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A DIVIDE-AND-CONQUER ALGORITHM FOR THE SYMMETRIC
TRIDIAGONAL EIGENPROBLEM*

MING GU AND STANLEY C. EISENSTAT

Abstract. The authors present a stable and efficient divide-and-conquer algorithm for comput-
ing the spectral decomposition of an N N symmetric tridiagonal matrix. The key elements are
a new, stable method for finding the spectral decomposition of a symmetric arrowhead matrix and
a new implementation of deflation. Numerical results show that this algorithm is competitive with
bisection with inverse iteration, Cuppen’s divide-and-conquer algorithm, and the QR algorithm for
solving the symmetric tridiagonal eigenproblem.
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1. Introduction. Given an N N symmetric tridiagonal matrix

/2 (2 3

N-1 0N-1 N
N N

the symmetric tridiagonal eigenproblem is to find the spectral decomposition T
XAXT, where A is diagonal and X is orthogonal. The diagonal elements of A are the
eigenvalues of T, and the columns of X are the corresponding eigenvectors. In this
paper we propose an arrowhead divide-and-conquer algorithm (ADC) for solving this
problem.

ADC divides T into two smaller symmetric tridiagonal matrices T1 and T2, each
of which is a principle submatrix of T. It then recursively computes the spectral
decompositions of T1 and T2 and constructs an orthogonal matrix Q such that T
QHQT, where

H= (a zT )z D

with D a diagonal matrix and z a vector, is a symmetric arrowhead matrix. Finally
it finds the eigenvalues of T by computing the spectral decomposition H UAUT,
where U is an orthogonal matrix, and computes the eigenvector matrix of T as QU.

Since error is associated with computation, a numerical spectral decomposition of
T or H is usually defined as a decomposition of the form

T 2/2T + O(e IITI[2) or H /irT + O(e IIHI[2),
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DIVIDE-AND-CONQUER FOR SYMMETRIC TRIDIAGONAL EIGENPROBLEM 173

where e is the machine precision,/ is diagonal, and ) or is numerically orthogonal.
An algorithm that produces such a decomposition is said to be stable.

While the eigenvalues of T and H are always well conditioned with respect to
a symmetric perturbation, the eigenvectors can be extremely sensitive to such per-
turbations [14, pp. 413-414]. That is, A must be close to A, but and can be
very different from X and U, respectively. Thus one is usually content with stable
algorithms for computing the spectral decompositions of T and H.

Finding the spectral decomposition of a symmetric arrowhead matrix is an inter-
esting problem in its own right (see [3], [4], [26]-[28] and references therein). Several
methods for solving this problem have been proposed [3], [15], [26], [28]. While they
can compute the eigenvalues to high absolute accuracy, in the presence of close eigen-
values they can have difficulties in computing numerically orthogonal eigenvectors,
unless extended precision arithmetic is used [24], [29]. In this paper we present a
new algorithm for computing the spectral decomposition of a symmetric arrowhead
matrix. It is similar to previous methods for finding the eigenvalues, but it uses a
completely different approach to finding the eigenvectors, one that is stable. The
amount of work is roughly the same as for previous methods, yet it does not require
the use or simulation of extended precision arithmetic. Since it uses this algorithm,
ADC is stable as well.

ADC computes all the eigenvalues of T in O(N2) time and both the eigenvMues
and eigenvectors ofT in O(N3) time. We show that by using the fast multipole method
of Carrier, Greengard, and Rokhlin [10], [16], ADC can be accelerated to compute
all the eigenvalues in O(N log2 N) time and both the eigenvalues and eigenvectors in
O(N2) time. These asymptotic time requirements are better than the corresponding
worst-case times (O(N2) and O(N3)) for’ bisection with inverse iteration [21], [23] and
the QR algorithm [8]. Our algorithm for finding all the eigenvalues of H takes O(N2)
time as do previous methods [3], [15], [26], [28]. By using the fast multipole method,
it can be accelerated to compute all the eigenvalues in O(N) time.

Cuppen’s divide-and-conquer algorithm (CDC) [11], [121 uses a similar divid-
ing strategy, but it reduces T to a symmetric rank-one modification to a diagonal
matrix rather than to a symmetric arrowhead matrix. However, in the presence of
close eigenvalues it can have difficulties in computing numerically orthogonal eigenvec-
tors [11], [12], unless extended precision arithmetic is used [5], [24], [29]. In contrast,
ADC is stable and is roughly twice as fast as existing implementations of CDC (e.g.,
TREEOL [12]) for large matrices due to the differences in how deflation is implemented.2

ADC is also very competitive with bisection with inverse iteration [21], [23] and the
QR algorithm [8].

