals.

3) DEGLSO could adapt to clusters composed of het-

erogeneous computers. This advantage benefits from

the devised adaptive and asynchronous communication

strategy, which could reduce waiting time largely.

D. SEGLSO

To compare with DEGLSO, we also develop the serial ver-

sion of DEGLSO, named SEGLSO, whose pseudocode is

presented in Algorithm S3 in the supplementary material. To

make fair comparisons, the number of subswarms in SEGLSO

is the same as that of the slaves in DEGLSO. Besides, the main

components of SEGLSO are the same as DEGLSO.

Comparing Algorithms S1 and S2 with Algorithm S3 in

the supplementary material, we can find two main differences

between DEGLSO and SEGLSO.

1) The iteration of the swarms is executed in parallel in

DEGLSO, while that in SEGLSO is carried out sequen-

tially. Theoretically, the execution time of DEGLSO

should be much less than that of SEGLSO, which is

empirically demonstrated in Section IV.

2) The communication among the swarms is asyn-

chronous in DEGLSO, while it is synchronous in

SEGLSO. Specifically, in SEGLSO, since the swarms

are iterated sequentially, the new gbests produced in the

(k−1) swarms may be immediately used to update

the kth and the rest swarms if they are chosen as

the candidates to be introduced into these swarms and

then are utilized to update particles in these swarms.

Nevertheless, in DEGLSO, due to the asynchronization,

when a slave introduces candidates from the master, the

new gbest may be not produced in other swarms or the
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new gbests generated by other swarms have not been

delivered to the master to update A.

In Section IV, experiments are conducted to compare

DEGLSO with SEGLSO, and the experimental results sub-

stantiate that DEGLSO could achieve as good performance

in terms of solution quality as SEGLSO, but takes much less

execution time than SEGLSO.

IV. EXPERIMENTS

To verify the effectiveness and efficiency of DEGLSO, we

conduct extensive experiments on the latest and challenging

CEC’2013 large-scale benchmark set [22]. The main proper-

ties of this set are listed in Table SI in the supplementary

material.

In the following, we first investigate the parameter settings

of DEGLSO and SEGLSO in Section IV-A. Then, exten-

sive comparisons with respect to solution quality between

DEGLSO and several state-of-the-art large-scale metaheuris-

tics are conducted in Section IV-B. Particularly, in this section,

we also investigate the comparison in regard to execution

time and speedup between DEGLSO and one state-of-the-art

large-scale optimizer implemented with the traditional master–

slave model. In Section IV-C, we investigate the scalability

of DEGLSO from the perspective of more cores and higher

dimensionality. At last, in Section IV-D, we provide an in-

depth investigation on DEGLSO via analyzing the influence of

its components. However, due to the page limit, we attach the

details of the experiments to Section III in the supplementary

material.

In the experiments, unless otherwise stated, the number of

cores is experimentally set to 21 for DEGLSO (indicating

that except for one master, 20 slaves exist) and the maximum

number of fitness evaluations is set to 5000 × D (where D

is the dimension size) for all compared algorithms. For fair-

ness, median, mean, and standard deviation (Std) values over

30 independent runs are used to evaluate different algorithms.

When two algorithms are compared, two-tailed Wilcoxon rank

sum test is performed at the significance level of 0.05.

In addition, all algorithms are run on a homogeneous cluster

with PCs composed of 4 Intel Xeon E3-1225 3.30-GHz CPUs,

8-Gb memory and 64-bit Ubuntu 16.04 LTS system.

A. Parameter Investigation

In DEGLSO, only the number of elites M needs fine-tuning.

Since it is related to swarm size NP, which is a com-

mon parameter for all population-based metaheuristics, we set

M = ⌊ER × NP⌋ for the convenience of fine-tuning, where

ER∈[0, 1] is the ratio of the elites out of the swarm, and

⌊x⌋ is the floor function, which returns the largest integer

smaller than or equal to x. For both DEGLSO and SEGLSO,

we conduct experiments on six 1000-D functions (F1, F7, F8,

F13 ∼ F15) with ER varying from 0.1 to 0.5 and NP ranging

from 20 to 50. It should be mentioned that these six functions

are selected because we want to investigate the parameter set-

tings on almost all kinds of functions, like fully separable,

partially separable, overlapping, nonseparable, unimodal, and

multimodal functions.

