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A Distributed Version of the Hungarian Method
for Multi-Robot Assignment

Smriti Chopra, Giuseppe Notarstefano, Matthew Rice, and Magnus Egerstedt

Abstract—In this paper, we propose a distributed version of the
Hungarian Method to solve the well known assignment problem.
In the context of multi-robot applications, all robots cooperatively
compute a common assignment that optimizes a given global
criterion (e.g. the total distance traveled) within a finite set of local
computations and communications over a peer-to-peer network.
As a motivating application, we consider a class of multi-robot
routing problems with “spatio-temporal” constraints, i.e. spatial
targets that require servicing at particular time instants. As a
means of demonstrating the theory developed in this paper, the
robots cooperatively find online, suboptimal routes by applying
an iterative version of the proposed algorithm, in a distributed
and dynamic setting. As a concrete experimental test-bed, we
provide an interactive “multi-robot orchestral” framework in
which a team of robots cooperatively plays a piece of music
on a so-called orchestral floor.

NOMENCLATURE

In the following table, we present the nomenclature used in

this paper.

Table of Notation

V , Vertex partitioning of two disjoint sets R (robots) and P
(targets) respectively, denoted by V = (R,P )

Ei
orig , Edge set containing the edges between a robot i ∈ R

and every target in P

wi
orig , Weight function corresponding to the edge set Ei

orig

Gi
orig , Robot i’s original information, denoted by the bipartite

weighted graph Gi
orig = (V,Ei

orig , w
i
orig)

Ei
y , Robot i’s equality subgraph edges

Ei
cand

, Robot i’s candidate edges

Ei
lean

, Edge partitioning of two disjoint sets Ei
y and Ei

cand

respectively, denoted by Ei
lean

= (Ei
y , E

i
cand

)

wi
lean

, Weight function corresponding to the edge set Ei
lean

Gi
lean

, Robot i’s information, denoted by the bipartite weighted
graph Gi

lean
= (V,Ei

lean
, wi

lean
)

yi , Robot i’s vertex labeling function

γi , Robot i’s counter value

Gi , Robot i’s full state, given by Gi = (Gi
lean

, yi, γi)

M i , Robot i’s Maximum Cardinality Matching

V i
c , Robot i’s MInimum Vertex Cover
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I. INTRODUCTION

Assignment problems are an integral part of combinatorial

optimization, with wide applicability in theory as well as

practice [1, 2, 3, 4]. Various techniques have been proposed for

solving such problems (see [5, 6, 7] for early references). For

scenarios involving multiple mobile robots, assignment prob-

lems often comprise of finding a one-to-one matching between

robots and tasks, while minimizing some assignment benefit.

Moreover, a frequent requirement is the need for a distributed

framework, since an infrastructure that supports a centralized

authority is often not a feasible option (prohibitively high cost

for global computation and information). It is preferable that

robots coordinate with one another to allocate and execute

individual tasks, through an efficient, distributed mechanism

- a feat often challenging due to the limited communication

capabilities and global knowledge of each robot.

In this paper, we address such assignment problems with

linear objective functions, formally called Linear Sum As-

signment Problems (LSAPs) [8], under a distributed setting

in which robots communicate locally with “adjacent neigh-

bors” via a dynamic, directed information-exchange network.

Among centralized algorithms, the Hungarian Method [9] was

the first to compute an optimal solution to the LSAP in finite

time, and as such, forms the basis of our proposed distributed

algorithm.

In cooperative robotics, assignment problems often form

building blocks for more complex tasks, and have been widely

investigated in the literature [10, 11, 12, 13]. In particular,

auction-based (market) algorithms are a very popular approach

towards task assignments (see [14] for a survey). Such algo-

rithms require robots to bid on tasks, rendering them more

or less attractive based on the corresponding prices computed

[15, 16]. A generic framework and a variety of bidding rules

for auction-based multi-robot routing have been proposed in

[17]. An auction algorithm for dynamic allocation of tasks

to robots in the presence of uncertainties and malfunctions

has been proposed and tested in [18]. Auction algorithms,

though computationally efficient, usually require a coordinator

or shared memory. In [19], the authors develop an auction

algorithm without such constraints, and apply it towards multi-

robot coordination in [20]. In particular, the agents obtain

updated prices, required for accurate bidding, in a multi-

hop fashion using only local information. The authors prove

that the algorithm converges to an assignment that maximizes

the total assignment benefit within a linear approximation of

the optimal one, in O(∆n3
l

max{ci.j}�min{ci.j}
✏

m

) iterations.
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In [21], a market-based decision strategy is proposed for

decentralized task selection, and a consensus routine, based

on local communications, is used for conflict resolutions and

agreement on the winning bid values. In [22], an auction

algorithm is proposed to provide an almost optimal solution to

the assignment problem with set precedence constraints. The

algorithm is first presented in a shared-memory scenario, and

later extended via a consensus algorithm, to a distributed one.

Game-theoretic formulations for solving vehicle-target as-

signment problems are discussed [30, 31], where robots are

viewed as self-interested decision makers, and the objective is

to optimize a global utility function through robots that make

individually rational decisions to optimize their own utility

functions. Among other decentralized techniques, coordination

algorithms for task allocation that use only local sensing

and no direct communication between robots have been

proposed in [23]. Additionally, consensus based approaches

that typically require the robots to converge on a consistent

situational awareness before performing the assignment have

been explored in [24, 25, 26]. Though such methods are

robust, they are typically slow to converge, and require the

transmission of large amounts of data. Distributed methods

that solve linear programs, for instance, can also be employed

towards solving assignment problems [27, 28], though they are

computationally expensive, especially in comparison to more

streamlined algorithms, developed for the purpose of solving

assignment problems.

In [29, 35], the authors propose a distributed version of

the Hungarian Method, similar to the contribution in this

paper. They show that their algorithm converges in O(n3)
cumulative time, with O(n3) number of messages exchanged

among the robots, and no coordinator or shared memory. In

particular, their algorithm involves root robots that (i) initiate

message exchange with other robots in the network via a

depth-first search (DFS), and (ii) synchronize the decision

rounds (iterations, each containing multiple communication

hops) across all robots.

The main distinctive feature of this paper is the redesign

of the popular (centralized) Hungarian Method, under a dis-

tributed computation model, characteristic of traditional multi-

robot applications - where every iteration of an algorithm ide-

ally involves multiple anonymous agents performing two tasks:

1) exchanging information with their neighbors (via single-

hop communication), and 2) executing identical computation

routines. Our primary objective is not to improve convergence

speeds, or information overheads of existing methods, but

to remain comparable while providing a novel, distributed

implementation of the centralized method. We prove that our

algorithm converges in O(n3) iterations, and show through

simulation experiments with varying problem sizes, that the

average convergence is much faster in practice, thus making

our algorithm relevant to current literature.

The contribution of this paper is twofold: (i) As the main

contribution, we develop a distributed version of the Hungarian

Method to enable a team of robots to cooperatively com-

pute optimal solutions to task assignment problems (LSAPs),

without any coordinator or shared memory. Specifically, each

robot runs a local routine to execute ad-hoc sub-steps of the

centralized Hungarian Method, and exchanges estimates of

the solution with neighboring robots. We show that in finite

time (or in a finite number of communication rounds O(r3)
if executing synchronously, with r being the total number of

robots in the system), all robots converge to a common optimal

assignment (the LSAP can have multiple optimal solutions).

Through simulation experiments over varying problem sizes,

we characterize the average number of iterations required for

convergence, as well as the computational load per robot.

(ii) We demonstrate our proposed algorithm by extending

it towards a class of “spatio-temporal” multi-robot routing

problems previously introduced in [36, 37], now considered

under a distributed and dynamic setting. In essence, the robots

find online, sub-optimal routes by solving a sequence of as-

signment problems iteratively, using the distributed algorithm

for each instance. As a motivating application and concrete

experimental test-bed, we develop the “multi-robot orchestral”

framework, where spatio-temporal routing is musically inter-

preted as “playing a series of notes at particular time instants”

on a so-called orchestral floor (a music surface where planar

positions correspond to distinct notes of different instruments).

