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Abstract—In contrast to queries for on-line transaction pro-
cessing (OLTP) systems that typically access only a small portion
of a database, OLAP queries may need to aggregate large portions
of a database which often leads to performance issues. In this
paper we introduce CR-OLAP, a Cloud based Real-time OLAP

system based on a new distributed index structure for OLAP,
the distributed PDCR tree, that utilizes a cloud infrastructure
consisting of (m + 1) multi-core processors. With increasing
database size, CR-OLAP dynamically increases m to maintain
performance. Our distributed PDCR tree data structure supports
multiple dimension hierarchies and efficient query processing on
the elaborate dimension hierarchies which are so central to OLAP
systems. It is particularly efficient for complex OLAP queries
that need to aggregate large portions of the data warehouse,
such as “report the total sales in all stores located in California
and New York during the months February-May of all years”.
We evaluated CR-OLAP on the Amazon EC2 cloud, using the
TPC-DS benchmark data set. The tests demonstrate that CR-
OLAP scales well with increasing number of processors, even for
complex queries. For example, on an Amazon EC2 cloud instance
with eight processors, for a TPC-DS OLAP query stream on a
data warehouse with 80 million tuples where every OLAP query
aggregates more than 50% of the database, CR-OLAP achieved a
query latency of 0.3 seconds which can be considered a real time

response.

I. INTRODUCTION

On-line analytical processing (OLAP) systems are at the
heart of many business analytics applications. This paper
reports on the results of a research project (supported by the
IBM Centre For Advanced Studies Canada) to investigate the
use of cloud computing for high performance, real-time OLAP.

A. Background

Decision Support Systems (DSS) are designed to empower
the user with the ability to make effective decisions regarding
both the current and future state of an organization. DSS allow
users to study relationships in a chronological context between
things such as customers, vendors, products, inventory, geogra-
phy, and sales. One of the most powerful and prominent tech-
nologies for knowledge discovery in DSS environments is on-
line analytical processing (OLAP). OLAP is the foundation for
a wide range of essential business applications, including sales
and marketing analysis, planning, budgeting, and performance
measurement [1], [2]. By exploiting multi-dimensional views
of the underlying data warehouse, the OLAP server allows
users to “drill down” or “roll up” on dimension hierarchies,
“slice and dice” particular attributes, or perform various sta-
tistical operations such as ranking and forecasting. To support

this functionality, OLAP relies heavily upon a classical data
model known as the data cube [3] which allows users to view
organizational data from different perspectives and at a variety
of summarization levels. It consists of the base cuboid, the
finest granularity view containing the full complement of d
dimensions (or attributes), surrounded by a collection of 2d−1
sub-cubes/cuboids that represent the aggregation of the base
cuboid along one or more dimensions.

In contrast to queries for on-line transaction processing
(OLTP) systems which typically access only a small portion
of the database (e.g. update a customer record), OLAP queries
may need to aggregate large portions of the database (e.g.
calculate the total sales of a certain type of items during a
certain time period) which may lead to performance issues.
Therefore, most of the traditional OLAP research, and most of
the commercial systems, follow the static data cube approach
proposed by Gray et al. [3] and materialize all or a subset
of the cuboids of the data cube in order to ensure adequate
query performance. Building the data cube can be a massive
computational task, and significant research has been published
on sequential and parallel data cube construction methods (e.g.
[4], [5], [3], [6], [7], [8]). However, the traditional static data
cube approach has several disadvantages. The OLAP system
can only be updated periodically and in batches, e.g. once
every week. Hence, latest information can not be included in
the decision support process. The static data cube also requires
massive amounts of memory space and leads to a duplicate
data repository that is separate from the on-line transaction pro-
cessing (OLTP) system of the organization. Practitioners have
therefore called for some time for an integrated OLAP/OLTP
approach with a real-time OLAP system that gets updated
instantaneously as new data arrives and always provides an up-
to-date data warehouse for the decision support process (e.g.
[9]). Some recent publications have begun to address this prob-
lem by providing “quasi real-time” incremental maintenance
schemes and loading procedures for static data cubes (e.g. [9],
[10], [11], [12]). However, these approaches are not fully real-
time. A major obstacle are significant performance issues with
large scale data warehouses.

B. Contributions

The aim of our research project is to help address the above
mentioned performance issues for real-time OLAP systems
through the use of efficient parallel computing methods.
In a recent paper [13] we presented the first parallel real-
time OLAP system designed to be executed on a multi-core
processor. We documented significant performance increases



with increasing number of processor cores. Our system won
the 2012 IBM Canada Research Impact Of The Year Award
and an IBM sponsored patent application has been submitted.
In this paper, we report on the next phase of our project: to
scale up our real-time OLAP system to utilize a collection of
(m+ 1) multi-core processors in a cloud environment.

We introduce CR-OLAP, a Cloud based Real-time OLAP
system that utilizes a new distributed index structure for OLAP,
refered to as a distributed PDCR tree. This data structure is not
just another distributed R-tree, but rather a multi-dimensional
data structure designed specifically to support efficient OLAP
query processing on the elaborate dimension hierarchies that
are central to OLAP systems. The distributed PDCR tree,
based on the sequential DC tree introduced by Kriegel et
al. [14] and our previous PDC tree [13], exploits knowledge
about the structure of individual dimension hierarchies both for
compact data representation and accelerated query processing.
The following is a brief overview of the properties of our
system.