Table SII, in the supplementary material, shows the exper-

imental results with the left of the bolded line representing

the results of DEGLSO and the right denoting the results of

SEGLSO. The best results of both DEGLSO and SEGLSO are

bolded in the left and right of the bolded line, respectively.

From this table, we can obtain the following findings.

1) On most functions, when NP varies from 20 to 50, the

most proper ER is 0.2 for both algorithms.

2) When ER is fixed as 0.2, it seems that NP makes lit-

tle difference on the performance of both algorithms on

most functions, except for F1.

3) Particularly, we find that NP = 30 with ER = 0.2 is the

most proper setting for both algorithms.

In conclusion, NP = 30 with ER = 0.2 is adopted for

both DEGLSO and SEGLSO in the following experiments

conducted on 1000-D problems.

B. Comparison With State-of-the-Art Large-Scale EAs

To comprehensively verify the effectiveness and efficiency

of DEGLSO along with SEGLSO, we compare them with

several state-of-the-art large-scale methods. Particularly, five

large-scale optimizers focusing on the second aspect and

five CCEAs concentrating on the first aspect on large-scale

optimization as described in Section II are, respectively,

selected. The former five are CSO [10], DMS-L-PSO [52],

EOBDE [60], GODE [13], and SOUPDE [12], while the latter

five are CCPSO2 [17], DECC-G [42], MLCC [46], DECC-

DG [16], and DECC-XDG [49]. For fairness, the parameters

of the compared algorithms are set as recommended in the

related papers.

1) Solution Quality Comparison: Table I displays the com-

parison results among different algorithms on the 15 1000-D

CEC’2013 benchmark functions. In this table, two rows of p-

values exist with the first row representing the results when

DEGLSO is compared with the associated algorithms and the

other denoting the results when SEGLSO is compared with the

corresponding algorithms. Besides, the highlighted p-values

mean that DEGLSO or SEGLSO is significantly better than

the corresponding compared algorithms. In addition, the sym-

bols, “+,” “−,” and “=,” above the p-values represent that

DEGLSO or SEGLSO is significantly better than, significantly

worse than, and equivalent to the compared algorithms on the

associated functions. Accordingly, there are two “w/t/l” in the

last row with the first representing that DEGLSO wins on

w functions, ties on t functions, and loses on l functions in

total in the competitions with the counterpart methods and the

second denoting those numbers of SEGLSO.

The experimental results in this table can be summarized as

follows.

1) In terms of solution quality, DEGLSO and SEGLSO

achieve very similar performance on most (13 out of

15) functions.

2) Both DEGLSO and SEGLSO are better than the

ten compared algorithms on at least 8 functions.

3) Concretely, both DEGLSO and SEGLSO are better than

CSO on at least 8 functions and significantly superior

to DMS-L-PSO on at least 11 functions. Particularly,



3402 IEEE TRANSACTIONS ON CYBERNETICS, VOL. 50, NO. 7, JULY 2020

DEGLSO and SEGLSO beat GODE and EOBDE

down both on 14 functions, and are significantly bet-

ter than SOUPDE on 10 functions. In comparison with

CCPSO2, DECC-G, MLCC, DECC-DG, and DECC-

XDG, DEGLSO significantly dominates them on at least

8 functions, while SEGLSO performs quite better on at

least 9 functions.

In short, DEGLSO achieves very similar performance with

SEGLSO and both of them achieve very competitive or even

better performance in comparison with the ten state-of-the-art

large-scale algorithms. The superior performance of DEGLSO

and SEGLSO in regard to the solution quality benefits from

the proposed EGL strategy and the devised adaptive commu-

nication mechanism, which bring many benefits to them in

diversity maintenance as elucidated in Section III.

2) Execution Time and Speedup Comparison: To investi-

gate the superiority of DEGLSO in execution time, we record

the execution time of both DEGLSO and SEGLSO on the

CEC’2013 set. In addition, to make comparison, we also

develop the distributed version of CSO, namely DCSO (the

serial version of CSO is denoted as SCSO), using the tra-

ditional master–slave distributed model, where the master is

responsible for the update of particles, while the slaves are to

compute the fitness of particles. In particular, in DCSO, the

updated particles are equally distributed to the slaves to com-

pute their fitness values. In this experiment, CSO is selected

because: 1) CSO is one popular and state-of-the-art PSO vari-

ant in handling large-scale problems, and also focuses on the

same aspect (the second aspect as stated in Section II) as

DEGLSO and SEGLSO and 2) compared with DMS-L-PSO,

EOBDE, GODE, and SOUPDE, the superiority of DEGLSO

and SEGLSO to CSO is the smallest in solution quality as

shown in Table I.