Moreover, we allow a user to act akin to a “conductor”, modi-

fying the music that the robots are playing in real time through

a tablet interface. Under such a framework, we demonstrate

the theory developed in this paper through simulations and

hardware experiments.

The remainder of this paper is organized as follows: In

Section II, we briefly review the assignment problem, and the

Hungarian Method used for solving it. In Section III, we set-

up the distributed version of the assignment problem central to

this paper, while in Section IV, we provide a description of our

proposed algorithm. We discuss convergence and optimality in

Section V, followed by the motivating application of spatio-

temporal multi-robot routing in Section VI.

II. A REVIEW OF THE LINEAR SUM ASSIGNMENT

PROBLEM AND THE HUNGARIAN METHOD

In this section, we consider the Linear Sum Assignment

Problem (LSAP) under a centralized setting [8], before we

delve into its proposed distributed counterpart. We revisit some

key definitions and theorems, used to express the general form

of the LSAP in graph theoretic terms, and to understand the

Hungarian Method employed for solving it.

- Bipartite Graph: A graph G = (V,E), where the vertex

set V is decomposed into two disjoint sets of vertices R and

P respectively, such that no two vertices in the same set are

adjacent. In general, we say that the graph G has bipartition

(R,P ).
- Matching: A set of edges without common vertices.

- Maximum Cardinality Matching: A matching that con-

tains the largest possible number of edges.

- Vertex Cover: A set of vertices such that each edge is

incident on at least one vertex of the set.

- Minimum Vertex Cover: A vertex cover that contains the

smallest possible number of vertices.
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Remark 1: In a bipartite graph, the number of edges in a

maximum cardinality matching equals the number of vertices

in a minimum vertex cover (by Konig’s theorem [38]). In fact,

due to this inter-relation between a matching and a vertex

cover, algorithms used for finding a maximum cardinality

matching M (e.g. Hopcroft-Karp [39]), can be extended to

finding a corresponding minimum vertex cover Vc ⇢ V . ⇤

A. The Linear Sum Assignment Problem

Using the definitions presented above, we proceed to review

the formal, graph theoretic interpretation of the LSAP.

Minimum Weight Bipartite Matching Problem (P)

“Given a graph G = (V,E) with bipartition (R,P ) and

weight function w : E ! R, the objective is to find a maximum

cardinality matching M of minimum cost, where the cost of

matching M is given by c(M) =
P

e2M w(e)”.

Without loss of generality, we can assume that G is com-

plete1, i.e. there exists an edge between every vertex i 2 R,

and every vertex j 2 P , and balanced2, i.e. |R| = |P | =
|V |/2. Hence, a maximum cardinality matching M is always

a perfect matching, i.e. |M | = |V |/2. Next, we review the

dual of the above problem:

Dual of Minimum Weight Bipartite Matching Problem (D)

“Given a graph G = (V,E) with bipartition (R,P ), a

weight function w : E ! R, and a vertex labeling function

y : V ! R, the objective is to find a feasible labeling of

maximum cost, where a feasible labeling is a choice of labels

y, such that w(i, j) � y(i) + y(j) 8 (i, j) 2 E, and the cost

of the labeling is given by c(y) =
P

i2R y(i) +
P

j2P y(j)”.

Moreover, given a feasible labeling y, an equality subgraph

Gy = (V,Ey) is defined as a subgraph of G where,

Ey = {(i, j) | y(i) + y(j) = w(i, j)} (1)

and the slack of an edge (i, j) is defined as,

slack(w, y, i, j) = w(i, j)� (y(i) + y(j)) (2)

B. The Hungarian Method

Now that we have discussed the Minimum Weight Bipartite

Matching Problem, as well as its corresponding dual, we

review a key theorem that provides the basis for the Hungarian

Method [9], the first primal-dual algorithm developed for

solving the LSAP.

Theorem 1 (Kuhn-Munkres): Given a bipartite graph G =
(V,E) with bipartition (R,P ), a weight function w : E !
R�0, and a vertex labeling function y : V ! R, let M and

y be feasible (M is a perfect matching and y is a feasible

labeling). Then M and y are optimal if and only if M ✓ Ey ,

1by adding edges with prohibitively large weights denoted by M.
2by adding dummy vertices and associated 0-weight edges.

i.e. each edge in M is also in the set of equality subgraph

edges Ey , given by (1). ⇤

From this point onwards, for notational convenience, we

will denote the weighted, bipartite graph by G = (V,E,w),
i.e. a tuple consisting of the vertex set V , the edge set E and

the corresponding edge weight function w.

We proceed to provide a brief description of the Hungarian

Method3 that will assist us in explaining our proposed dis-

tributed algorithm in later sections of this paper (see Figures

1 and 2 for corresponding instances).

function Hungarian Method (G)

% Initialization Step

y = arbitrary feasible labeling, example:

y(i 2 R) = minj2P w(i, j) and y(j 2 P ) = 0

Ey = equality subgraph edges using (1)

(M,Vc) = maximum cardinality matching and corre-

sponding minimum vertex cover, given (V,Ey) (see Re-

mark 1)

while M is not a perfect matching do

% Step 1(a)

for i 2 R \Rc do

Choose any j? 2 argminj2P\Pc
slack(w, y, i, j),

and set eicand = (i, j?) using (2)

end for

Ecand = [i2R\Rc
{eicand}

% Step 1(b)

δ = min(i,j)2Ecand
slack(w, y, i, j)

y(i) = y(i)� δ, 8i 2 Rc

y(j) = y(j) + δ, 8j 2 P \ Pc

% Step 2

Ey = equality subgraph edges

(M,Vc) = maximum cardinality matching and corre-

sponding minimum vertex cover, given (V,Ey)

end while

Remark 2: As mentioned in Step 1, the selection of the

candidate edges is done based on the minimum vertex cover

Vc = (Rc, Pc). In particular, the set of candidate edges Ecand

represents the edges between vertices in R\Rc and vertices in

P \Pc, i.e. edges between the so-called uncovered vertices in

R and uncovered vertices in P (see Figure 2a for an example).

⇤

Without delving into details, we provide an auxiliary lemma,

followed by a quick proof sketch that shows the Hungarian

Method converges to an optimal solution (see [4, 40] for

details). We will rely on these fundamental results in later

sections of the paper, where we discuss the convergence

properties of our proposed distributed algorithm.

3There are more ways than one to implement the primal-dual Hungarian
Method - we describe the implementation that forms the basis of our proposed
algorithm.
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1

2

4

5

%3%

1

2

4

5

%3%2%

5%

3%

3%

1% 2%

(0)$

(0)$

(0)$

(0)$

(0)$

(5)$

(3)$

(2)$

(2)$

(1)$

R P

(c) Given y, the corresponding set
of equality subgraph edges Ey .

1

2

4

5

%3%

1

2

4

5

%3%2%

5%

3%

3%

1%

2%

(0)$

(0)$

(0)$

(0)$

(0)$

(5)$

(3)$

(2)$

(2)$

(1)$

R P

(d) Given Ey , a maximum cardinal-
ity matching M (red edges), and a
corresponding minimum vertex cover
Vc = (Rc, Pc) (red vertices).

Fig. 1: An instance of the Initialization step of the

Hungarian Method.

Lemma 1: Given a weighted, bipartite graph G =
(V,E,w), with bipartition (R,P ), a feasible vertex label-

ing function y, and a corresponding maximal matching

M , every two-step iteration (Step 1 and Step 2) of the

Hungarian Method results in the following: (i) an updated y
that remains feasible, and (ii) an increase in the matching size

|M |, or no change in the matching M , but an increase in |Rc|
(and corresponding decrease in |Pc|, such that |Rc| + |Pc| =
|M |).4 ⇤

Remark 3 (Proof sketch of the Hungarian Method):

The above stated Lemma 1 ensures that the size of a

matching M increases after a finite number of two-step

iterations (worst-case r, where r = |R| = |V |/2). Since

the algorithm converges when M is perfect, i.e. |M | = r,

Lemma 1 in conjunction with Theorem 1 proves that the

Hungarian Method converges to an optimal solution (perfect

matching with minimum cost), after O(r2) two-step iterations.