Consider a d-dimensional data warehouse with d dimension
hierarchies. CR-OLAP supports an input stream consisting of
insert and query operations. Each OLAP query can be repre-
sented as an aggregate range query that specifies for each di-
mension either a single value or range of values at any level of
the respective dimension hierarchy, or a symbol “*” indicating
the entire range for that dimension. CR-OLAP utilizes a cloud
infrastructure consisting of m+1 multi-core processors where
each processor executes up to k parallel threads. As typical
for current high performance databases, all data is kept in
the processors’ main memories [15]. With increasing database
size, CR-OLAP will increase m by dynamically allocating
additional processors within the cloud environment and re-
arranging the distributed PDCR tree. This will ensure that both,
the available memory and processing capability will scale with
the database size. One of the m + 1 multi-core processors is
referred to as the master, and the remaining m processors are
called workers. The master receives from the users the input
stream of OLAP insert and query operations, and reports the
results back to the users (in the form of references to memory
locations where the workers have deposited the query results).
In order to ensure high throughput and low latency even for
compute intensive OLAP queries that may need to aggregate
large portions of the entire database, CR-OLAP utilizes several
levels of parallelism: distributed processing of multiple query
and insert operations among multiple workers, and parallel
processing of multiple concurrent query and insert operations
within each worker. For correct query operation, CR-OLAP
ensures that the result for each OLAP query includes all data
inserted prior but no data inserted after the query was issued
within the input stream.

CR-OLAP is supported by a new distributed index structure
for OLAP termed distributed PDCR tree which supports
distributed OLAP query processing, including fast real-time
data aggregation, real-time querying of multiple dimension
hierarchies, and real-time data insertion. (Note that, since
OLAP is about the analysis of historical data collections,
OLAP systems do usually not support data deletion.) The
distributed index structure consists of a collection of PDCR
trees whereby the master stores one PDCR tree (called hat)
and each worker stores multiple PDCR trees (called subtrees).
Each individual PDCR tree supports multi-core parallelism and

executes multiple concurrent insert and query operations at any
point in time. PDCR trees are a non-trivial modification of the
authors’ previously presented PDC trees [13], adapted to the
cloud environment. For example, PDCR trees are array based
so that they can easily be compressed and transferred between
processors via message passing. When the database grows and
new workers are added, sub-trees are split off and sent to the
new worker.

We evaluated CR-OLAP on the Amazon EC2 cloud for
a multitude of scenarios (different ratios of insert and query
transactions, query transactions with different sizes of results,
different system loads, etc.), using the TPC-DS “Decision
Support” benchmark data set. The tests demonstrate that CR-
OLAP scales well with increasing number of workers. For
example, for fixed data warehouse size ( 10,000,000 data
items), when increasing the number of workers from 1 to
8, the average query throughput and latency improves by a
factor 7.5. A particular strength of CR-OLAP is to efficiently
answer queries with large query coverage, i.e. the portion of
the database that needs to be aggregated for an OLAP query.
For example, on an Amazon EC2 cloud instance with eight
workers and a stream of OLAP queries on a data warehouse
with 80 million tuples, where each query has more than 50%
coverage, CR-OLAP achieved a query latency of 0.3 seconds,
which can be considered a real time response.

CR-OLAP also handles well increasing dimensionality of
the data warehouse. For tree data structures this is a critical
issue as it is known e.g. for R-trees that, with increasing num-
ber of dimensions, even simple range search (no dimension
hierarchies, no aggregation) can degenerate to linear search
(e.g. [16]). In our experiments, we observed that increasing
number of dimensions does not significantly impact the per-
formance of CR-OLAP. Another possible disadvantage of tree
data structures is that they are potentially less cache efficient
than in-memory linear search which can make optimum use
of streaming data between memory and processor caches.
To establish a comparison baseline for CR-OLAP, we imple-
mented STREAM-OLAP which partitions the database between
multiple cloud processors based on one chosen dimension
and uses parallel memory to cache streaming on the cloud
processors to answer OLAP queries. We observed that the
performance of CR-OLAP is similar to STREAM-OLAP for
simple OLAP queries with small query coverage but that CR-
OLAP vastly outperforms STREAM-OLAP for more complex
queries that utilize different dimension hierarchies and have
a larger query coverage (e.g. “report the total sales in all
stores located in California and New York during the months
February-May of all years”).

The remainder of this paper is organized as follows. In
Section II we review related work. In Section III we introduce
the PDCR tree data structure and in Section IV we present our
CR-OLAP system for real-time OLAP on cloud architectures.
Section V shows the results of an experimental evaluation
of CR-OLAP on the Amazon EC2 cloud, and Section VI
concludes the paper.

II. RELATED WORK

In addition to the related work discussed in the introduc-
tion, there are many efforts to store and query large data sets
in cloud environments. Hadoop[17] and its file system, HDFS,



are popular examples of such systems which are typically
built on MapReduce [18]. Related projects most similar to
our work are Hive[19] and HadoopDB[20]. However, these
systems are not designed for real-time (OLTP style) operation.
Instead, they use batch processing similar to [9], [10], [11],
[12]. The situation is similar for BigTable[21], BigQuery[22],
and Dremel[23]. In fact, Dremel[23] uses a columnar data
representation scheme and is designed to provide data ware-
housing and querying support for read-only data. To overcome
the batch processing in Hadoop based systems, Storm [24]
introduced a distributed computing model that processes in-
flight Twitter data. However, Storm assumes small, compact
Twitter style data packets that can quickly migrate between
different computing resources. This is not possible for large
data warehouses. For peer-to-peer networks, related work
includes distributed methods for querying concept hierarchies
such as [25], [26], [27], [28]. However, none of these meth-
ods provides real-time OLAP functionality. There are various
publications on distributed B-trees for cloud platforms such
as [29]. However, these method only supports 1-dimensional
indices which are insufficient for OLAP queries. There have
been efforts to build distributed multi-dimensional indices on
Cloud platforms based on R-trees or related multi-dimensional
tree structures, such as [30], [31], [32]. However, these method
do not support dimension hierarchies which are essential for
OLAP queries.