The efficiency of a distributed metaheuristic can be reflected

by the speedup of the execution time defined

Speedup =
Tserial

Tparallel
(9)

where Tparallel and Tserial are the averaged execution time of

the distributed metaheuristic and that of its serial version over

multiple independent runs, respectively.

For fairness, the source code of SCSO is directly down-

loaded from the associated authors’ websites and DCSO is

implemented based on SCSO. The maximum number of fit-

ness evaluations is set to 5000×D for all algorithms. Besides,

DEGLSO and DCSO utilize 21 cores to optimize each problem

in the CEC’2013 set. Table II presents the execution time (in

second) of the four algorithms and the speedup of the two dis-

tributed metaheuristics. The function evaluation time of each

function is also provided in this table.

From this table, we can observe the following.

1) DEGLSO not only takes much less time than SEGLSO

but also takes significantly less time than DCSO and

SCSO.

2) The speedup of DEGLSO is significantly higher than

that of DCSO.

3) Concretely, on almost all functions, except for F12, the

speedup of DEGLSO is at least 14, while that of DCSO

is smaller than 4.

4) Particularly, on F12, due to the short function evalua-

tion time, the efficiency of both DEGLSO and DCSO

is not as good as that on functions with longer func-

tion evaluation time. Due to the large communication

between the slaves and the master in DCSO, which leads

to more time in communication than the function evalua-

tion, DCSO even takes more time than SCSO. However,

DEGLSO still takes much less time than SEGLSO. The

only exception is that the speedup is not as high as that

on other functions with longer function evaluation time,

but is still much higher than DCSO on all functions.

5) With the function evaluation time increasing, in most

cases, the speedup of both DEGLSO and DCSO

increases as well. This matches the expectation that

distributed metaheuristics are more suitable to tackle

problems with high computational cost.

6) DEGLSO can not only handle problems with high com-

putational cost better but also retain greater efficiency

on problems with low computational cost as compared

to DCSO.

The superiority of DEGLSO in the execution time and

speedup benefits from the devised adaptive and asynchronous

communication strategy. On the one hand, with this adaptive

communication strategy, the slaves in DEGLSO communi-

cate with the master independently. Thus, little waiting time

exists in the communication between the slaves and the mas-

ter. However, in the traditional master–slave model, the master

needs to wait before at least one slave finishes the fitness eval-

uation and sends the fitness values to the master. Besides, the

slaves also need to wait when the master updates particles

and one slave must wait until the master has finished sending

particles to those slaves ahead of it. Therefore, much wait-

ing time exists in the traditional master–slave model, leading

to the deficiency of DCSO. On the other hand, the slaves in

DEGLSO communicate with the master adaptively. This indi-

cates that the slaves in DEGLSO do not communicate with the

master every generation like in the traditional master–slave

model. Instead, for each slave, the communication is adap-

tively trigged based on the search state, like gbest is updated

or ESg−1 ∩ ESg �= ∅.

C. Scalability Investigation

In this section, we conduct experiments to investigate the

scalability of DEGLSO from three perspectives: 1) scalability

to more cores with fixed total fitness evaluations; 2) scala-

bility to more cores with fixed iterations for each slave; and

3) scalability to higher dimensionality.

1) Scalability to More Cores With Fixed Total Fitness

Evaluations: First, we investigate the scalability of DEGLSO

to more cores when given fixed 5 × 106 total fitness evalu-

ations. In this case, the total fitness evaluations are equally

allocated to all slaves. We execute DEGLSO on the 1000-D

CEC’2013 set with the number of cores varying from 6 to 46.
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TABLE I
FITNESS COMPARISON RESULTS AMONG DIFFERENT ALGORITHMS ON 1000-D CEC’2013 PROBLEMS

Accordingly, the number of subswarms in SEGLSO ranges

from 5 to 45.

Fig. S1, in the supplementary material, displays the change

of the averaged fitness values of both DEGLSO and SEGLSO

on different functions with the number of cores (subswarms)

increasing from 6 to 46 (5 to 45). Fig. S2, in the supple-

mentary material, presents the change of the execution time

of DEGLSO and SEGLSO and that of the speedup as the

number of cores changes.

From Fig. S1 in the supplementary material, the following

observations can be obtained with respect to solution quality.