Each two-step iteration requires O(r2) time, yielding a total

running time of O(r4) (through certain modifications, this

running time can be reduced to O(r3)). ⇤

Now that we have reviewed the LSAP, as well as the

Hungarian Method used for solving it, we proceed to setup

the distributed problem central to this paper.

III. DISTRIBUTED PROBLEM SETUP

Similar to the previous section, let R = {1, 2, ..., r} denote a

set of r robots, and P = {1, 2, ..., p} denote a set of p targets,

4Either |Rc| increases and |Pc| decreases, or |Pc| increases and |Rc|
decreases, depending on the particular implementation of the algorithm
employed for finding M and Vc.
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edge with minimum slack (δ)
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(b) Step 1(b) contd.: The updated
feasible vertex labeling function y
(highlighted in yellow), using the
minimum slack δ.
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added edge highlighted in yellow).
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(d) Step 2: For the updated Ey , a
maximum cardinality matching M (red
edges), and a corresponding minimum
vertex cover Vc = (Rc, Pc) (red ver-
tices).

Fig. 2: An instance of a two-step iteration (Step 1 and Step

2) of the Hungarian Method.

where r � p. Let P i ✓ P be the set of targets that robot

i 2 R can be assigned to, with the associated cost function

ci : P i ! R. We assume that each robot i 2 R knows the

sets R and P . Moreover, each robot knows the cost function

ci, associated with the subset of targets that it can be assigned

to.

Remark 4: We can generate the problem data for the corre-

sponding centralized assignment problem (Section II), as the

weighted bipartite graph G = (V,E,w), where,

- The edge set E is given by E = {(i, j) | j 2 P i} 8i 2 R,

- The weight function w : E ! R is given by w((i, j)) =
ci(j), 8(i, j) 2 E.

As mentioned before, we can modify G to ensure it is balanced

and complete. For now, assume |R| = |P | = |V |/2, and

include high-weight edges as per the big-M method, to make

G complete. ⇤

Recall that the optimal solution to such an assignment

problem is a minimum weight perfect matching. However, due

to the inherent degeneracy in assignment problems, there can

be multiple minimum weight perfect matchings. Let M denote

the set of such minimum weight perfect matchings. Then, for

any M 2 M, the corresponding unique optimal cost c? is

given by c? = c(M) =
P

e2M w(e).

Communication network: We model the communication

between the robots by a time-varying directed graph Gc(t) =
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(R,Ec(t)), t 2 R�0. In such a graph, an edge from robot i to

robot j at some time t implies that robot i can communicate

with robot j at that time instant. Moreover, for robot i, we let

NO(i, t) denote the set of outgoing neighbors, and NI(i, t)
denote the set of the incoming neighbors respectively. Based

on the above discussion, we assume the following:

Assumption 1: For every time instant t 2 R�0, the directed

graph Gc(t) is strongly connected, i.e., there exists a directed

path from every robot, to every other robot in Gc(t). ⇤

We are interested in the problem of assigning robots to

targets with minimum total cost, where each robot i 2 R
initially knows (R,P, ci), and can communicate with other

robots only via the time-varying communication graph Gc(t),
as per Assumption 1.

Before proceeding to the algorithm central to this paper, we

would like to make three remarks on the proposed set-up.

• We have introduced two graphs which have completely

different roles. The first (fixed, wighted, bipartite) graph

G = (V,E,w) models the assignment problem (by relat-

ing the set of robots R to the set of targets P ). The second

graph Gc(t) describes the peer-to-peer communication

network among the robots.

• Assumption 1 can be relaxed by requiring the communi-

cation graph to be only jointly strongly connected over

some time period5. Note that the relaxation to a jointly

strongly connected communication network ties neatly

into the framework of an asynchronous implementation of

any distributed algorithm (e.g. if a robot is still comput-

ing, it would have no edges in the underlying communica-

tion graph for that time duration, allowing every robot to

communicate and compute at its own speed, without any

synchronization within the network). However, in order

to not overweight the proofs, we prefer to stay with the

more stringent condition (strongly connected at all times),

and assume our algorithm runs synchronously (explained

later in detail). We briefly discuss our proposed algorithm

in an asynchronous setting in Remark 8, following the

synchronous convergence analysis in Section V.

• Degeneracy of assignment problems6 is of particular

concern in a distributed framework, since all robots must

converge not only to an optimal solution, but to the same

optimal solution. We denote such a solution by M̂ 2 M
(note that c(M̂) = c?).

Thus, we define the distributed version of the assignment

problem as follows:

Distributed Assignment Problem: Given a set of robots R,

a set of targets P , and a communication graph Gc(t) as per

Assumption 1. Every robot i 2 R knows (R,P, ci), i.e. the

sets R and P , and the cost function associated with itself

and targets that it can be assigned to. Then, the distributed

assignment problem requires all robots to converge to a

common assignment, M̂ , that is optimal to the centralized

5There exists a positive and bounded duration Tc, such that for every time

instant t ∈ R≥0, the directed graph Gt+Tc
c (t) :=

St+Tc
τ=t Gc(τ)

6An assignment problem is degenerate when there exists more than one
assignment with minimum cost.

assignment problem, i.e., M̂ 2 M.

IV. A DISTRIBUTED VERSION OF THE HUNGARIAN

METHOD

Drawing from the description of the Hungarian Method
(II-B), we propose the Distributed-Hungarian algorithm for

solving the Distributed Assignment Problem (III), where G
i

denotes the state of robot i. Specifically, G
i contains the

following three objects:

(i) Gi
lean = (V,Ei

lean, w
i
lean): A bipartite graph with vertex

partitioning V = (R,P ), two disjoint sets of edges Ei
y

and Ei
cand, denoted by the edge partitioning Ei

lean =
(Ei

y, E
i
cand), and a corresponding edge weight function

wi
lean

7.

(ii) yi: A vertex labeling function for Gi
lean

(iii) γi 2 Z: A counter variable

Let Ts = {t0, t1, t2, ... } be the set of discrete time instants

over which the robots synchronously run the algorithm. In

other words, at every time instant t 2 Ts, each robot performs

the following two actions repeatedly: (i) it sends a message

msgi = G
i to each of its outgoing neighbors, and (ii) upon

receiving messages from its incoming neighbors, it computes

its new state G
i. In this manner, each time instant represents

an “iteration” or “communication-round” of the Distributed-

Hungarian algorithm.

To provide more context, recall that in the Distributed As-

signment Problem (III), each robot i has access to (R,P, ci).
Thus, before beginning the algorithm, every robot creates its

so-called “original information” in the form of a weighted,

bipartite graph Gi
orig = (V,Ei

orig, w
i
orig), where,

- The edge set Ei
orig is given by Ei

orig = {(i, j) | j 2 P},

- The weight function wi
orig : Ei

orig ! R is given by,

w
i
orig((i, j)) =

(

ci(j) j ∈ P i,

M j ∈ P \ P i

The algorithm is then initialized as follows: At t = t0,

each robot i selects an edge (i, j?) with minimum weight

from its original information Gi
orig . Using this edge, the robot

initializes its state G
i = (Gi

lean, y
i, γi), where,

Gi
lean = (V, ({(i, j?)}, ;), wi

orig(i, j
?)) (3)

yi(i) = wi
orig((i, j

?)); yi(j) = 0, 8j 2 {{R \ {i}} [ P} (4)

γi = �1 (5)

See Figure 3 for an example of the above.

Upon receiving the messages (states) of all incoming neigh-

bors, robot i performs the following steps:

- it calls the Build Latest Graph function on all the states

in its memory, i.e. {Gi} [ ([j2NI(i,t){G
j}), to obtain a

temporary, most-updated state Gtmp.

- using Gtmp and its original information Gi
orig , robot i calls

the Local Hungarian function to compute its new state G
i.