III. PDCR TREES

Consider a data warehouse with the fact table F and a
set of d dimensions {D1, D2, ..., Dd} where each dimension
Di, 1 ≤ i ≤ d has a hierarchy Hi including hierarchical
attributes corresponding to the levels of the hierarchy. The
hierarchical attributes in the hierarchy of dimension i are
organized as an ordered set Hi of parent-child relationships in
the hierarchy levels Hi = {Hi1, Hi2, ..., Hil} where a parent
logically summarizes and includes its children. Figure 1 shows
the dimensions and hierarchy levels of each dimension for a
4-dimensional data warehouse.

All Dims

ItemCustomerStore Date

Country

State

City

BYear

BMonth

BDay

Category

Class

Brand

Year

Month

Day

Fig. 1. A 4-dimensional data warehouse with 3 hierarchy levels for
each dimension. The first box for each dimension denotes the name of the
dimension.

The sequential DC tree introduced by Kriegel et al. [14]
exploits knowledge about the structure of individual dimension
hierarchies both for compact data representation and accel-
erated OLAP query processing. In our previous work [13],
we introduced the PDC tree, a parallel DC tree for a single
multi-core processor. In this section, we outline a modified
PDC tree, termed PDCR tree, which will become the building
block for our CR-OLAP system. Here, we only outline the
differences between the PDCR tree and its predecessors, and

we refer to [13], [14] for more details. We note that, our PDCR
tree data structure is not just another distributed R-tree, but
rather a multi-dimensional data structure designed specifically
to support efficient OLAP query processing on the elaborate
dimension hierarchies that are central to OLAP systems.

For a cloud architecture with multiple processors, each
processor will store one or more PDCR trees. Our CR-OLAP
system outlined in the following Section IV requires that a sub-
tree of a PDCR tree can be split off and transferred to another
processor. This required us to (a) devise an array based tree
implementation that can be packed into a message to be sent
between processors and (b) a careful encoding of data values,
using compact IDs related to the different dimension hierarchy
levels. In the following we outline some details of the encoding
used for the PDCR tree.

IDs for each dimension represent available entities in the
dimension. Each dimension has a hierarchy of entities with
l levels. In the example of Figure 1, an ID may represent
an entity at the Country level for the Store dimension, e.g.
US or Canada. Similarly, another ID may represent an entity
at the City level, e.g. Chicago or Toronto. It is important to
note that an ID may summarize many IDs at lower hierarchy
levels. To build an ID for a dimension with l levels, we assign
bj bits to the hierarchy level j, 0 ≤ j ≤ l − 1. Different
entities at each hierarchy level are assigned numerical values
starting with “1”. By concatenating the numerical values of
the levels, a numerical value is created. We reserve the value
zero to represent “All” or “*”. The example in Figure 2
shows an example of an entity at the lowest hierarchy level
of dimension Store. An ID for the state California will have
a value of zero for its descendant levels City and Store S key.
As a result, containment of IDs between different hierarchy
levels can be tested via fast bit operations. Figure 3 illustrates
IDs and their coverages in the Store dimension with respect
to different hierarchy levels. As illustrated, each entity in level
j (Country) is a country specified by a numerical value and
covers cities that are represented using numerical values in
level j + 1. Note that IDs used for cities will have specific
values at the city level, while the ID of a country will have a
value of zero at the city level and a specific value only at the
country level.

The sequential DC tree introduced by Kriegel et al. [14]
and our previous PDC tree [13] store so called “minimum
describing set” (MDS) entries at each internal tree node to
guide the query process; see [14] for details. The MDS
concept was developed in [14] to better represent unordered
dimensions with dimension hierarchies. Experiments with our
CR-OLAP system showed that in a larger cloud computing
environment with multiple tree data structures, the number
of MDS entries becomes very large and unevenly distributed
between the different trees, leading to performance bottlenecks.
On the other hand, the bit representation of IDs outlined above
gives us the opportunity to convert unordered dimensions into
ordered dimensions, and then use traditional ranges instead
of the MDS entries. An example is shown in Figure 4. The
ranges lead to a much more compact tree storage and alleviated
the above mentioned bottleneck. It is important to note that,
this internal ordering imposed on dimensions is invisible to
the user. OLAP queries can still include unordered aggregate
values on any dimension such as “Total sales in the US and
Canada” or “Total sales in California and New York”.
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Fig. 2. Illustration of the compact bit representation of IDs.
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City

Store 

S_key

1                  2           3                      1                       2

123           4            5            6  7        8                                 9             10                    11-13 14

Hierarchy

Levels
All

Fig. 3. Example of relationships between different hierarchy levels of a given
dimension.

IV. CR-OLAP: CLOUD BASED REAL-TIME OLAP

CR-OLAP utilizes a cloud infrastructure consisting of m+1
multi-core processors where each processor executes up to k
parallel threads. One of the m + 1 multi-core processors is
referred to as the master, and the remaining m processors
are called workers. The master receives from the users the
input stream of OLAP insert and query operations, and reports
the results back to the users (in the form of references to
memory locations where the workers have deposited the query
results). In order to ensure high throughput and low latency
even for compute intensive OLAP queries that may need to
aggregate large portions of the entire database, CR-OLAP
utilizes several levels of parallelism: distributed processing of
multiple query and insert operations among multiple workers,
and parallel processing of multiple concurrent query and
insert operations within each worker. With increasing database
size, CR-OLAP will increase m by dynamically allocating
additional processors within the cloud environment and re-
arranging the distributed PDCR tree. This will ensure that both,
the available memory and processing capability will scale with
the database size.

