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Abstract: The recently developed PSI-BLAST method for se- 
quence database search and methods for motif analysis were used 
to define and expand a superfamily of enzymes with an unusual 
nucleotide-binding fold, referred to as palmate, or ATP-grasp fold. 
In addition to D-alanine-D-alanine ligase, glutathione synthetase, 
biotin carboxylase, and carbamoyl phosphate synthetase, enzymes 
with known three-dimensional structures, the ATP-grasp domain is 
predicted in the ribosomal protein S6 modification enzyme (RimK), 
urea amidolyase, tubulin-tyrosine ligase, and three enzymes of 
purine biosynthesis. All these enzymes possess ATP-dependent 
carboxylate-amine ligase activity, and their catalytic mechanisms 
are likely to include acylphosphate intermediates. The ATP-grasp 
superfamily also includes succinate-CoA ligase (both ADP-forming 
and GDP-forming variants), malate-CoA ligase, and ATP-citrate 
lyase, enzymes with a carboxylate-thiol ligase activity, and several 
uncharacterized proteins. These  findings significantly extend the 
variety of the substrates of ATP-grasp enzymes and the range of 
biochemical pathways in which they are involved, and demonstrate 
the complementarity between structural comparison and powerful 
methods for sequence analysis. 

Keywords: ATP binding site; ATP-grasp fold; biotin carboxylase; 
glutathione synthetase; purine biosynthesis; succinate thiokinase; 
tubuline-tyrosine ligase 

With the rapid accumulation of three-dimensional (3D) protein 
structures and the complementary development of structure-to- 
structure comparison methods, there has been lately a remarkable 
growth in the number of protein superfamilies delineated through 
structural conservation alone,  in the absence of detectable se- 
quence similarity (Holm & Sander, 1996). One of such structural 
superfamilies unites two groups of peptide synthetases, namely 
D-alaninem-alanine ligase (DD-ligase) and glutathione synthetase 
(GSHase), with biotin carboxylases (BCases) and carbamoyl phos- 
phate synthase (Fan et al., 1995; Artymiuk et al., 1996; Thoden 
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et al., 1997). All these enzymes catalyze a reaction that involves an 
ATP-dependent ligation of a carboxyl group carbon of one sub- 
strate with an amino or imino group nitrogen of the second one and 
includes, in each case, the formation of acylphosphate intermedi- 
ates (Gushima et al., 1983;  Ogita & Knowles, 1988; Meister, 1989; 
Fan et al., 1994). Structural alignment of DD-ligase, GSHase, and 
BCase revealed three  conserved motifs, corresponding to the 
phosphate-binding loop and the Mg2+-binding  site of the ATP- 
binding domain (Artymiuk et al., 1996). In each of these enzymes, 
ATP binds in a cleft formed by two structural elements, each 
containing two antiparallel P-strands and a loop  (Hibi  et al., 1996). 
A similar ATP-binding fold, referred to as GSHase fold, palmate 
@-sheet) fold (Yamaguchi et al., 1993), or ATP-grasp fold (Murzin, 
1996)  has  been  detected  in succinyl-CoA synthetase (SCS) 
(Wolodko et al., 1994; Matsuda et al., 1996). Sequence similarity 
with BCases indicates that this superfamily additionally includes 
the biotin-dependent carboxylase domains of pyruvate carboxylase 
and propionyl-CoA carboxylase (Artymiuk et al., 1996). Here, 
using recently developed sensitive methods for sequence database 
search and sequence motif analysis, we further expand the ATP- 
grasp superfamily to include the enzyme involved in ribosomal 
protein S6 modification, urea amidolyase, tubulin-tyrosine ligase, 
three enzymes of purine biosynthesis, and several uncharacterized 
proteins. These findings significantly extend the range of the bio- 
chemical pathways, in which ATP-grasp enzymes are involved, the 
variety of their substrates, and emphasize the complementarity 
between structural comparison and powerful methods for sequence 
analysis. 