7The subscript lean refers to the sparseness of the graph, with significantly
less number of edges than a complete graph.
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(a) Robot 3’s original information (R,P, c3).
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w3

orig : E3
→ R

w3

orig((3, 1)) = 6

w3

orig((3, 2)) = M

w3

orig((3, 3)) = 2

w3

orig((3, 4)) = M

w3

orig((3, 5)) = 4

(b) Robot 3’s original information in the form of the weighted,
bipartite graph graph G3

orig = (V,E3
orig , w

3
orig).
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i =

G3
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V = (R,P )

E3

lean = (E3

y , E
3

cand)

E3

y = {(3, 3)}

E3

cand = ∅

w3

lean : E3

lean → R

w3

lean((3, 3) ∈ E3

y) = 2

y3 : V → R

y3(3) = 2;

y3(j) = 0 ∀j ∈ {{R \ {3}} ∪ P}

γ
3 = −1

(c) Robot 3’s initial state (at t = t0), G3 = (G3
lean

, y3, γ3).

Fig. 3: With the weighted, bipartite graph from Figure 1a as

the centralized graph (Remark 4), this figure depicts a sin-

gle robot’s (robot 3) original information, and corresponding

initial state, in the Distributed-Hungarian algorithm.

We proceed to formally state the Build Latest Graph and

Local Hungarian functions.

A. Build Latest Graph

Given a set of robots R0 2 R, and a set of corresponding

states S = [j2R0{Gj}, the Build Latest Graph function

returns a resultant, most-updated state Gtmp = (Glean, y, γ)
that contains the information of only those robots that have

the highest counter value. We denote such a subset of robots

by Rlead. If the highest counter value is positive, the function

chooses any one robot j? in Rlead, and sets γ, y and Ey equal

to j?’s corresponding information. However, the function com-

bines the candidate edges of all robots in Rlead, i.e. Ecand =
S

j2Rlead
Ej

cand, and sets Glean = (V, (Ey, Ecand), wlean),
where wlean is the corresponding edge weight function.

A special instance of the function occurs when all counter

function Build Latest Graph (R0, S)

if (all γj = �1) then

γ = �1
Ey =

S

j2R0 Ej
y

Ecand = ;

Glean = (V, (Ey, Ecand), wlean)

y(j) = yj(j), 8j 2 R0; y(j) = 0, 8j 2 {{R\R0}[P}

if |Ey| = |R| then

γ = 0

end if

else

Rlead = argmaxj2R0 γj

choose any j 2 Rlead and set γ = γj ; y = yj ; Ey = Ej
y

Ecand =
S

j2Rlead
Ej

cand

Glean = (V, (Ey, Ecand), wlean)

end if

return G = (Glean, y, γ)

values are �1. In this case, the function simply sets γ = �1,

Ecand = ;, and combines the equality subgraph edges of

all robots in R0, i.e. Ey =
S

j2R0 Ej
y . With Glean =

(V, (Ey, Ecand), wlean), the function sets the vertex labels y(i)
of every robot i that has an edge in Ey , to the corresponding

weight of that edge. If all robots in R have an edge in Ey ,

the function sets γ to 0.

Remark 5: To provide context to the Build Latest Graph
with respect to the centralized Hungarian Method, we note

here that robot i’s most updated state Gtmp contains y, a

globally feasible vertex labeling function with respect to the

centralized graph G = (V,E,w). In other words, robot i’s in-

formation is a sparse (lean) version of the centralized method’s

information at the beginning of every two-step iteration. We

prove this fact in later sections of the paper (Lemma 2 and

extensions). ⇤

B. Local Hungarian

Given robot i’s temporary state Gtmp = (Glean, y, γ),
and its original information Gi

orig = (V,Ei
orig, w

i
orig), the

Local Hungarian function computes robot i’s new state G
i

as follows:

For the bipartite graph Glean = (V, (Ey, Ecand), wlean),
and the vertex labeling function y, the Local Hungarian
function computes the maximum cardinality matching M , and

the corresponding minimum vertex cover Vc, as per Remark

1. If M is not a perfect matching, the function chooses a

single candidate edge from robot i’s original information using

the Get Best Edge sub-function (formally stated below), and

adds it to Ecand. Note that robot i can contribute a candidate

edge only if it is uncovered.

Up until this point, the Local Hungarian function mimics

the Hungarian Method (II-B). However, following this, the
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function Get Best Edge (Gi
orig, y, Vc)

1: if i 2 R \Rc then

2: Choose any j? 2 argminj2P\Pc
slack(wi

orig, y, i, j),
and set ecand = (i, j?)

3: end if

4: return ecand

function can have one of two outcomes:

- There exists an uncovered robot with no edge in Ecand

The above case corresponds to an incomplete Step 1(a) of the

Hungarian Method, and as such, the Local Hungarian
function simply sets robot i’s new state G

i = (Glean, y, γ),
where Glean contains the (possibly) updated Ecand.

- Every uncovered robot has an edge in Ecand

Such a case corresponds to a completed Step 1(a) of

the Hungarian Method, and thus, the Local Hungarian
function continues with Step 1(b) and Step 2, updating y,

Ey , M and Vc, and incrementing the counter value γ by

1. Using the updated information, the function resets Ecand

to a new candidate edge from robot i’s original information

(if none exists, Ecand = ;). Moreover, the function calls a

Reduce Edge Set sub-function that essentially prunes Ey

to contain the minimum number of equality subgraph edges,

such that (i) M and Vc, when calculated with respect to the

pruned Ey , remain unchanged from their previous state, and

(ii) the total number of edges in Elean is at most (2r � 1),
i.e. |Ey|+ |Ecand|  2r � 1.

The Local Hungarian function then sets robot i’s new state

G = (Glean, y, γ).

function Local Hungarian (Gtmp, G
i
orig)

(M,Vc) = maximum cardinality matching and corre-

sponding minimum vertex cover, given (V,Ey)

if M is not a perfect matching then

ecand = Get Best Edge(Gi
orig, y, Vc)

Ecand = Ecand [ {ecand}

if |R \Rc| = |Ecand| then {Step 1(a) completed}

perform Step 1(b) and Step 2

γ = γ + 1

% Prune the number of edges

ecand = Get Best Edge (Gi
orig, y, Vc)

Ecand = {ecand}

Ey = Reduce Edge Set (V,Ey,M, Vc)

end if

end if

Glean = (V, (Ey, Ecand), wlean)

return G = (Glean, y, γ)

Now that we have stated the functions used by the

Distributed-Hungarian algorithm, we proceed to provide a

formal description of the algorithm (see Figures 9 - 8 for

corresponding instances).

Algorithm Distributed-Hungarian (Gi
orig)

Initialization

choose any j? 2 argminj2P wi
orig((i, j))

Ei
y = {(i, j?)}; Ei

cand = ;; wi
lean = wi

orig((i, j
?))

Gi
lean = (V, (Ei

y, E
i
cand), w

i
lean)

yi(i) = wi
orig((i, j

?)); yi(j) = 0, 8j 2 {{R \ {i}} [ P}

γi = �1

G
i = (Gi

lean, y
i, γi)

Evolution

while ¬ stopping criterion do {See Corollary 3.}

% Receive and Parse:

R0 = NI(i, t) [ {i}, t 2 Ts

S = {Gi} [ ([j2R0{msgj})

Gtmp = Build Latest Graph (R0, S)

if γ � 0 then

% Compute:

G
i = Local Hungarian (Gtmp, G

i
orig)

else

G
i = Gtmp

end if

end while

V. CONVERGENCE ANALYSIS

In this section we prove that the Distributed-Hungarian

algorithm converges to an optimal solution in finite time. In

other words, all the robots agree on a common assignment that

minimizes the total cost, in finite time. We begin by proving

an auxiliary lemma.

Lemma 2: For any counter value γ 2 N0, there exists a

(unique) vertex labeling function y� , and a corresponding set

of equality subgraph edges, Eyγ
, such that for robot i’s state

G
i, if γi = γ, then yi = y� and Ei

y = Eyγ
. Moreover, for the

centralized graph G = (V,E,w) (Remark 4), y� is a feasible

labeling (as per Problem D - the dual of the Minimum Weight

Bipartite Matching Problem).