We start by outlining the structure of a distributed PDC
tree and PDCR tree on m+1 multi-core processors in a cloud
environment. Consider a single PDCR tree T storing the entire
database. For a tunable depth parameter h, we refer to the top
h levels of T as the hat and we refer to the remaining trees
rooted at the leaves of the hat as the subtrees s1, . . . , sn. Level
h is referred to as the cut level. The hat will be stored at the

Root
1990-2000

US - Canada
2000-2013

US

2000-2013

UK - Germany

. . .

C1

1995-2000

California 

- Virginia

1993-2000

Canada

C2

2000-2010

New York -

Texas

2000-2013

California

Cn

2000-2005

UK

2004-2013

Germany

. . . . . . . . .

Fig. 4. Example of a PDCR tree with 2 dimensions (Store and Date).

master and the subtrees s1, . . . , sn will be stored at the m
workers. We assume n ≥ m and that each worker stores one
or more subtrees.

CR-OLAP starts with an empty database and one master
processor (i.e. m = 0) storing an empty hat (PDCR tree).
Note that, DC trees [14], PDC trees [13] and PDCR trees are
leaf oriented. All data is stored in leafs called data nodes.
Internal nodes are called directory nodes and contain arrays
with routing information and aggregate values. Directory nodes
have a high capacity and fan-out of typically 10 - 20. As insert
operations are sent to CR-OLAP, the size and height of the hat
(PDCR tree) grows. When directory nodes of the hat reach
height h, their children become roots at subtrees stored at new
worker nodes that are allocated through the cloud environment.
An illustration of such a distributed PDCR tree is shown in
Figure 5.

Insertion

S1 S2 S3 S4

Query

Hat

Leaf Node

Fig. 5. Illustration of a distributed PDCR tree.

For a typical database size, the hat will usually contain
only directory nodes and all data will be stored in the subtrees
s1, . . . , sn. After the initial set of data insertions, all leaf nodes
in the hat will usually be directory nodes of height h, and
the roots of subtrees in workers will typically be directory
nodes as well. As illustrated in Figure 5, both insert and query
operations are executed concurrently.

Concurrent insert and query operations

Each query operation in the input stream is handed to the
master which traverses the hat. Note that, at each directory
node the query can generate multiple parallel threads, depend-
ing on how many child nodes have a non empty intersection
with the query. Eventually, each query will access a subset of
the hat’s leaves, and then the query will be transferred to the
workers storing the subtrees rooted at those leaves. Each of
those workers will then in parallel execute the query on the
respective subtrees, possibly generating more parallel threads
within each subtree. For more details see Algorithm 3 and
Algorithm 4 in the Appendix.

For each insert operation in the input stream, the master
will search the hat, arriving at one of the leaf nodes, and
then forward the insert operation to the worker storing the
subtree rooted at that leaf. For more details see Algorithm 1
and Algorithm 2 in the Appendix. Figures 6 and 7 illustrate
how new workers and new subtrees are added as more data
items get inserted. Figures 6 illustrates insertions creating
an overflow at node A, resulting in a horizontal split at
A into A1 and A2 plus a new parent node C. Capacity



overflow at C then triggers a vertical split illustrated in 7. This
creates two subtrees in two different workers. As outlined in
more details in the CR-OLAP “migration strategies” outlined
below, new workers are requested from the cloud environment
when either new subtrees are created or when subtree sizes
exceed the memory of their host workers. Workers usually
store multiple subtrees. However, CR-OLAP randomly shuffles
subtrees among workers. This ensures that query operations
accessing a contiguous range of leaf nodes in the hat create a
distributed workload among workers.

R

A B
Cut 

level

c = 2

R

C B

A
1

A
2

(a)                                                                  (b)

Data Node

Directory Node

Fig. 6. Insertions triggering creation of new workers and subtrees. Part 1.
(a) Current hat configuration. (b) Insertions create overflow at node A and
horizontal split.

R

C B

A
1 A

2

Subtree 1

Subtree 2

R

C B

D
A
2

Worker 1

A
1

A
3

Worker 2

(a)                                                                  (b)

Fig. 7. Insertions triggering creation of new workers and subtrees. Part 2.
(a) Same as Figure 6b with critical subtrees highlighted. (b) Insertions create
overflow at node C and vertical split, triggering the creation of two subtrees
in two different workers.

For correct real time processing of an input stream of mixed
insert and query operations, CR-OLAP needs to ensure that the
result for each OLAP query includes all data inserted prior
but no data inserted after the query was issued within the
input stream. We will now discuss how this is achieved in
a distributed cloud based system where we have a collection
of subtrees in different workers, each of which is processing
multiple concurrent insert and query threads. In our previous
work [13] we presented a method to ensure correct query
processing for a single PDC tree on a mutli-core processor,
where multiple insert and query operations are processed
concurrently. The PDC tree maintains for each data or directory
item a time stamp indicating its most recent update, plus it
maintains for all nodes of the same height a left-to-right linked
list of all siblings. Furthermore, each query thread maintains a
stack of ancestors of the current node under consideration,
together with the time stamps of those items. We refer to
[13] for more details. The PDCR tree presented in this paper

inherits this mechanism for each of its subtrees. In fact, the
above mentioned sibling links are shown as horizontal links
in Figures 6 and 7. With the PDCR tree being a collection of
subtrees, if we were to maintain sibling links between subtrees
to build linked list of siblings across all subtrees then we would
ensure correct query operation in the same way as for the
PDC tree [13]. However, since different subtrees of a PDCR
tree typically reside on different workers, a PDCR tree only
maintains sibling links inside subtrees but it does not maintain
sibling links between different subtrees. The following lemma
show that correct real time processing of mixed insert and
query operations is still maintained.