In the course of detailed comparative analysis of the protein 
sequences encoded in complete bacterial and archaeal genomes 
(Koonin et al., 1997), we observed that the Escherichia coli RimK 
protein, which is involved in post-translational modification of the 
ribosomal protein S6 (Reeh & Pedersen, 1979; Kang et al., 1989), 
had highly conserved homologs in all completely sequenced bac- 
terial and archaeal genomes and also showed a significant simi- 
larity to GSHases. When the  non-redundant protein sequence 
database at the National Center for Biotechnology Information was 
searched using BLASTGP program, which is an extension of the 
BLAST method (Altschul et al., 1990) incorporating statistical 
analysis of local alignments with gaps (Altschul & Gish, 1996; 
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2640 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Altschul et al., 1997), alignments of the RimK sequence with 
GSHases were detected with a probability of occumng by chance, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
P zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA< IO-'. We further iterated this search using the recently de- 
veloped PSI-BLAST (Position-Specific Iterative BLAST) pro- 
gram, which converts local alignment produced by BLASTGP into 
position-specific weight matrices that are then used for iterative 
database scanning (Altschul et al., 1997). This search detected the 
known proteins with the ATP-grasp fold, GSHases, DD-ligases, 
and BCases, with a high statistical significance ( P  < IO-'). It also 
revealed, at the same significance level, a similar domain in urea 
amidolyase, phosphoribosylamine-glycine ligase, phosphoribosylg- 
lycinamide formyltransferase, and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAphosphoribosylaminoimidazole 
carboxylase. In addition, marginal similarity was detected with the 
sequences of SCS and tubulin-tyrosine ligase (TTL). Finally, when 
the alignment block containing the phosphate-binding site with a 
flexible glycine-rich loop flanked by two anti-parallel P-strands 
from these enzymes (residues 137-157  in DD-ligase) was used  in 
a motif search using MOST program (Tatusov et al., 1994), a total 
of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA125 different sequences were retrieved, of which 122 were 
considered members of the ATP-grasp superfamily. 

The extended ATP-grasp superfamily currently includes 15 groups 
of enzymes, catalyzing ATP-dependent ligation of a carboxylate- 
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containing molecule to an amino or thiol group-containing mol- 
ecule (Table l). The list of reactions catalyzed by these enzymes 
demonstrates their flexibility with respect to both carboxyl and 
amino/thiol group-containing substrates. Thus, phosphoribosylg- 
lycinamide formyltransferase uses formic acid as a substrate, show- 
ing that the moiety at the carboxyl group can be as simple as H 
atom. On the other hand, in case of RimK and TTL, the carboxyl- 
containing substrates are proteins. In carbamoyl phosphate synthe- 
tase, the amino  group containing substrate is simply ammonia 
(derived from glutamine), while in biotin carboxylases this sub- 
strate is N' atom of enzyme-bound biotin molecule. This shows 
that primary and secondary amines can both be used by enzymes 
of this  family. The reaction catalyzed by ATP-dependent carboxylate- 
amine ligases can be summarized as follows: 

R-CO-O-F~+ R-CO-OP032- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA7-T R-Co-N-Rn I 
ATP ADP R' -NH-R" HOP032' R' 

In this scheme, R can be a hydrogen atom, hydroxyl group, an 
organic molecule, or even a protein; R' can be either a hydrogen 
atom or a part of a biotin ring, and R" can be an amino-group 

Table 1. Carboxylate-amine/thiol ligases containing ATP-grasp domains 

Enzyme 

Ribosomal protein S6 
modification protein" 

Glutathione synthetase 
(EC 6.3.2.3) 

D-Alanine-D-alanine 
ligase (EC  6.3.2.4) 

Phosphoribosylamineglycine 
ligasea (EC 6.3.4.13) 

Phosphoribosylglycinamide 
formyltransferase" (EC 2.1.2:) 

Phosphoribosylaminoimidazole 
carboxylase" (EC  4.1.1.2 I )  

Acetyl-coA carboxylase, biotin 
carboxylase subunit (EC 6.3.4.14) 

Propionyl-CoA carboxylase 
(EC 6.4. I .3) 

Pyruvate carboxylase (EC 6.4.1.1 ) 

Urea amidolyase" (EC 6.3.4.6) 

Carbamoyl-phosphate synthetase, 
large chain (EC  6.3.5.5) 

Tubulin-tyrosine ligase" 
(EC  6.3.2.25) 