Proof by induction (Prove for counter value 0): Recall

that every robot i starts running the Distributed-Hungarian

algorithm at time t = t0, with its state G
i initialized as per

Equations (3) - (5), to a bipartite graph Gi
lean, a vertex labeling

function yi and a counter value γi = �1. First, notice that

Gi
lean, or more precisely Ei

y , contains exactly one, minimum

weight (equality subgraph) edge from its original information

Gi
orig . Thus, it is clear that yi (generated using the minimum

weight edge) is a feasible labeling with respect to the central-

ized graph G = (V,E,w). Moreover, there exists a unique

set of equality subgraph edges, Ey0
= [i2RE

i
y , that contains

exactly one such edge from every robot, and a corresponding

vertex labeling function denoted by y0 (generated using r
minimum weight edges). It is clear that y0 is a feasible labeling

with respect to the centralized graph G.
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With the evolution of the algorithm, every robot i repeatedly

receives the states of its incoming neighbors, and runs the

Build Latest Graph function. If all its neighbors j have

γj = �1, then it populates its set of equality subgraph edges

Ey in its “most-updated” state Gtmp, by simply merging the

received equality subgraph edges, i.e., Ey = [j2NI(i,t)[{i}E
j
y .

Thus, according to the Build Latest Graph function, the

only way the first robot, say i, sets its counter value γi = 0
is by building Gtmp with Ey = Ey0

. Moreover, another robot

k sets γk = 0 either by building the set Ey0
on its own (as

above), or by inheriting it from robot i (by virtue of robot

i being its in-neighbor with highest counter value γi = 0).

Iterating this argument, it follows immediately that all robots

i with counter value γi = 0 have identical vertex labeling

functions y0, and corresponding equality subgraph edges Ey0
.

Assume true for counter value n: Assume that all robots

with counter value n have identical vertex labeling functions,

and identical equality subgraph edges, denoted by yn and Eyn

respectively. Moreover, assume that yn is a feasible labeling

with respect to the centralized graph G.

Prove for counter value n + 1: Given yn, Eyn
, and

consequently a maximum cardinality matching Mn and corre-

sponding minimum vertex cover Vcn , there exists a unique set

Ecandn
that comprises of exactly one edge from each uncov-

ered robot in R\Rcn (going to an uncovered target in P \Pcn ).

Such an edge is uniquely determined by the Get Best Edge
function, identical to the process of selecting candidate edges

in the centralized Hungarian Method. Thus, Ecandn
corre-

sponds to a completed Step 1(a) of the Hungarian Method.

As such, if any robot i constructs a “most-updated” state

Gtmp with the unique set Ecandn
, then by construction, its

Local Hungarian function proceeds to perform Step 1(a),

Step 1(b) and Step 2 of the Hungarian Method on Gtmp,

resulting in a counter value of n + 1, and an updated vertex

labeling yn+1 (with corresponding set of equality subgraph

edges Eyn+1
). Most importantly, the two-step iteration of

the Local Hungarian function satisfies the conditions in

Lemma 1, proving that the updated yn+1 is still a feasible

labeling with respect to the centralized graph G.

As the algorithm evolves, every robot i with counter value

n includes in its state, a candidate edge ecand 2 Ecandn

from its original information Gi
orig , using the Get Best Edge

function. Upon receiving the states of incoming neighbors, if

all its neighbors j have γj  n, then robot i populates its set

of candidate edges in Gtmp, by simply merging the received

candidate edges from only those robots, with highest counter

value, i.e., n.

Thus, according to the Build Latest Graph and the

Local Hungarian function, the only way the first robot, say

i, sets γi = n+1 is by building Gtmp with Ecand = Ecandn
.

Similar to the argument for counter value 0, another robot k
sets γk = n+ 1 either by building the set Ecandn

on its own

(as above), or inheriting the latest information directly from

robot i (by virtue of robot i being its in-neighbor with highest

counter value γi = n+ 1), thereby concluding the proof.

Corollary 1: If two robots i and j have identical counter

values, then with respect to the graphs (V,Ei
y) = (V,Ej

y),
they have identical maximal matchings, i.e.,

γi = γj ) M i = M j , 8i, j 2 R.

Proof: Let γi = γj = n, for some n 2 N0. Since

the counter value n corresponds to a unique set of equality

subgraph edges Eyn
, the maximal matching found from within

the set of such edges is also unique. Thus, robots i and j have

identical maximal matchings, denoted by Mn.

Corollary 2: If robot i’s counter value is higher than robot

j’s counter value, i.e. γi > γj , then with respect to the graphs

(V,Ei
y) and (V,Ej

y), one of the following is true,

- robot i’s maximal matching, M i, is greater in size than robot

j’s maximal matching, M j , i.e. |M i| > |M j |;

- robots i and j have the same maximal matching, i.e. M i =
M j , but in the context of their corresponding minimum

vertex covers V i
c and V j

c , robot i has more covered vertices

in R than robot j, i.e., |Ri
c| > |Rj

c|.

Proof: Let γi = p, and γj = q, where p, q 2 N0, q < p.

From the proof of Lemma 2, we know that for a counter value

to increment to say n + 1, there must have existed at least

one robot with counter value n, at some previous iteration

of the Distributed-Hungarian algorithm. In other words, for

every n 2 {q, ..., p}, there existed a robot with counter value

n, a corresponding feasible vertex labeling function yn, a set

of equality subgraph edges Eyn
, and consequently, a maximal

matching Mn, during some previous iteration of the algorithm.

By construction, since every counter value update that occurs

from n to n + 1, n 2 {q, ..., p} corresponds to a two-step

iteration of the Hungarian Method, then (statement (ii) of)

Lemma 1 holds. Iteratively, the proof follows.

Theorem 2: Given a set of robots R, a set of targets P , and

a time-varying communication graph Gc(t), t 2 R�0, satisfy-

ing Assumption 1, assume every robot i 2 R knows (R,P, ci).
If the robots execute the Distributed-Assignment algorithm,

there exists a finite time Tf such that all robots converge to a

common assignment M̂ , which is an optimal solution of the

(centralized) assignment problem, i.e., M̂ 2 M.

Proof: We proceed to prove the theorem in the fol-

lowing three steps: (i) for every robot i in R, the counter

value γi evolves as a monotone, non-decreasing sequence

that converges in finite time, (ii) once all the counter values

have converged, they must be at the same value, and (iii) at

steady-state, a common, perfect matching corresponding to the

optimal assignment is computed.

By the connectivity assumption (Assumption 1), there ex-

ists a finite time interval in which at least one robot i is

able to construct a “most-updated” state Gtmp that contains

enough candidate edges to perform Step 1 and Step 2 in the

Local Hungarian function, thereby incrementing its counter

value from n to n + 1. Moreover, from Lemma 2, we know

that such a counter value increment satisfies the conditions in

Lemma 1. As such, we can use the proof-sketch in Remark 3

to show that there exists only a finite number of such counter

value increments (worst case O(r2), with r = |R|) before
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(a) Robot 2’s original information as
the weighted, bipartite graph G2
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(b) Robot 2’s temporary, most-updated
state Gtmp = (Glean, y, γ) with
γ = 0. Elean contains the equal-
ity subgraph edges Ey (black edges)
and the candidate edges Ecand (green
edges, none in this case).
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graph edges Ey in Gtmp.
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(d) Given Ey , a maximum cardinal-
ity matching My (red edges), and a
corresponding minimum vertex cover
Vc = (Rc, Pc) (red vertices).

Fig. 4: An instance of the Distributed-Hungarian algorithm.

(a) Robot 2’s original information, (b) Example output for

the Build Latest Graph function, (c) & (d) Within the

Local Hungarian function: isolated set Ey , and correspond-

ing My and Vc respectively.

which the matching found is perfect. Moreover, by construc-

tion, once a robot computes a perfect (and hence optimal)

matching, the counter value stops increasing. Therefore, each

so-called counter-sequence must converge in finite time.

Once all the counter-sequences have converged, they must

be at the same value. Indeed, if this is not the case, by

Assumption 1, there must exist two robots, say i and j at

some time t 2 Ts, such that γi < γj , and j is an in-neighbor

to i. By construction, robot i would receive a message from

robot j and set its counter value γi = γj , contradicting the

fact that all the sequences have converged.