Theorem 1. Consider the situation depicted in Figure 8
where the split of node B created a new node D and subtree
rooted at D that is stored separately from the subtrees rooted
at A and B. Then, the sibling links labelled “a” and “c” are
not required for correct real time query processing (as defined
above).

Proof outline. A full case analysis is lengthy and omitted
due to space limitations. Here we only present the most
interesting and critical case. Assume a thread for a query Q
that is returning from searching the subtree below B only to
discover that B has been modified. Let Bstack be the old value
of B that is stored in the stack stack(Q) associated with Q.
If neither B nor any ancestor of B are in stack(Q) then Q
does not contain any data covered by B. Otherwise, Q will
follow the sibling link labelled “b” to find B′ and remaining
data from the node split of B.

P

A CD

B B’

a

b

c

Fig. 8. Illustration for Theorem 1.

Load balancing

CR-OLAP is executed on a cloud platform with (m + 1)
processors (m workers and one master). As discussed earlier,
CR-OLAP uses the cloud’s elasticity to increase m as the
number of data items increases. We now discuss in more
detail CR-OLAP’s mechanisms for worker allocation and load
balancing in the cloud. The insert operations discussed above
create independent subtrees for each height h leaf of the hat.
Since internal (directory) nodes have a high degree (typi-
cally 10 - 20), a relatively small height of the hat typically
leads to thousands of height h leaves and associated subtrees
s1, . . . , sn. The master processor keeps track of the subtree
locations and allocation of new workers, and it makes sure
that a relatively high n/m ratio is maintained.

As indicated above, CR-OLAP shuffles these n >> m
subtrees among the m workers. This ensures that threads
of query operations are evenly distributed over the workers.



Furthermore, CR-OLAP performs load balancing among the
workers to ensure both, balanced workload and memory uti-
lization. The master processor keeps track of the current sizes
and number of active threads for all subtrees. For each worker,
its memory utilization and workload are the total number
of threads of its subtrees and the total size if its subtrees,
respectively.

If a worker w has a memory utilization above a certain
threshold (e.g. 75% of its total memory), then the master
processor determines the worker w′ with the lowest memory
utilization and checks whether it is possible to store an addi-
tional subtree from w while staying well below it’s memory
threshold (e.g. 50% of its total memory). If that is not possible,
a new worker w′ is allocated within the cloud environment.
Then, a subtree from w is compressed and sent from w to
w′ via message passing. As discussed earlier, PDCR trees are
implemented in array format and using only array indices as
pointers. This enables fast compression and decompression
of subtrees and greatly facilitates subtree migration between
workers. Similarly, if a worker w has a workload utilization
that is a certain percentage above the average workload of the
m workers and is close to the maximum workload threshold for
a single worker, then the master processor determines a worker
w′ with the lowest workload and well below its maximum
workload threshold. If that is not possible, a new worker w′

is allocated within the cloud environment. Then, the master
processor initiates the migration of one or more subtrees from
w (and possibly other workers) to w′.

V. EXPERIMENTAL EVALUATION ON AMAZON EC2

Software

CR-OLAP was implemented in C++, using the g++ com-
piler, OpenMP for multi-threading, and ZeroMQ [33] for
message passing between processors. Instead of the usual MPI
message passing library we chose ZeroMQ because it better
supports cloud elasticity and the addition of new processors
during runtime. CR-OLAP has various tunable parameters. For
our experiments we set the depth h of the hat to h = 3, the
directory node capacity c to c = 10 for the hat and c = 15
for the subtrees, and the number k of threads per worker to
k = 16.

Hardware/OS

CR-OLAP was executed on the Amazon EC2 cloud. For
the master processor we used an Amazon EC2 m2.4xlarge
instance: “High-Memory Quadruple Extra Large” with 8 vir-
tual cores (64-bit architecture, 3.25 ECUs per core) rated at
26 compute units and with 68.4 GiB memory. For the worker
processors we used Amazon EC2 m3.2xlarge instances: “M3
Double Extra Large” with 8 virtual cores (64-bit architecture,
3.25 ECUs per core) rated at 26 compute units and with 30
GiB memory. The OS image used was the standard Amazon
CentOS (Linux) AMI.

Comparison baseline: STREAM-OLAP

As outlined in Section II, there is no comparison system for
CR-OLAP that provides cloud based OLAP with full real time
capability and support for dimension hierarchies. To establish
a comparison baseline for CR-OLAP, we therefore designed

and implemented a STREAM-OLAP method which partitions
the database between multiple cloud processors based on
one chosen dimension and uses parallel memory to cache
streaming on the cloud processors to answer OLAP queries.
More precisely, STREAM-OLAP builds a 1-dimensional index
on one ordered dimension dstream and partitions the data into
approx. 100 × m arrays. The arrays are randomly shuffled
between the m workers. The master processor maintains the
1-dimensional index. Each array represents a segment of the
dstream dimension and is accessed via the 1-dimensional in-
dex. The arrays themselves are unsorted, and insert operations
simply append the new item to the respective array. For query
operations, the master determines via the 1-dimensional index
which arrays are relevant. The workers then search those arrays
via linear search, using memory to cache streaming.

The comparison between CR-OLAP (using PDCR trees)
and STREAM-OLAP (using a 1-dimensional index and mem-
ory to cache streaming) is designed to examine the tradeoff
between a sophisticated data structure which needs fewer
data accesses but is less cache efficient and a brute force
method which accesses much more data but optimizes cache
performance.