Succinyl-CoA synthetase, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
p subunit (EC  6.2.1.5, 6.2.1.4) 

Malate-CoA ligase, 
0 subunit" (EC 6.2.1.9) 

ATP-citrate lyase" (EC 4. I .3.8) 

Function or 
pathway 

Ribosome biogenesis 

Glutathione biosynthesis 

Peptidoglycan biosynthesis 

Purine biosynthesis 

Purine biosynthesis 

Purine biosynthesis 

Fatty acid biosynthesis 

Amino acid catabolism 

Gluconeogenesis 

Urea hydrolysis 

Arginine biosynthesis 
pyrimidine biosynthesis 

Microtubules assembly 

Citric acid cycle 

Growth on C- I compounds 

Lipid biosynthesis 

SWISS-PROT 
symbol 

RIMK-ECOLI 

GSHB-ECOLI 

DDLA-ECOLI 
DDLB-ECOLI 

PUR2-ECOLI 

PURT-ECOLI 

PURK-ECOLI 
PUR6-YEAST 

ACCC-ECOLI 
COAC-YEAST 

PCCA-HUMAN 

PYC-HUMAN 

DUR 1 -YEAST 

CARB-ECOLI 
PYR 1 -HUMAN 

TTL-PIG 

SUCC-ECOLI 
SUCB-PIG 

MTKB-METEX 

ACLY-HUMAN 

Active 
form 

Monomer? 

Tetramer 

Dimer 

Monomer 

Monomer 

Dimer 

Heterohexamer 
Tetramer 

Heterodimer 

Tetramer 

Monomer 

Heterodimer 
Hexamer 

Monomer 

Heterotetramer 
Heterodimer 

Heterodimer 

Monomer 

Carboxylate 
substrate 

Ribosomal 
protein S6 

y-Glutamyl- 
cysteine 

D-Alanine 

Glycine 

HCOO" 

HCOl- 

HCO3- 

HCO, ~ 

HCO3 

HC0, 

HC03- 
NH2COO 

cY-Tubulin 

Succinate 

Malate, 
succinate 

Citrate 

Amine or 
thiol substrate 

Glutamate 

Glycine 

D-Alanine 

5-Phosphoribosylamine 

5'-Phosphoribosylglycinamide 

5'-Phosphoribosyl- 
5-aminoimidazole 

Biotin-enzyme 

Biotin-enzyme 

Biotin-enzyme 

Biotin-enzyme 

NH, 
- 

Tyrosine 

Coenzyme A 

Coenzyme A 

Coenzyme A 

"Newly identified members of the superfamily. 
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containing  a molecule, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAor a part of a  biotin  ring  (Table zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1). In the same catalytic mechanism  works in succinyl-CoA synthetase, 
several cases, substrates of ATP-grasp enzymes do not have an where  it is the  thiol  group of HS-CoA that  performs the nucleo- 
amino  group.  One of such enzymes is the enterococcal DD-ligase philic attack on the succinyl phosphate  intermediate. This probably 
(vancomycin-resistance protein), which ligates D-alanine with also occurs in  related enzymes, such zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAas malate-CoA ligase and 
D-lactate (Fan et al., 1994; Evers et al., 1996). Another  variant of ATP-citrate lyase (Wells, 1991): 

RIEnCECOLI 
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Fig. 1. Multiple alignment of the conserved regions in the ATP-grasp proteins. The proteins are listed under their unique SWISS-PROT or GenBank 
identifiers; proteins from Caenorhabdifis elegans are marked with an asterisk. The numbers indicate distances to the ends of each protein and the sizes of 
the gaps between aligned segments. The names of proteins with known 3D structures are shown in bold; the positions of the conserved residues are indicated 
above such residues. Red shading indicates the amino acid residues that were shown to be involved in ATP binding by X-ray analysis; corresponding amino 
acid residues in other sequences are shaded blue. Magenta shading indicates the residues identified by site-specific mutagenesis. Conserved amino acid 
residues of the active center of biotin carboxylases are shaded green. Yellow shading indicates uncharged amino acid residues (A, I, L, V, M, F, Y, or W) 
with a propensity to form P-strands. Conserved small residues (G, A, S ,  or C) are shown in green, the residues conserved within a protein family are in 
caps, the ones conserved among several protein families are in bold. The consensus includes amino acid residues conserved in all sequences (upper case) 
and those conserved in the majority of the sequences (lower case). U stands for a bulky hydrophobic residue (I, L, V, M, F, Y, W), 0 stands for a small 
residue (G, A, S, C), + stands for K or R, - stands for D or E, $ indicates any charged residue (D, E, K, R. N, Q). and dot stands for any residue. 
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R-CO-0- rh- R-CO-OP03’- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA/‘v R-Co-S-CoA 