1) On most functions, except for F12, on which DEGLSO

is inferior to SEGLSO, DEGLSO achieves similar

performance with SEGLSO.

2) On most functions (8 out of 15), the performance of both

DEGLSO and SEGLSO first becomes better and better

and then becomes worse and worse with the number of

cores increasing. This phenomenon can be explained as
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TABLE II
TIME (IN SECOND) AND SPEEDUP COMPARISON AMONG DEGLSO,

SEGLSO, DCSO, AND SCSO ON 1000-D CEC’2013 PROBLEMS

follows. On the one hand, when the number of cores is

too small, only a few swarms are maintained, leading

to that no enough diversity is afforded. In this situation,

both DEGLSO and SEGLSO may easily get trapped into

local optima; on the other hand, when the number of

cores is too large, given fixed total fitness evaluations,

the number of fitness evaluations allocated to each slave

is small, leading to that the swarm in each slave can-

not be iterated well enough to approach to the global

optimum.

3) On F6 and F10, the performance of DEGLSO and

SEGLSO tends to be worse and worse when the number

of cores increases.

4) Surprisingly, on F2, F5, and F9, the performance of

DEGLSO and SEGLSO becomes better and better as

the number of cores increases. This may benefit from the

increasing diversity brought by the increasing swarms,

which is precious for multimodal functions.

From Fig. S2 in the supplementary material, the experi-

mental results in terms of execution time and speedup can be

summarized as follows.

1) The execution time of DEGLSO is much smaller than

that of SEGLSO.

2) With the number of subswarms increasing, the execution

time of SEGLSO almost remains unchanged. This is not

strange because the total number of fitness evaluations

is fixed and during the execution, the fitness evaluation

takes the most computational cost.

3) As the number of cores increases, the execution time

of DEGLSO becomes smaller and smaller almost on all

functions, except for F12. This is not surprising because

more cores partition the iteration of the optimizer and

then more fitness evaluations are performed in parallel.

4) The only exception for DEGLSO is F12, on which its

execution time first decreases when the number of cores

increases from 6 to 26 and then increases as the num-

ber of cores increases from 26 to 46. This is because

the function evaluation time of F12 is too small. When

the number of cores is small, the communication time

in DEGLSO is negligible compared with the function

evaluation time. However, when the number of cores is

too large, the communication time is not negligible, but

becomes comparable or even larger than the function

evaluation time.

5) On almost all functions, except for F12, DEGLSO

achieves linear speedup as the number of cores increases.

Overall, taking both the solution quality and the execution

time into consideration, we find that given fixed 5 × 106 total

fitness evaluations, DEGLSO with 21 cores could make a good

compromise over all functions.

2) Scalability to More Cores With Fixed Iterations for Each

Slave: Subsequently, we conduct experiments on the 1000-D

CEC’2013 set to investigate the scalability of DEGLSO to

more cores when given a fixed number of iterations for each

slave. Particularly, in this experiment, the maximum number of

generations for each slave (each subswarm) is fixed to 10 500.

This number is selected to keep consistency with the previous

experiments, so that when the number of cores is 21, the max-

imum number of function evaluations is close to 5000 × D

(D = 1000). We execute DEGLSO with the number of cores

varying from 6 to 46. Accordingly, for SEGLSO, the number

of subswarms ranges from 5 to 45.

Fig. S3, in the supplementary material, displays the change

of the averaged fitness values of both DEGLSO and SEGLSO

on different functions with the number of cores (subswarms)

increasing from 6 to 46 (5 to 45). Fig. S4, in the supple-

mentary material, presents the change of the execution time

of DEGLSO and SEGLSO and that of the speedup as the

number of cores changes.

From Fig. S3 in the supplementary material, we can obtain

the following observations.

1) On most functions, with the number of cores (sub-

swarms) increasing, the performance of both DEGLSO

and SEGLSO becomes better and better. This is not sur-

prising because with the number of generations fixed in

each slave (subswarms), as the number of cores (sub-

swarms) grows, not only more particles participate in

locating the optima but also more fitness evaluations are

allocated.

2) DEGLSO can achieve very similar performance with

SEGLSO on almost all functions, except for F12, where

DEGLSO performs worse than SEGLSO.

3) On F3, F10, and F11, the performance of both DEGLSO

and SEGLSO vibrates, but the tendency of the quality of

the final solutions obtained by both algorithms is becom-

ing better and better as the number of cores (subswarms)

increases.

From Fig. S4 in the supplementary material, we can find

the following phenomena.