Test data

For our experimental evaluation of CR-OLAP and
STREAM-OLAP we used the standard TPC-DS “Decision
Support” benchmark for OLAP systems [34]. We selected
“Store Sales”, the largest fact table available in TPC-DS.
Figure 9 shows the fact table’s 8 dimensions, and the respective
8 dimension hierarchies below each dimension. The first box
for each dimension denotes the dimension name while the
boxes below denote hierarchy levels from highest to lowest.
Dimensions Store, Item, Address, and Promotion are unordered
dimensions, while dimensions Customer, Date, Household and
Time are ordered. TPC-DS provides a stream of insert and
query operations on “Store Sales” which was used as input
for CR-OLAP and STREAM-OLAP. For experiments where we
were interested in the impact of query coverage (the portion of
the database that needs to be aggregated for an OLAP query),
we selected sub-sequences of TPC-DS queries with the chosen
coverages.

All Dims

ItemCustomerStore TimePromotionHouseholdDate Address

Country

Ordered Ordered

Ordered

Ordered

State

City

BYear

BMonth

BDay

Category

Class

Brand

Year

Month

Day

Country

State

City

Income 
Band

Name Hour

Minute

Fig. 9. The 8 dimensions of the TPC-DS benchmark for the fact table
“Store Sales”. Boxes below each dimension specify between 1 and 3 hierarchy
levels for the respective dimension. Some dimensions are “ordered” and the
remaining are not ordered.

Test results: impact of the number of workers (m) for fixed
database size (N )

We tested how the time of insert and query operations
for CR-OLAP and STREAM-OLAP changes for fixed database
size (N ) as we increase the number of workers (m). Using a



variable number of workers 1 ≤ m ≤ 8, we first inserted
40 million items (with d=8 dimensions) from the TPC-DS
benchmark into CR-OLAP and STREAM-OLAP, and then we
executed 1,000 (insert or query) operations on CR-OLAP
and STREAM-OLAP. Since workers are virtual processors in
the Amazon EC2 cloud, there is always some performance
fluctuation because of the virtualization. We found that the total
(or average) of 1,000 insert or query operations is a sufficiently
stable measure. The results of our experiments are shown in
Figures 10, 11, and 12.

Figure 10 shows the time for 1,000 insertions in CR-
OLAP (PDCR-tree) and STREAM-OLAP (1D-index) as a func-
tion of the number of workers (m). As expected, insertion
times in STREAM-OLAP are lower than in CR-OLAP because
STREAM-OLAP simply appends the new item in the respective
array while CR-OLAP has to perform tree insertions with
possible directory node splits and other overheads. However,
STREAM-OLAP shows no speedup with increasing number of
workers (because only one worker performs the array append
operation) whereas CR-OLAP shows a significant speedup
(because the distributed PDCR tree makes use of the multiple
workers). It is important to note that insertion times are not
visible to the users because they do not create any user
response. What is important to the user are the response times
for OLAP queries. Figure 11 shows the time for 1,000 OLAP
queries in CR-OLAP and STREAM-OLAP as a function of
the number of workers (m). Figure 12 shows the speedup
measured for the same data. We selected OLAP queries with
10%, 60% and 95% query coverage, which refers to the
percentage of the entire range of values for each dimension
that is covered by a given OLAP query. The selected OLAP
queries therefore aggregate a small, medium and large portion
of the database, resulting in very different workloads. We
observe in Figure 11 that CR-OLAP significantly outperforms
STREAM-OLAP with respect to query time. The difference in
performance is particularly pronounced for queries with small
or large coverages. For the former, the tree data structure shows
close to logarithmic performance and for the latter, the tree can
compose the result by adding the aggregate values stored at a
few roots of large subtrees. The worst case scenario for CR-
OLAP are queries with medium coverage around 60% where

the tree performance is proportional to N1−
1

d . However, even
in this worst case scenario, CR-OLAP outperforms STREAM-
OLAP. Figure 12 indicates that both systems show a close to
linear speedup with increasing number of workers, however
for CR-OLAP that speedup occurs for much smaller absolute
query times.

Test results: impact of growing system size (N & m combined)

In an elastic cloud environment, CR-OLAP and STREAM-
OLAP increase the number of workers (m) as the database
size (N ) increases. The impact on the performance of in-
sert and query operations is shown in Figures 13 and 14,
respectively. With growing system size, the time for insert
operations in CR-OLAP (PDCR-tree) approaches the time for
STREAM-OLAP (1D-index). More importantly however, the
time for query operations in CR-OLAP again outperforms the
time for STREAM-OLAP by a significant margin, as shown
in Figure 14. Also, it is very interesting that the for both
systems, the query performance remains essentially unchanged
with increasing database size and number of workers. This is

obvious for STREAM-OLAP where the size of arrays to be
searched simply remains constant but it is an important obser-
vation for CR-OLAP. Figure 14 indicates that the overhead
incurred by CR-OLAP’s load balancing mechanism (which
grows with increasing m) is balanced out by the performance
gained through more parallelism. CR-OLAP appears to scale
up without affecting the performance of individual queries.

Test results: impact of the number of dimensions

It is well known that tree based search methods can become
problematic when the number of dimensions in the database in-
creases. In Figures 15 and 16 we show the impact of increasing
d on the performance of insert and query operations in CR-
OLAP (PDCR-tree) and STREAM-OLAP (1D-index) for fixed
database size N = 40 million and m = 8 workers. Figure 15
shows some increase in insert time for CR-OLAP because the
PDCR tree insertion inherits from the PDC tree a directory
node split operation with an optimization phase that is highly
sensitive to the number of dimensions. However, the result of
the tree optimization is improved query performance in higher
dimensions. As shown in Figure 16, the more important time
for OLAP query operations grows only slowly as the number
of dimensions increases. This is obvious for the array search
in STREAM-OLAP but for the tree search in CR-OLAP this is
an important observation.