Section 2 presents the dividing strategy used in ADC; 3 develops an efficient
algorithm for the spectral decomposition of a symmetric arrowhead matrix and shows
that it is stable; 4 discusses the deflation procedure used in ADC; 5 discusses the
application of the fast multipole method to speed up ADC; and 6 presents some
numerical results.

2 Our techniques [17], [20] can be used to stabilize CDC without the need for extended, precision
arithmetic; our deflation procedure can be adapted to CDC, as can the fast multipole method.
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174 M. GU AND S. C. EISENSTAT

We take the usual model of arithmetic3

o o +

where x and y are floating-point numbers; o is one of +,-, , and +; fl(x o y) is the
floating-point result of the operation o; and I1 <: e. We also require that

for any positive floating-point number x. For simplicity we ignore the possibility of
overflow and underflow.

2. "Dividing" the matrix. Given an N x N symmetric tridiagonal matrix T,
ADC divides T into two subproblems as follows:

(2) T

where 1 < k < n, T1 and T2 are k k and (N-k- 1) (N-k-l) principle
submatrices of T, respectively, and ej is the jth unit vector of appropriate dimension.
Usually k is taken to be [N/2J.

Let QiDiQiT be a spectral decomposition of Ti. Substituting into (2), we get

(3)
0 1 0 )TQ 0 0
0 0 .r

where 11T is the last row of Q1 and f2T is the first row of Q2. Thus T is reduced to
the symmetric arrowhead matrix H by the orthogonal similarity transformation Q.

ADC computes the spectral decomposition H UAUT using the algorithm de-
scribed in 3. The eigenvalues ofT are the diagonal elements of A, and the eigenvector
matrix of T is obtained by computing the matrix-matrix product X QU. To com-
pute the spectral decompositions of T1 and T2, this process ((2) and (3)) can be
recursively applied until the subproblems are sufficiently small. These small subprob-
lems are solved using the QR algorithm. There can be at most O(log2 N) levels of
recursion.

Equations (2) and (3) also suggest a recursion for computing only the eigenvalues.
Let fT be the first row of Q and let 12T be the last row of Q2. Suppose that Di,
fi, and li are given for 1, 2. Then after finding the spectral decomposition of H,
the first row of X can be computed as (0, flT, 0) U and the last row of X can be
computed as (0, 0, 12T) U. There is a similar recursion for CDC [11].

This model excludes machines like CRAY and CDC Cyber that do not have a guard digit.
ADC can easily be modified for such machines.D
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DIVIDE-AND-CONQUER FOR SYMMETRIC TRIDIAGONAL EIGENPROBLEM 175

3. Computing the spectral decomposition of a symmetric arrowhead
matrix. In this section we develop a stable and efficient method for finding the spec-
tral decomposition of an n n symmetric arrowhead matrix

z D

where D diag(d2,..., dn) is an (n- 1) (n- 1) matrix with d2 <_ d3 <_ <_ dn,
z (z2,..., Zn)T is a vector of length n- 1, and a is a scalar. The development closely
parallels that in [17] and [20] for finding the spectral decomposition of a symmetric
rank-one modification to a diagonal matrix.

We further assume that

(4) dj+l dj >_ TIIH]I2 and ]zil >_ TIIHII2,

where T is a small multiple of e to be specified later. Any symmetric arrowhead matrix
can be reduced to one that satisfies these conditions by using the deflation procedure
described in 4.1 and a simple permutation.

The following lemma characterizes the eigenvalues and eigenvectors of symmetric
arrowhead matrices.

LEMMA 3.1 (Wilkinson [30, pp. 95-96], O’Leary and Stewart [26]). The eigen-
values {Ai}= ofH satisfy the interlacing property

A1 < d2 < A2 <’" < dn < An

and the secular equation

n 2

+
y=. d-A

For each eigenvalue Ai of H, the corresponding eigenvector is given by

(5) Z1 Zn Z
ui= -1,

d_Ai, ’d-Ai
1+

(d-Ai)

The following lemma allows us to construct a symmetric arrowhead matrix from
its eigenvalues and its shaft.

{}i=LEMMA 3.2 (Boley and Golub [6]). Given a set of numbers n and a diagonal
matrix D diag(d2,..., dn) satisfying the interlacing property

(6)

there exists a symmetric arrowhead matrix
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176 M. GU AND S. C. EISENSTAT

whose eigenvalues are {i}n
given by

The vector (2,..., n)T and the scalar & are

-1 (j di) nl (j di)(7) Iil (di 1) (n di) H (dj di) (dj+ di)
j--2 j--i

n

j=2

where the sign of can be chosen arbitrarily.