Next, at some time t, let γi = γj = n, 8i, j 2 R. Then by

Lemma 2 and Corollary 1, we know that all robots have the

same vertex labeling function yn that is also a feasible labeling

for the centralized graph G, and the same maximal matching

Mn respectively. Thus, if Mn is a perfect matching, then by

the Kuhn-Munkres Theorem (Theorem 1), it is an optimal

solution to the centralized assignment problem. Suppose, by

contradiction, Mn is not a perfect matching. In that case, every

robot contributes a candidate edge to its state (if such an edge

exists), and sends it to its outgoing neighbors. As mentioned

previously, there exists a finite time interval in which at least

one robot i is able to construct a “most-updated” state Gtmp

that contains enough candidate edges to update its counter

value. This contradicts the fact that the counter-sequences of
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(a) The isolated set of candidate edges
Ecand in Gtmp (none in this case).
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(b) Given Vc, Robot 2’s set of can-
didate edges (green edges, only one
in this case) using its original infor-
mation G2

orig . Exactly one edge with
minimum slack δ is chosen for inclu-
sion in Ecand.
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(c) The updated set of candidate edges
Ecand (green edges), combining the
edges from Figures 5b and 5a. Note
that the number of edges is not suffi-

cient to proceed.
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(d) Robot 2’s outgoing message
msg2 = G2, comprising of the
graph G2

lean
= (V,E2

lean
, w2

lean
),

the vertex labeling function y2, and
the counter value γ2 = 0.

Fig. 5: Contd. from Figure 9. (a), (b) & (c) Within the

Local Hungarian function: isolated set Ecand, output of the

Get Best Edge function, updated set Ecand with insufficient

edges, respectively and (d) Output of the Local Hungarian
function, i.e. Robot 2’s outgoing message msg2 = G

2.

all the robots have converged and concludes the proof.

Note that since we describe a synchronous implementation

of the Distributed-Hungarian algorithm, we can take the

results from Theorem 2 one step further and quantify both, the

stopping criterion and convergence time, in terms of iterations

(communication rounds) of the algorithm. As such, we provide

the following auxiliary lemma,

Lemma 3 (Information Dispersion): If robot i sends its in-

formation to its outgoing neighbors (which in turn propagate

the information forward, and so on), then within a maximum of

(r� 1) iterations (communication rounds) of the Distributed-

Hungarian algorithm, robot i’s information reaches every

other robot in the network.

Proof sketch: By Assumption 1, at every iteration (time

instant t 2 Ts) of the Distributed-Hungarian algorithm, the

underlying dynamic, directed communication network Gc(t)
is strongly connected. Such a criterion implies that at every

time t 2 Ts, there exists a directed path (sequence of edges)

from every robot to every other robot in the network. Thus,

on the first iteration of the Distributed-Hungarian algorithm,

at least one robot j is robot i’s out-neighbor and receives its

information. It follows that on each consequent iteration, at

least one new robot is added to the set of robots that have

already received robot i’s information, by virtue of being an
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(b) Robot 4’s temporary, most-
updated state Gtmp = (Glean, y, γ),
with γ = 0. Elean contains the
equality subgraph edges Ey (black
edges) and the candidate edges
Ecand (green edges).
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(c) The isolated set of equality sub-
graph edges Ey in Gtmp.
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(d) Given Ey , a maximum cardinal-
ity matching My (red edges), and a
corresponding minimum vertex cover
Vc = (Rc, Pc) (red vertices).

Fig. 6: Another instance of the Distributed-Hungarian algo-

rithm. (a) Robot 4’s original information, (b) Example output

for the Build Latest Graph function, (c) & (d) Within the

Local Hungarian function: isolated set Ey , and correspond-

ing My and Vc respectively.

out-neighbor to at least one of them, thus concluding the proof-

sketch.

Corollary 3 (Stopping Criterion): Suppose robot i finds

a perfect matching on some iteration of the Distributed-

Hungarian algorithm. Then robot i can stop sending its

corresponding message msgi after (r � 1) iterations (com-

munication rounds).

Proof: Let M i denote the perfect matching found by

robot i. As discussed in the proof of Theorem 2, M i is also

optimal with respect to the centralized assignment problem,

and can be denoted by M̂ . Thus, using Lemma 3, within a

maximum of (r�1) iterations, every robot in the network will

receive robot i’s message, and update its own information to

robot i’s solution, at which point, robot i need not send its

message anymore.

Corollary 4 (Convergence Time): A common, optimal so-

lution M̂ 2 M is found in O(r3) iterations (communication

rounds) of the Distributed-Hungarian algorithm.

Proof: From Theorem 2, we know that the convergence

of a counter-sequence implies that a common, optimal solution

has been found (where the number of counter value increments

cannot exceed O(r2)). Moreover, from Lemma 3, we know

that within (r � 1) iterations of the algorithm, the highest

counter value among all robots is incremented (irrespective of
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(a) The isolated set of candidate edges
Ecand in Gtmp.
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(b) Given Vcy , Robot 4’s set of can-
didate edges (green edges) using its
original information G4

orig . Exactly
one edge (with corresponding mini-
mum slack δ) is chosen for inclusion
in Ecand.
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(c) Step 1(a): The updated set of
candidate edges Ecand (green edges),
combining the edges from Figures 7b
and 7a. Step 1(b): Since the number
of edges is sufficient to proceed, the
minimum slack edge is identified.
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(d) Step 1(b) contd.: The updated fea-
sible vertex labeling function y (high-
lighted in yellow), using the minimum
slack δ.

Fig. 7: Contd. from Figure 6. Within the Local Hungarian
function: (a) Isolated set Ecand, (b) Output of the

Get Best Edge function, (c) Updated set Ecand with suffi-

cient edges (Step 1(a)), and identified minimum slack edge

(Step 1(b)) and (d) Updated y (Step 1(b) contd.).

the robot it belongs to). Thus, a common, optimal solution M̂
is found in O(r3) iterations.

Remark 6 (Detecting Infeasibility): If the centralized as-

signment problem (G,w) is infeasible, the Distributed-

Hungarian algorithm converges to a matching M̂ that contains

edges with infeasible weights (i.e. denoted by M. ⇤

Remark 7 (Message Size): Recall that a robot i’s message,

msgi, comprises of a sparse graph Gi
lean = (V,Ei

lean, w
i
lean)

with at most (2r � 1) edges, a vertex labeling function yi :
V ! R, and a counter value, γi 2 Z. Edges in Elean can be

encoded with
⌃

1
4 log2(r)

⌥

bytes each, while edge weights and

vertex labels can be encoded with 2 bytes each (approximating

a real number as a 16-bit floating point value). Moreover, since

the counter value represents the number of two-step iterations

(maximum r2 as per Remark 3), it can be encoded as an integer

with
⌃

1
4 log2(r)

⌥

bytes. Thus, at each iteration (communication

round) of the algorithm, ((2r) . (4 +
⌃

1
4 log2(r)

⌥

) � 2) bytes

are sent out by each robot. ⇤

Remark 8: [Asynchronous Implementation] As mentioned

previously, the connectivity assumption (Assumption 1) can

be relaxed by requiring the communication graph to be

only jointly strongly connected over some time period Tc,

lending towards an asynchronous framework. Also, in our



11

1

2

4

5

%3%

1

2

4

5

%3%2%

5%

3%

1% 2%

(0)$

(3)$

(0)$

(0)$

(0)$

(5)$

(3)$

(2)$

(2)$

(1)$

4%

i =

added edge

R P

(a) Step 2: For the updated y, the
corresponding set of equality subgraph
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highlighted in yellow).

1

2

4

5

%3%

1

2

4

5

%3%2%

5%

3%

1% 2%

(0)$

(3)$

(0)$

(0)$

(0)$

(5)$

(3)$

(2)$

(2)$

(1)$

4%

i =

R P

(b) Step 2 contd.: For the updated
Ey , a maximum cardinality matching
My (red edges), and a corresponding
minimum vertex cover Vc = (Rc, Pc)
(red vertices).
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(c) For the updated Vc, Robot 4’s
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orig .
Exactly one edge with minimum slack
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(d) Robot 4’s outgoing message
msg4 = G4, comprising of the
graph G4

lean
= (V,E4

lean
, w4

lean
),

the vertex labeling function y4, and
the counter value γ4 = 1.

