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1. Summary. A solution for the problem of obtaining a distribution-free one-
sided confidence interval for p = Pr {¥ < X} has been proposed in [1]. At
present a numerical procedure is given for computing the sample sizes needed
for such a confidence interval with given width and confidence level.

2. Introduction and formulation of the problem. The problem discussed in
this paper arises in practical situations such as the following: structural com-
ponents of a mechanism are mass-produced and each component has a strength
at failure ¥ which, in view of unavoidable variability of the product, is a random
variable. A component is then installed in a mechanism and exposed to a stress
which reaches its maximum value X, again a random variable. If, due to chance,
the values of ¥ and X are so paired off that ¥ < X, then the component fails
in use. It is therefore of considerable importance to have an upper bound for

2.1) p = Pr{¥ < X}.

Our problem is: Can p be estimated from samples of X and Y alone and, in par-
ticular, is there an upper confidence bound for p, i.e., a statistic ¥ based on a
sample of X and a sample of Y, such that for any ¢ > 0, @ > 0 there exists a
pair of numbers M,,., Ne.o, so that

(22) Prips¢v+e¢21—a

when the sample of X is of size m = M., and the sample of ¥ of sizen = N o ?

The following answer to this question was proposed in [1].

We assume that X and Y are independent random variables with continuous
cumulative distribution functions F(s) = Pr {X < s}, G(s) = Pr {Y < s}.
Let X; < X, < -+ = X, be an ordered sample of X and Y1 S ¥V < --- =
Y, an ordered sample of Y, and let F,.(s), Gu(s) be the empirical distribution
functions corresponding to these samples.

Using the Wilcoxon-Mann-Whitney ' statistic,

U = number of pairs (X;, ¥3) such that ¥, < X,
we write
(2.3) p = U/mn.
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It is easily verified that p is an unbiased estimate of p and

p= [ 66 are,

+0
i’ = ‘[” Gn (8) dF,,,(S),

hence
+ +o0
p—p=[ Gd(F - Fn) + [ (@ - G aF.
@4) ) ;
00 +o0
- (Fn =P dG+ [ (@ - G)aF.
and
(2.5) p—p < Dn+ D}, -
where
Dr= sup {Fn(s) — F(s)},
-0 L8+
Df = sup {G(s) — G.(9)}.
—0 <8<+o

It is well known [2] that
Pr {D,, < v} = Pr {Df < v} = Pa()
and
Pr {D} < v} = P.()

are cumulative distribution functions which depend on the sample sizes m, n,
but not on the c.d.f’s F and G. It follows from (2.5) that

(2.6) Pr{ip<p+ ¢ = Pr{D} + D} < ¢} = Pnn(e),

where P .(e) is the convolution of P, and P,, hence does not depend on F
and G. The statistic  has, therefore, the property required of y in (2.2) pro-
vided one can, for given €, «, determine numbers M, ,, N... so that

@.7 Pupule) 21—« form =2 Meo,n = N.,..

Some further properties of p are discussed in [1].
A numerical procedure for computing M.,, N.. is presented in the next
gections.

3. An approximate expression for P, .(e). It was shown by N. Smirnov [3]
that

(3.1) lim Pr {D} < 2/4/n} = lim P.(z/v/n) = 1 — ¢ = L(z).

n-»>00 n-»>0
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Since, for fixed n, P,(2/A/n) = H,(z) is a cumulative distribution function, and
L(z) = 1 — ¢*" is a continuous c.d.f., it follows by a well-known argument
(see, e.g., [4], p. 276) that H,(z) — L(z) uniformly. We may, therefore, conclude
that

(32) lim[Pr {D} < v} — Lov/n)] = lim [H.v\/n) — LA/n)] =0

n-»00

uniformly for 0 < » < 1. Writing

Prn) =Pr(Di+DE< e} = [ Pule — w) dPalw),
0

# @ = [ Llle — v/l dLun/m),
we have
| Prn®) = Qua@ | 5| [ (Pale = ) = Ll(e = w)2/a) dPuti) |
o0 +1 [ 1Pule = 0) = Lite = )/ml) dLG/m)|
S Max| Pule — ) — Ll — wv/nl |
+ Max | Pr(e — 0) — Li(e = v)v/m] |,

which in view of (3.2) shows that

lim | Ppmu(e) = Qumale) | =0

n->00

(3.5)

uniformly for0 < ¢ < 1. This justifies the use of Q.,.(¢) as an approximation to
Ppa(e) for m, n sufficiently large. Some observations on the goodness of this
approximation are presented in Section 5.