1) As the number of cores (subswarms) increases, the exe-

cution time of SEGLSO increases fast and linearly on

all functions, while that of DEGLSO grows very mildly

on almost all functions, except for F12, on which the
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execution time of DEGLSO also increases linearly but

much slower than that of SEGLSO. This is not strange

because in DEGLSO, all swarms are iterated in parallel,

while in SEGLSO, all subswarms are iterated in serial.

Besides, due to the proposed adaptive and asynchronous

communication strategy, little communication time is

occupied, which could be ignored compared with the

long function evaluation time. However, on F12, due to

its too short function evaluation time, the communication

time may be comparable to the function evaluation time,

leading to the increased execution time of DEGLSO as

the number of cores increases.

2) Except for F12, the speedup of DEGLSO increases

linearly as the number of cores grows on almost all

functions due to the efficient communication strategy.

Overall, we can conclude that DEGLSO could preserve

a good scalability to more cores when given a fixed num-

ber of iterations for each slave. In particular, DEGLSO scales

well to a large number of cores with linear speedup. Such

superiority benefits from the devised communication strategy

and the developed EGL. The former provides efficient and

effective information exchange, leading to nearly unchanged

execution time as the number of cores increases. The latter

helps the swarms maintain high search diversity, giving rise

to the good performance of DEGLSO in terms of the solution

quality.

3) Scalability to Higher Dimensionality: At last, we inves-

tigate the scalability of DEGLSO to solve higher dimensional

problems. First, we construct several 2000-D and 3000-D com-

posite problems by concatenating different 1000-D functions

in the CEC’2013 set. Without loss of generality, we utilize

F1, F4, F7, F8, F11, F13, F14, and F15 in the CEC’2013 set

to construct six 2000-D problems and six 3000-D prob-

lems, respectively. These functions are selected because on

the one hand, they could cover all the main properties of

the CEC’2013 set, like fully separable, partially separable,

overlapping, etc.; on the other hand, each variable of these

functions has the same lower and upper bounds, which makes

it easy to program. The six constructed 2000-D problems

denoted as “CF2,i” (the ith 2000-D composite function) and

the six constructed 3000-D problems denoted as “CF3,i” (the

ith 3000-D composite function) are presented in Tables SIII

and SV, in the supplementary material, respectively.

Second, we also adopt both DCSO and SCSO to make com-

parisons with DEGLSO and SEGLSO. In addition, NP and

ER are set to 80 and 0.1 for DEGLSO and SEGLSO based on

preliminary experiments. As for the parameters in CSO, they

are set according to the guideline in [10]. In this experiment,

21 cores are adopted to execute both DEGLSO and DCSO and

the maximum number of fitness evaluations is set to 5000×D.

Tables SIII and SIV, in the supplementary material, present

the experimental results on the six 2000-D problems with

the former displaying the fitness comparison results and the

latter showing the execution time and speedup comparison

results. Tables SV and SVI, in the supplementary material,

respectively, display the fitness comparison results and the exe-

cution time and speedup comparison results on the six 3000-D

problems.

From Table SIII in the supplementary material, in terms

of solution quality on the 2000-D problems, we find that:

1) DEGLSO still achieves very similar performance with

SEGLSO on the functions and 2) DEGLSO and SEGLSO are

better than DCSO and SCSO on the six functions.

From Table SIV in the supplementary material, with respect

to the execution time and the speedup, we can obtain three

observations.

1) DEGLSO takes significantly less time not only than

SEGLSO, but also than both DCSO and SCSO.

2) The speedup of DEGLSO is considerably larger than

that of DCSO. Specifically, on these 2000-D problems,

the speedup of DEGLSO is at least 16, while that of

DCSO is less than 3.

3) Compared with the speedup of DEGLSO on 1000-

D problems in Table II, the speedup of DEGLSO on

2000-D problems is a little larger, due to the increase

of the function evaluation time. However, that of DCSO

does not increase so obviously, because although the

function evaluation time increases, the communication

content also increases due to the higher dimensionality.

From Table SV in the supplementary material, in terms of

solution quality on the 3000-D problems, we can get similar

observations: 1) DEGLSO achieves very similar performance

with SEGLSO on these functions as well and 2) DEGLSO and

SEGLSO are better than DCSO and SCSO on five functions.

Unfortunately, on CF3,2, DEGLSO and SEGLSO perform

worse than DCSO and SCSO.

From Table SVI in the supplementary material, as for the

execution time and speedup, we can find the following.