Fig. 8: Contd. from Figure 7. (a), (b) & (c) Within the

Local Hungarian function: updated set Ey (Step 2), cor-

responding My and Vc (Step 2 contd.), and output of the

Get Best Edge function respectively, and (d) Output of the

Local Hungarian function, i.e. Robot 4’s outgoing message

msg4 = G
4.

implementation of the Distributed-Hungarian algorithm, time

t is universal time, and as such, need not be explicitly known

by the robots. Due to this independence, the Distributed-

Hungarian algorithm can indeed run asynchronously under

the joint connectivity assumption. The proof sketch for such

an implementation is similar to the synchronous case explained

earlier in this section, and relies on the fact that within a

maximum time interval Tc, there exists a time dependent

directed path between every pair of robots, thus ensuring

subsequent convergence. ⇤

A. Simulation Experiments

To assess the performance of our proposed Distributed-

Hungarian algorithm in practice, we performed simulation

experiments on multiple instances of the LSAP with varying

problem sizes, and plotted the average number of iterations

required for convergence. In particular, the simulation exper-

iments were performed in MATLAB, and executed on a PC

with an Intel Quad Core i5, 3.3GHz CPU and 16GB RAM. For

every r (total number of robots) varying from 5 to 160, we

performed 20 runs of the Distributed-Hungarian algorithm,

over randomly generated (r ⇥ r) cost matrices with cost

ci,j 2 (0, 1000), and a strongly connected, communication

network with dynamic incoming and outgoing edges between
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Fig. 9: Simulation experiments characterizing different aspects

of the Distributed-Hungarian algorithm.

robots at each time instant of the synchronous implementation.

As seen in Figure 9a, the average number of iterations

required for convergence is well under O(r3) (worst-case

bound). Moreover, to qualify the computational load on a

robot at any given time, on each run of the Distributed-

Hungarian algorithm, we observed the iteration that took the

maximum computational time (across all robots), and plotted

the average of all 20 runs, against the computational time of

the corresponding centralized Hungarian Method (Figure 9b

). The experiments support the applicability of the Distributed-

Hungarian algorithm to varying sized teams of mobile robots

in practice. As such, we proceed to describe the motivating

application in this paper, which provides an intuitive and

immediate testbed for demonstrating our proposed algorithm.

VI. A MOTIVATING APPLICATION: DYNAMIC

SPATIO-TEMPORAL MULTI-ROBOT ROUTING

To demonstrate the distributed algorithm central to this

paper, we consider multi-robot routing as a motivating appli-

cation. In particular, we consider a special class of routing

problems called “spatio-temporal routing problems”, previ-

ously introduced in [37]. In such routing problems, each target

is associated with a specific time instant at which it requires

servicing. Additionally, each target, as well as each robot, is

associated with one or more skills, and a target is serviceable

by a robot only if the robot has a skill in common with the skill

set of that target (or in other words, the robot is authorized
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Fig. 10: A rendering of the Robot Orchestral Floor concept

(viewed in the picture, as a vertical wall instead of a floor).

to service the target). As shown in [37], task assignment is a

convenient framework to attack such spatio-temporal routing

problems.

In this section, we briefly discuss the extension of our

previous work in [37] on spatio-temporal routing from a static,

centralized solution to its dynamic and distributed counterpart.

More specifically, for a series of spatio-temporal requests, the

robots cooperatively determine their routes online by using the

Distributed-Hungarian algorithm.

The online scheme we propose is based on a simple, widely

applied idea, where assignments are solved iteratively between

consecutive time instants. This scheme provides an effective

framework for incorporating our distributed algorithm towards

dynamic spatio-temporal routing. We further illustrate this

setup in a musical environment through a novel, “multi-robot

orchestral” framework. We acknowledge that we are not trying

to find the most “optimal ” or “efficient” solution to the routing

problem itself. Instead, we are interested in demonstrating the

applicability of our proposed algorithm, in a practical, and

intuitive setting.

Each robot can play one or more instruments (essentially,

a piano, a guitar and drums), and a piece of music can be

interpreted as a series of spatio-temporal requests on the so-

called Robot Orchestral Floor - a music surface where planar

positions correspond to distinct notes of different instruments

(see Figure 10 for an illustration).

A user (acting similar to a “conductor”) can change the

piece of music in real-time, while the robots adapt their routes

accordingly, to incorporate the changes. The user interacts with

the team of robots by means of a tablet interface through which

it broadcasts the spatio-temporal requests.8

A. Overview of the Methodology

For convenience, we assume that the minimum time dif-

ference between two timed positions is always greater than

the time needed by the robots to solve an instance of the

8This paper considers the generalized version of the routing problem that
associates a set of skills or instruments with each spatio-temporal request.
However, for the purpose of musical demonstration on the orchestral floor, a
single skill (instrument) is associated with each request (w.l.o.g.).

Distributed Hungarian algorithm, and to reach their assigned

positions.

In the following paragraph, we put forth the two key ideas,

central to the scheme described above.

- Distributed Aspect: Given a Score, the robots deter-

mine routes by iteratively solving assignments using the

Distributed-Hungarian algorithm, between successive time

instants. Each instance of an assignment can be formulated

as an unbalanced Linear Sum Assignment Problem (0-1

linear program) [8], using a mapping l(p,α) as follows,

For the consecutive time instants ti to ti+1, given the quin-

tuple (Sci, R,Mpos,Mrbt), and the function Prbt : R ! R
2,

denoting the planar positions of the robots9, find l such that:

min
l

X

p2R

|Sci|
X

↵21

||Pi,↵ � Prbt(p)|| l(p,α) (6)

subject to:

l(p,α) 2 {0, 1} (7)
X

p2R

l(p,α) = 1, 8α 2 {1, ..., |Sci|} (8)

X

↵2Ai

l(p,α)  1, 8 p 2 R (9)

l(p,α) = 1 ) Mrbt(p) \Mpos((Pi,↵, ti)) 6= ; (10)

where l(p,α) represents the individual assignment of robot

p 2 R to timed position (Pi,↵, ti) 2 Sci, and is 1 if the

assignment is done, and 0 otherwise.

Note that for employing the Distributed-Hungarian algo-

rithm, we view the above stated LSAP in graph theoretic

terms, as the equivalent Minimum Weight Bipartite Matching

Problem (P) from II-A (we assume that the underlying time-

varying communication graph, induced as the robots execute

their paths, satisfies Assumption 1). Moreover, the robots

solve assignments between future consecutive time instants,

while simultaneously executing routes that they have already

determined (see Figure 11a).

- Dynamic Aspect: A user can dynamically modify the Score

as follows:

i Add a timed position with a corresponding skill set (add

a note of an instrument (piano or guitar), or a beat of a

drum, to be played at a particular time instant).

ii Remove a timed position (remove a note of an instru-

ment (piano or guitar), or a beat of a drum, from a

particular time instant).

iii Modify the skill set of a timed position (substitute the

instrument of a note (from a piano to a guitar, or vice

versa), or replace one kind of drum with another, at a

particular time instant).

Since the routes of the robots are determined through

piece-wise assignments between robot positions and timed

positions at successive time instants in the Score, the instant

9Under the iterative scheme, each robot’s planar position is a previously

assigned timed position at some time instant tj ≤ ti (unless i = 0).
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&$A$

&$B$

&$C$

Fig. 12: The tablet interface for modifying and broadcasting changes to the Score. A: A simulated example of the Robot

Orchestral Floor comprising of unique positions corresponding to piano and guitar notes, as well as drum beats. B: Pre-

defined sub-scores for an instrumental version of “The Final Countdown”. C: A feature for either selecting, or setting the

available number of robots (R,Mrbt).

a dynamic modification is received, each robot chooses the

time instant in the Score up until which, its previously-

determined routes need not be modified, and begins recal-

culating its route from such a time instant onwards (while

executing its trajectory on the previously determined route).

In Figures 11b - 11d, we provide examples of three different

cases that can occur, when a particular dynamic modification

is received.