ATP ADP ns - c o ~  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAnoPo3=- 

However, these exceptions appear to be the only ones where an 
ATP-grasp enzyme works without an amino group-containing sub- 
strate. Remarkably, SCS of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcoli can use GTP and ITP in addition 
to ATP (Murakami  et al., 1972; Kelly & Cha, 1977), while the 
enzymes from pig hearts and Dictyostelium discoideum are GTP 
specific (discussed by Nishimura, 1986; Anschutz et al., 1993). 

The multiple alignment of the ATP-grasp superfamily generated 
from the PSI-BLAST data using CLUSTALW (Thompson et al., 
1994) and MACAW (Schuler et al., 1991) programs (Fig. 1) shows 
a clear pattern of conservation in the three motifs described by 
Artymiuk et al. (1996). These motifs are also detectable in the 
sequences of SCS, in accordance with the structural classification 
(Murzin, 1996), and TTL, confirming that TTL contains an ATP- 
grasp domain (Fig. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1). The alignment also includes several un- 
characterized proteins, for which no function could be deduced 
from the sequence data. 

This alignment demonstrates that most of the amino acid resi- 
dues that interact with ATP in DD-ligase (Fan et al., 1994, 1995) 
are conserved in all ATP-grasp domains, and the few allowed 
substitutions are consistent with their predicted role in ATP bind- 
ing. Thus, Lys-97 and Lys-144 of DD-ligase, interacting electro- 
statically with a- and P-phosphates of  ATP, are conserved in a 
majority of sequences and are only substituted by Arg  in carbam- 
oyl phosphate synthetases. Glu- 180, hydrogen bonded to the amino 
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group of adenine, can be substituted by Gln or Asp, while Glu-187, 
hydrogen bonded to ribose OH groups, can be substituted by His, 
Asp, or Asn. Amino acid residues Asp-257, Glu-270, and Asn-272, 
participating in coordination of Mg2+, and Trp-182, Leu-183, and 
Leu-269, providing hydrophobic interactions for adenine and ri- 
bose rings, are also highly conserved. In accordance with the site 
mutagenesis data (Shi & Walsh, 1995), Tyr-216 can be substituted 
by other hydrophobic residues. On the other hand, most of the 
amino acid residues forming the active center of BCase (Waldrop 
et al., 1994), such as Tyr-82, His-236, Lys-238, Glu-241, Gln-294, 
and Glu-296, are conserved only among BCases. These residues 
are not conserved even in phosphoribosylaminoimidazole carbox- 
ylase (Fig. l), which also uses bicarbonate as a substrate, but is 
likely biotin-independent (Mueller  et al., 1994). Finally, we found 
no sequence conservation around Glu-15, which in DD-ligase binds 
amino groups of the substrate. This may reflect the variety of the 
amine-containing substrates of the enzymes of this family. 

The ATP-grasp domain is ubiquitous, with multiple representa- 
tives of the superfamily encoded in each of the completely se- 
quenced genomes (Table 2). It is of interest, however that, unlike 
metabolic enzymes, the two groups of ATP-grasp proteins involved 
in protein modification, while highly conserved, are limited in 
their phylogenetic distribution to prokaryotes (RimK) or eukary- 
otes (TTL) (Table 2). Conceivably, these enzymes could have 
evolved from ancestral metabolic enzymes. Phylogenetic distribu- 
tion of the ATP-grasp enzymes suggests some interesting func- 
tional clues. Methanococcus jannaschii encodes two paralogous 
proteins that are both orthologous to RimK, yet there is no gene for 

Table 2. ATP-grasp domains encoded in prokaryotic and eukaqotic genomes 

o-Alanine- 
Glutathione o-alanine 

Organism RimK synthetase ligase 
- 

Escherichiu 

coli 

Hemophilus 

influenzae 

Mycoplasma 

geniralium 

Syechocystis sp. 