Test results: impact of query coverages

Figures 17, 18, 19, and 20 show the impact of query
coverage on query performance in CR-OLAP (PDCR-tree)
and STREAM-OLAP (1D-index). For fixed database size N =
40Mil, number of workers m = 8, and number of dimensions
d = 8, we vary the query coverage and observe the query
times. In addition we observe the impact of a “*” in one of the
query dimensions. Figures 17 and 18 show that the “*” values
do not have a significant impact for CR-OLAP. As discussed
earlier, CR-OLAP is most efficient for small and very large
query coverage, with maximum query time somewhere in the
mid range. (In this case, the maximum point is shifted away
from the typical 60% because of the “*” values.) Figures 19,
and 20 show the performance of STREAM-OLAP as compared
to CR-OLAP (ratio of query times). It shows that CR-OLAP
consistently outperforms STREAM-OLAP by a factor between
5 and 20.

Test results: query time comparison for selected query patterns
at different hierarchy levels

Figure 21 shows a query time comparison between CR-
OLAP (PDCR-tree) and STREAM-OLAP (1D-index) for se-
lected query patterns. For fixed database size N = 40Mil,
number of workers m = 8 and d = 8 dimensions, we test for
dimension Date the impact of value “*” for different hierarchy
levels. CR-OLAP is designed for OLAP queries such as “total
sales in the stores located in California and New York during
February-May of all years’ which act at different levels of
multiple dimension hierarchies. For this test, we created 7
combinations of “*” and set values for hierarchy levels Year,
Month, and Day: *-*-*, year-*-*, year-month-*, year-month-
day, *-month-*, *-month-day, and *-*-day. We then selected
for each combination queries with coverages 10%, 60%, and
95%. The test results are summarized in Figure 21. The
main observation is that CR-OLAP consistently outperforms



STREAM-OLAP even for complex and very broad queries
that one would expect could be easier solved through data
streaming than through tree search.

VI. CONCLUSION

We introduced CR-OLAP, a Cloud based Real-time OLAP
system based on a distributed PDCR tree, a new parallel and
distributed index structure for OLAP, and evaluated CR-OLAP
on the Amazon EC2 cloud for a multitude of scenarios. The
tests demonstrate that CR-OLAP scales well with increasing
database size and increasing number of cloud processors. CR-
OLAP has the potential to enable OLAP systems with real-time
OLAP query processing for large databases.
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Fig. 10. Time for 1000 insertions as a function
of the number of workers. (N = 40Mil, d = 8,
1 ≤ m ≤ 8)
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 0

 1000

 2000

 3000

 4000

 5000

N=10M,m=1

N=20M,m=2

N=40M,m=4

N=60M,m=6

N=80M,m=8

Ti
m

e 
pe

r 
10

00
 o

pe
ra

tio
ns

(s
ec

)

Increasing system size(N,m)

PDCR-tree(10% coverage)
1D-index(10% coverage)

PDCR-tree(60% coverage)
1D-index(60% coverage)

PDCR-tree(95% coverage)
1D-index(95% coverage)

Fig. 14. Time for 1000 queries as a function of
system size: N & m combined. (10Mil ≤ N ≤

80Mil, d = 8, 1 ≤ m ≤ 8)

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 4  5  6  7  8

Ti
m

e 
pe

r 
10

00
 o

pe
ra

tio
ns

(s
ec

)

Number of Dimensions(d)

PDCR-tree
1D-index

Fig. 15. Time for 1000 insertions as a function of
the number of dimensions. (N = 40Mil, 4 ≤ d ≤

8, m = 8)

 0

 100

 200

 300

 400

 500

 600

 700

 800

 4  5  6  7  8

Ti
m

e 
pe

r 
10

00
 o

pe
ra

tio
ns

(s
ec

)

Number of dimensions(d)

PDCR-tree(10% coverage)
1D-index(10% coverage)

PDCR-tree(60% coverage)
1D-index(60% coverage)

PDCR-tree(95% coverage)
1D-index(95% coverage)

Fig. 16. Time for for 1000 queries as a function
of the number of dimensions. The values for “1D-
index 95% coverage” are 828.6, 1166.4, 1238.5,
1419.7 and 1457.8, respectively. (N = 40Mil,
4 ≤ d ≤ 8, m = 8)

 0

 50

 100

 150

 200

 250

 300

 350

10 20 30 40 50 60 70 80 90

Ti
m

e 
pe

r 
10

00
 o

pe
ra

tio
ns

(s
ec

)

Query coverage per dimension(%)

Store is *
Customer is *

Item is *
Date is *

Address is *
Household is *
Promotion is *

Time is *
No dimension is *

Fig. 17. Time for 1000 queries (PDCR tree) as a
function of query coverages: 10%−90%. Impact of
value “*” for different dimensions. (N = 40Mil,
m = 8, d = 8)

 0

 50

 100

 150

 200

 250

 300

 350

91 92 93 94 95 96 97 98 99

Ti
m

e 
pe

r 
10

00
 o

pe
ra

tio
ns

(s
ec

)

Query coverage per dimension(%)

Store is *
Customer is *

Item is *
Date is *

Address is *
Household is *
Promotion is *

Time is *
No dimension is *

Fig. 18. Time for 1000 queries (PDCR tree) as a
function of query coverages: 91%−99%. Impact of
value “*” for different dimensions. (N = 40Mil,
m = 8, d = 8)

 0

 5

 10

 15

 20

10 20 30 40 50 60 70 80 90

Ti
m

e 
ra

tio
 o

f 
1D

-in
de

x 
ov

er
 P

D
CR

-t
re

e

Query coverage per dimension(%)