As mentioned previously, a user issues dynamic modifi-

cations through a user-interface. We assume that such an

interface has knowledge of the Score and the robots, i.e.

(Sci, R,Mpos,Mrbt), and is able to broadcast the modifica-

tions to the robots in real time. Since we assume that the

timed positions in the Score are sufficiently apart in time, the

interface does not allow a user to modify the Score unless

the modification occurs after a pre-specified (conservative)

time duration (depicted by the red regions in Figures 11b -

11d). Moreover, the interface does not allow modifications

that violate feasibility (in that, the available number of robots

do not fall short), as per our results in [37]10.

B. The Multi-Robot Orchestra

In this section, we apply the theory developed so far,

towards enabling multiple robots to execute different musical

pieces (presented to them as Scores). To this end, we simu-

lated a version of the Robot Orchestral Floor in MATLAB,

instrumented to include piano, guitar and drum sounds (see A

in Figure 12). In addition to the simulated floor, we developed

10Velocity constraints are not considered here, since the user has no knowl-
edge of the positions of the robots, and hence, cannot ascertain feasibility in
that respect.

a graphical user-interface (GUI) (Figure 12) that allows a

user to create, and administer changes to a Score on the

simulated floor. The user-interface is developed on a tablet,

that broadcasts the changes issued by a user, to the robots

executing the Score.

For convenience, we created beforehand, a heterogeneous

Score comprising of piano and guitar notes, and drum beats

associated with the popular song “The Final Countdown” by

the Swedish band “Europe”. We divided the Score into mul-

tiple single-instrument sub-scores. For instance, we separated

the piano notes into individual sub-scores corresponding to

the piano lead, piano bass, and second and third harmonies

(see B in Figure 12). The motivation behind the creation

of such sub-scores was to enable a user to “add, delete or

modify” the Score through these structures, in an intuitive

and immediately recognizable manner. In addition to the

sub-scores, we included the option of adding and removing

individual timed positions, and switching instruments (pianos

to guitars and vice versa, drums from one type to another).

To execute an example of dynamic spatio-temporal routing,

either the user selects, or is given the number of robots

available for use (see C in Figure 12). Moreover, the user

creates an initial Score using the iPad interface. We assume

that all robots are initially positioned along a vertical edge

of the floor. Once the user hits the start button, the iPad

broadcasts this Score to the team of robots. From this point

onwards, the routes of the robots are determined and executed

in real time, while the iPad broadcasts changes to the Score,

as and when a user decides to modify it.

We implemented the multi-robot orchestra in both simula-

tion and hardware environments (Figures 13). The hardware
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(a) A user interacting with simulated robots through the orchestral floor
tablet interface.

(b) An instance of simulated robots (geometric shapes - diamonds, circles and
squares), performing the Score by executing dynamic spatio-temporal routing
(the black lines denote the underlying dynamic communication network, required
for a distributed implementation).

(c) A user interacting with actual robots through the orchestral floor
tablet interface.

(d) An instance of actual robots, performing the Score by executing
dynamic spatio-temporal routing.

Fig. 13: Simulation (https://www.youtube.com/watch?v=L-PSPy9O BE), and hardware (https://www.youtube.com/watch?v=

z7SiivWvZLc) implementation of the multi-robot orchestra, performing “The Final Countdown” on the Robot Orchestral

Floor, with a user “conducting” (modifying) the Score through the tablet interface. In both cases, when a particular robot

reaches a timed position on the orchestral floor, its is highlighted by a light (yellow) circle, and the corresponding sound of

the note/beat is generated.

implementation was conducted in the Georgia Robotics and

Intelligent Systems Laboratory, where the indoor facility is

equipped with a motion capture system which yields real time

accurate data for all tracked objects, and an overhead projector

is used for embedding algorithm/environment-specific infor-

mation (see [34] for a similar hardware setup). We used Khep-

era III miniature robots by K Team as our hardware ground

robots. In both cases (simulation and hardware), the instant

a robot reached a timed position (a note of an instrument,

or a beat of a drum, specified at a particular time instant)

on the orchestral floor, it was encircled by a light (yellow)

circle and the corresponding sound of the note (or beat in

the case of drums) was generated. In this manner, we enabled

multiple robots to perform a real-time rendition of “The Final

Countdown”.

VII. CONCLUSION AND FUTURE DIRECTIONS

This paper provides a distributed version of the Hungarian

Method for solving the well known Linear Sum Assignment

Problem (LSAP). The proposed algorithm allows a team of

robots to cooperatively compute the optimal solution to the

LSAP, without any coordinator or shared memory. We prove

that under a synchronous implementation, all robots converge

to a common optimal assignment within O(r3) iterations. By

running simulation experiments over multiple instances of the

LSAP with varying problem sizes, we show that the average

number of iterations for convergence is much smaller than the

theoretic worst-case bound of O(r3). Moreover, we show that

the computational load per robot is minor in comparison to

the centralized Hungarian Method, since the robots perform

only sub-steps of the centralized algorithm, at each iteration

of the proposed algorithm.

To demonstrate the theory developed in this paper, we

extend our proposed algorithm to solving a class of “spatio-

temporal” multi-robot routing problems, considered under a

distributed and dynamic setting. In essence, the robots find

online, sub-optimal routes by solving a sequence of assignment

problems iteratively, using the proposed distributed algorithm

https://www.youtube.com/watch?v=L-PSPy9O_BE
https://www.youtube.com/watch?v=z7SiivWvZLc
https://www.youtube.com/watch?v=z7SiivWvZLc
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(a) Future portions of the routes of the robots (between
time instants ti+2 to ti+3) are currently being deter-
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that have already been determined (up until ti+2).
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(b) Case 1: If at the current time t, a modification is
received, specified at a time instant in the depicted time
interval (yellow), all robots retain their routes up until
ti+1 and begin recalculating their routes, from their
positions at ti+1 onwards.
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(c) Case 2: If at the current time t, a modification
is received, specified at a time instant in the depicted
time interval (yellow), all robots begin recalculating their
routes, from their current positions at time t onwards.
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(d) Case 3: If at the current time t, a modification is
received, specified at a time instant in the depicted time
interval (yellow), only robots 1, 2 and 3 retain their routes
up until ti+1. The robots begins recalculating their routes
from their positions at ti+1 onwards, however robot 4
begins recalculating its route from its current position at
time t onwards.

Fig. 11: Robots (circles) at time t, and timed positions (stars)

grouped in grey boxes representing specific time instants.

for each instance. As a motivating application and concrete

experimental test-bed, we develop the “multi-robot orchestral”

framework, where spatio-temporal routing is musically inter-

preted as “playing a series of notes at particular time instants”

on a so-called orchestral floor (a music surface where planar

positions correspond to distinct notes of different instruments).

Moreover, we allow a user to act akin to a “conductor”,

modifying the music that the robots are playing in real

time through a tablet interface. Under such a framework, we

perform simulations and hardware experiments that showcase

our algorithm in a practical setting.

An interesting future direction that we are currently ex-

ploring, is the interpretation of the Hungarian Method as a

primal algorithm (as opposed to its native, dual form), and

its subsequent redesign in a distributed setting. Essentially,

the primal algorithm would provide a constantly improving

feasible assignment at every iteration. We hypothesize that

such an algorithm, when redesigned in a distributed setting,

could be more robust and simple than the current approach

described in this paper, though slower to converge. Distributed

implementations of both primal and dual versions of the Hun-

garian Method would yield interesting technical comparisons

in the assignment literature.
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Üre, J. P. How, J. L. Vian, and R. Surati, “Mar-cps: Measurable
augmented reality for prototyping cyber-physical systems,” in
AIAA Infotech@ Aerospace, 2015, p. 0643.

[35] S. Giordani, M. Lujak, and F. Martinelli, “A distributed multi-

agent production planning and scheduling framework for mobile
robots,” Computers & Industrial Engineering, vol. 64, no. 1, pp.
19–30, 2013.

[36] S. Chopra and M. Egerstedt, “Spatio-temporal multi-robot rout-
ing,” Automatica, 2015.

[37] ——, “Heterogeneous multi-robot routing,” Proceedings of the
American Control Conference, 2014.
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