Methanococcus 

jannuschii 

Saccharomyces 

cerevisiae 

RimK GshB 

HI1531 - 

MGOlI - 

MG012 

- slr1238 

slr2002 

MJ0620 - 

MJlOOl 
h - - 

Caenorhahditis - h 

elegans 

- 

Homo sapiens - - b 

DdlA 
DdlB 

HI1 140 

- 

slrl874 

- 

- 

Carbamoyl 
Biotin phosphate 

Purine biosynthesis enzymes carboxylases synthetase 

Tubulin- 
tyrosin 
ligase 

PurD 

HI0888 

- 

sir I 159 

MJ0937 

YGL234w 

PurT PurK AccC CarB 

HI1616 - - 

slrO861 ~110578 ~110053 s110370 

F38B6.4 - 

P22 102 

MJ1486 - MJI 229 MJ 1378 
MJ1381 

- YOR128c YBR208c, YJL130c 
YBR218c. YJR109c 
YGL062w, 
YNR016c. 
YM8261.01~ 

- D2023.2, D2085.1 
F26D 10.2, 
F27D9.5, 
F32B6.e 

- - PO5 165, P27708 
P11498, P3 1327 
~41121  

- 

- 

- 

- 

YBR094w 

C55A6.2 
ZKI 128.6 

KIAA0153 
KIAAO 173 

Unknown 

- 

- 

slr1616 

MJ0776 
MJ08 15 

YSCL993 1 

F46F11.1 

(1995). M. genitalium -from Fraser et  al. (1995), Synechocystis sp.-from Kaneko et al. (1996), M. jannaschii-from Bult et al. (1996), S.  cerevisiue- 
aProteins are indicated by their original authors’ designations; zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE. coli proteins are from SWISS-PROT database. H.  influenzae-from Fleischmann et al. 

from the Succhuromyces genome database (Stanford University). Yeast, human, and worm proteins are listed under their GenBank identifiers. 
hEukaryotic glutathione synthetase has no detectable sequence similarity with the bacterial enzyme. 



ATP-grasp supe$amily zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2643 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
the bacterial ribosomal protein S6 in the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAM. jannaschii genome. A 
similar pattern can be seen in the recently sequenced genomes of 
two other archaea, Methanobacterium thermoautotrophicum and 
Archaeoglobusfulgidus. Thus,  it  seems likely that RimK actually 
has another, conserved, but not yet discovered activity. Of further 
interest is the finding of a group of uncharacterized eukaryotic 
proteins containing an ATP-grasp domain and showing the highest, 
though limited, similarity to RimK. These putative enzymes may 
be involved in an as yet unknown protein modification mechanism. 

A substantial number of enzymes that are similar in function to 
ATP-dependent carboxylate-amine ligases do not show any detect- 
able sequence similarity to the ATP-grasp superfamily. These in- 
clude such peptide synthetases as y-glutamyl-cysteine synthetase, 
eukaryotic GSHase, and bacterial peptidoglycan biosynthesis pro- 
teins Mu<, MurD, and MurE.  MurD was shown recently to have 
a typical Rossman fold (Bertrand et al., 1997), rather than ATP- 
grasp. Pyruvate phosphate dikinase, which reportedly has the ATP- 
grasp fold (Herzberg et al., 1996; Murzin, 1996), shows no apparent 
sequence similarity to DD-ligase, GSHase, BCase, or SCS. Finally, 
in spite of certain similarities in the reaction mechanism, there is 
no indication that glutamine synthetases belong to the ATP-grasp 
superfamily. 

On a general note, the findings presented here show that with 
refinement of sequence comparison methods their sensitivity may 
match that of methods based on structure comparison. Such de- 
velopments are particularly important, given the parallel rapid growth 
of sequence and structure databases as sequence analysis methods 
complement  structure  analysis by assigning subtly similar se- 
quences to superfamilies with known folds. 
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