By straightforward integration one obtains for Q, .(e) the expression

_ 2V2x mné gtmnediominy 1 f 2mel/min 2 g
(m 4 n)3z - V2 Ltnen/min
4. Sample sizes m, n which satisfy Q,...(¢) = 1 — a. With the notations
m+n=N
(4.1) m/(m+4+n)=X\ n/(m+n=1-2

evVm—+4n =296
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TABLE I
Values 6\, such that Q(6ra ;\) = 1 — «
A
(-3

1 | 2 ' 3 l 4 | 5
.10 4.1185 3.2027 2.8501 2.6928 I 2.6468
.05 4.6115 3.5667 3.1641 2.9844 2.9317
.01 5.5700 4.2745 3.7770 3.5524 3.4870
.005 5.9300 4.5405 4.0050 3.7665 3.6960
.001 6.6800 5.0980 4.4880 4.2150 4.1360

the expression (3.6) for Qm..(¢) may be written in the form

QN =1 — 220 (1 — N
(42) L
— 24/ A1 — ) se72ave 1 [ My,
2(1-N)8

Vo

Table I contains solutions 4,,, of the equation.
(4.3) QN =1—«

for & = .001, .005, .01, .05, .10, and A = .1 (.1) .5. These solutions were ob-
tained on a desk calculator, using the National Bureau Bureau of Standards
Tables of the Exponential Function [5], Descending Exponential [6], and the
Normal Distribution Function [7].

The use of the quantities N, A, § instead of the original m, n, ¢ has not only
the advantage of reducing the computations to a table with double entry, but
also makes it possible to design an experiment with a given ratio A = m/N.
This ratio is often dictated by considerations of cost or time.

Ezample. We wish to use four times as many ¥’s as X’s, i.e.,, A = .2, and re-
quire ¢ = .10, @ = .05. From Table I we have 84,6 = 3.5667; hence, by (4.1),
(.10)\/N = 3.5667, and N = 1272.13, m = 254.43, n = 1017.70. The rounded-
up sample sizes are therefore 255 for X, 1018 for Y.

6. Concluding remarks. The sample sizes computed for given A, ¢, a by the
use of Table I are conservative, i.e., too large, for two reasons. The first is that,
instead of finding sample sizes m, n such that P{p < p + ¢} = 1 — a, we used
inequality (2.6) and looked for m, n satisfying Pm,(¢) = 1 — a, a step which
certainly yields larger values. The second reason is that in equation P, .(e) =
1 — « the exact expression P, .(e) was replaced by the approximate expression
Qm.n(¢) and then only m, n were computed. This step was justified by (3.5) which,
however, does not indicate which way the sample sizes are affected. The following
arguments are offered in favor of the contention that the solutions m, n of
Ppna(e) = 1 — a differ little from those of @ .(¢) = 1 — e and that the solu-
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tions of the second equation are more conservative (greater) than those of the
first.

The exact form of P{D} < v} for finite n is known and numerical computa-
tions, some of which are reproduced in [8], show that already for » = 50 the
approximation of P{D} < v} by L(v\/n) is uniformly very good. Since the sam-
ple sizes computed from Table I are in all practical situations much larger than
50, (3.4) assures very close agreement between P, .(e) and Qum n(e).

Furthermore, the following conjecture appears to be substantiated by con-
siderable numerical computations and some analytical considerations, although
no proof for it is available: for every integer n = 1 and for 0 < » < 1,

(5.1) Lwvn) =1 — ™" < P{D} < v).

Irom (5.1) would follow that P (€) = Qmn(e) for 0 < e < 1, hence Qma(e) =
1 — a would yield sample sizes larger than P, .(¢) = 1 — a.
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