1) DEGLSO still takes much less time not only than

SEGLSO, but also than DCSO and SCSO.

2) The speedup of DEGLSO is still much larger than that

of DCSO. Specifically, on these 3000-D problems, the

speedup of DEGLSO is at least 18, while that of DCSO

is less than 3.

3) Compared with the speedup of DEGLSO and DCSO

on the 2000-D problems, the speedup of DEGLSO

and DCSO increases not so obviously. This is because

the communication content greatly increases due to the

higher dimensionality.

Overall, DEGLSO retains great efficiency and effectiveness

on higher dimensional problems in terms of both the solu-

tion quality and the execution time. In particular, DEGLSO

still maintains high speedup to optimize higher dimensional

problems. The good scalability of DEGLSO to solve higher

dimensional problems mainly benefits from the proposed EGL

and the devised adaptive communication strategy. The former

mainly makes DEGLSO obtain good performance in terms

of the solution quality, while the latter mainly lets DEGLSO

achieve good performance in terms of the execution time.

D. Investigation About DEGLSO

In this section, we analyze the influence of each component

on DEGLSO, so that it is clear to know what contributes to

the good performance of DEGLSO. However, due to the page

limit, we have to attach the details of the analysis to Section III
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in the supplementary material. As a consequence, we only list

brief introductions and conclusions of the analysis here.

First, we take investigation about the swarm diversity and

the fast convergence of DEGLSO via comparing it with

GPSO and CSO (related to Section III-A in the supplemen-

tary material). The experimental results verify that DEGLSO

compromises swarm diversity and fast convergence better than

CSO and GPSO on both unimodal and multimodal problems.

Second, we investigate the influence of the archives in the

master and the slaves on DEGLSO. We compare DEGLSO

with its versions without archives in the master and the slaves

(associated with Section III-B in the supplementary material).

The experimental results substantiate that the archives in both

the master and the slaves are vital and the archive in the master

is more crucial than the archives in the slaves for DEGLSO.

Third, we investigate the influence of the proposed adaptive

communication strategy from three perspectives (associated

with Section III-C in the supplementary material).

1) We record the accumulated communication times

between the slaves and the master triggered by ESg−1 ∩

ESg �= ∅. The experimental results show that compared

with letting the slaves communicate with the master

every generation, the adaptive communication strategy

could help DEGLSO save many communication times

during the optimization.

2) We compare the asynchronous communication strategy

with the one widely used synchronous communication

strategy that each slave communicates with the master

every T generations. The experimental results demon-

strate that the proposed asynchronous communication

strategy is much more effective than the synchronous

one.

3) We compare the adaptive communication scheme with

two asynchronous communication strategies triggered

adaptively by two measures that the global best fit-

ness remains unchanged in T consecutive generations

and the relative improvement of the global best fitness

between two successive generations is less than a thresh-

old R, respectively. The experimental results verify that

compared with the above two measures, the proposed

measure ESg−1 ∩ ESg �= ∅ could bring more sufficient

and effective information exchange among slaves, con-

tributing to the good performance of DEGLSO in terms

of the solution quality.

Overall, the proposed EGL and the devised communica-

tion strategy cooperate with each other cohesively to aid the

slaves to search the high-dimensional space effectively and

efficiently, leading to the good performance of DEGLSO in

terms of both the solution quality and the execution time and

speedup.

V. CONCLUSION

This paper has proposed a DEGLSO to tackle large-

scale optimization problems with high computational cost.

Particularly, this distributed optimizer utilizes the special

master–slave distributed model, where the master is mainly

responsible for information exchange, while each slave iter-

ates a swarm using the devised EGL to find the optimum

of the problem. An adaptive and asynchronous communica-

tion strategy based on the request–response mechanism is

especially designed for this distributed model, which adap-

tively triggers the communication between the master and the

slaves. In this manner, each slave iterates the swarm asyn-

chronously and communicates with the master independently.

The proposed EGL and the devised communication strategy

cooperate with each other cohesively to aid the slaves to search

the high-dimensional space effectively and efficiently.

Extensive experiments conducted on the CEC’2013 bench-

mark set have demonstrated the competitive effectiveness and

efficiency of DEGLSO with respect to the solution quality

and the execution time, as compared to state-of-the-art large-

scale algorithms. Particularly, DEGLSO achieves nearly linear

speedup as the number of cores increases and preserves a good

scalability to solve higher dimensional problems.
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