Store is *
Customer is *

Item is *
Date is *

Address is *
Household is *
Promotion is *

Time is *
No dimension is *

Fig. 19. Time comparison for 1000 queries (Ratio:
1D-index / PDCR tree) for query coverages 10%−

90%. Impact of value “*” for different dimensions.
(N = 40Mil, m = 8, d = 8)

 0

 5

 10

 15

 20

91 92 93 94 95 96 97 98 99

Ti
m

e 
ra

tio
 o

f 
1D

-in
de

x 
ov

er
 P

D
CR

-t
re

e

Query coverage per dimension(%)

Store is *
Customer is *

Item is *
Date is *

Address is *
Household is *
Promotion is *

Time is *
No dimension is *

Fig. 20. Time comparison for 1000 queries (Ratio:
1D-index / PDCR tree) for query coverages 91%−

99%. Impact of value “*” for different dimensions.
(N = 40Mil, m = 8, d = 8)

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

* * * y * * y m * y m d * m * * m d * * d

Ti
m

e 
pe

r 
10

00
 o

pe
ra

tio
ns

(s
ec

)

* in different hierarchy levels of dimension Date

PDCR-tree(10% coverage)
PDCR-tree(60% coverage)
PDCR-tree(95% coverage)
1D-index(10% coverage)
1D-index(60% coverage)
1D-index(95% coverage)

Fig. 21. Query time comparison for selected query
patterns for dimension Date. Impact of value “*” for
different hierarchy levels of dimension Date. (N =

40Mil, m = 8, d = 8).



APPENDIX

Algorithm 1: Hat Insertion

Input: D (new data item).
Output: void
Initialization:
Set ptr = root

Repeat:
Determine the child node C of ptr that causes minimal
MBR/MDS enlargement for the distributed PDCR/PDC
tree if D is inserted under C. Resolve ties by minimal
overlap, then by minimal number of data nodes.
Set ptr = C.
Acquire a LOCK for C.
Update MBR/MDS and TS of C.
Release the LOCK for C.
Until: ptr is a leaf node.
if ptr is the parent of Data Nodes then

Acquire a LOCK for ptr.
Insert D under ptr.
Release the LOCK for C.
if capacity of ptr is exceeded then

Call Horizontal Split for ptr.
if capacity of the parent of ptr is exceeded then

Call Vertical Split for the parent of ptr.
if depth of ptr is greater than h then

Create a new subtree with the parent of
ptr as its root, ptr and its sibling node as
the children of the root.
Choose the next available worker and
update the list of subtrees in the master.
Send the new subtree and its data nodes
to the chosen worker.

end
end

end
end
if ptr is the parent of a subtree then

Find the worker that contains the subtree from the
list of subtrees.
Send the insertion transaction to the worker.

end
End of Algorithm.

Algorithm 2: Subtree Insertion

Input: D (new data item).
Output: void
Initialization:
Set ptr = root

Repeat:
Determine the child node C of ptr that causes minimal
MBR/MDS enlargement for the distributed PDCR/PDC
tree if D is inserted under C. Resolve ties by minimal
overlap, then by minimal number of data nodes.
Set ptr = C.
Acquire a LOCK for C.
Update MBR/MDS and TS of C.
Release the LOCK for C.
Until: ptr is a leaf node.
Acquire a LOCK for ptr.
Insert D under ptr.
Release the LOCK for C.
if capacity of ptr is exceeded then

Call Horizontal Split for ptr.
if capacity of the parent of ptr is exceeded then

Call Vertical Split for the parent of ptr.
end

end
End of Algorithm.



Algorithm 3: Hat Query

Input: Q (OLAP query).
Output: A result set or an aggregate value
Initialization:
Set ptr = root
Push ptr into a local stack S for query Q.

Repeat:
Pop the top item ptr′ from stack S.
if TS(time stamp) of ptr′ is smaller (earlier) than the
TS of ptr then

Using the sibling links, traverse the sibling nodes of
ptr until a node with TS equal to the TS of ptr is
met. Push the visited nodes including ptr into the
stack (starting from the rightmost node) for
reprocessing.

end
for each child C of ptr do

if MBR/MDS of C is fully contained in MBR/MDS
of Q then

Add C and its measure value to the result set.
end
else

if MBR/MDS of C overlaps MBR/MDS of Q
then

if C is the root of a sub-tree then
Send the query Q to the worker that
contains the subtree.

end
else

Push C into the stack S.
end

end
end

end
Until: stack S is empty.
if the query Q is dispatched to a subtree then

Wait for the partial results of the dispatched queries
from workers.
Create the final result of the collected partial results.
Send the final result back to the client.

end
End of Algorithm.

Algorithm 4: Subtree Query

Input: Q (OLAP query).
Output: A result set or an aggregate value
Initialization:
Set ptr = root
Push ptr into a local stack S for query Q.

Repeat:
Pop the top item ptr′ from stack S.
if TS(time stamp) of ptr′ is smaller (earlier) than the
TS of ptr then

Using the sibling links, traverse the sibling nodes of
ptr until a node with TS equal to the TS of ptr is
met. Push the visited nodes including ptr into the
stack starting from the rightmost node for
reprocessing.

end
for each child C of ptr do

if MBR/MDS of C is fully contained in MBR/MDS
of Q then

Add C and its measure value to the result set.
end
else

if MBR/MDS of C overlaps MBR/MDS of Q
then

Push C into the stack S.
end

end
end
Until: stack S is empty.
Send the result back to the master or client depending
on whether Q is an aggregation query or a data report
query.
End of Algorithm.