3.1. Computing the eigenvectors. If Ai were given exactly, then we could
compute each difference, each ratio, each product, and each sum in (5) to high relative
accuracy, and thus compute ui to componentwisehigh relative accuracy. In practice
we can only hope to compute an approximation Ai to Ai. But problems can arise if
we approximate ui by

i --1 Z1 Zn Z
d2 i dn- i

1+
.= (dj i)2

(i.e., replace Ai by i in (5), in [3], [15], and [26]). For even if i is close to Ai, the
approximate ratio zj/(dy ) can be very different from the exact ratio zy/(dy Ai),
resulting in a i very different from ui. And when all the approximate eigenvalues
(i}i are computed and all the corresponding eigenvectors are approximated in this
manner, the resulting eigenvector matrix may not be numerically orthogonal.

Lemma 3.2 allows us to overcome this problem. After we have computed all
the approximate eigenvalues (i}i of H, we can find a new matrix whose exact

and then compute the eigenvectors of using Lemma 3.1.eigenvalues are { i}i=,
Note that each difference, each product, and each ratio in (7) can be computed to high
relative accuracy, and the sign of i can be taken to be the sign of zi. Thus i can be
computed to componentwise high relative accuracy. Substituting the exact eigenvalues
Ai}i= and the computed into (5), each eigenvector of H can be computed to

componentwise high relative accuracy2 An, after all the eigenvectors are computed,
the computed eigenvector matrix of H will be numerically orthogonal.

To ensure the existence of, the approximations (i}i must satisfy the inter-
lacing property (6). But since the exact eigenvalues of H satisfy the same interlacing
property (see Lemma 3.1), this is only an accuracy requirement on the computed
eigenvalues and is not an additional restriction on H.

We can use the spectral decomposition of as an approximation to that of H.
Since

z D =+ z- 0

we have

Thus such a substitution is stable (see (1)) as long as & and are close to a and z,
respectively (cf. [17], [20]).D
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DIVIDE-AND-CONQUER FOR SYMMETRIC TRIDIAGONAL EIGENPROBLEM 177

3.2. Computing the eigenvalues. To guarantee that is close to z and & is
close to c, we must ensure that ( i}i=l are sufficiently accurate approximations to
the eigenvalues. The key is the stopping criterion for the root-finder, which requires
a slight reformulation of the secular equation (cf. [9], [17], [20]).

Consider the eigenvalue Ai E (di, di+), where 2 < _< n- 1; we consider the cases
1 and n later. /i is a root of the secular equation

n 2

f(A)--A-+ zy

let
We first assume that4 hi E (di, di.q-d+l

2 ). Let i di- (x and ij dj -d, and

Since

and
n

j=i+l

f (# q- di) # + oi + i(#) + i(#)

we seek the root # A -d (0, dii+1/2) of g(#) 0. Let/2i be the computed root
so that i di +/2i is the computed eigenvalue.

An important property of gi(#) is that each difference 5j # can be evaluated
to high relative accuracy for any # (0,5i+/2). Indeed, since 5i 0, we have
fl(5 #) -fl(#). Since fl(5+) fl(d+ d) and 0 < # < (d+ d)/2, we can
compute fl(dii+l #) as fl(fl(di+l di) fl(#)). In a similar fashion, we can compute
5j # to high relative accuracy for any j = i, + 1.

Because of this property, each ratio z/(hj -#) in gi(#) can be evaluated to high
relative accuracy for any # (0,i+1/2). Moreover, c can be computed to high
relative accuracy. Thus, since both (#) and i(#) are sums of terms of the same
sign, we can bound the error in computing gi(lz) by

where r/is a small multiple of e that is independent of n and #.
We now assume that Ai [(di +di+l)/2, di+l). Let ci di+l- a and 5j

dy di+l, and let

and
n 2

j=+ J p

We seek the root #i )u di+l [5i/2, 0) of the equation

gi(#) =_ f(# + di+) # + o + i(#) + i(#) 0.

4 This can be checked by computing f(diTdi+l +di’. If f( ’i 2-v’) >O,then

otherwise ,ki e [d+d+l di+l)2D
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178 M. GU AND S. C. EISENSTAT

Let i be the computed root so that i di+l + ti. For any # E [5/2, 0), each
difference 5j # can again be computed to high relative accuracy, as cn each ratio

zy/(5 ) and the scalar a, and we can bound the error in computing g() as
before.

Next we consider the case 1. Let a d2 a and 5y dj d2, and let

1() 0 and 1()
j .

j=2

We seek the root d2 e (-llzl12 -lall, 0) of the equation

Let be the computed root so that d2 + g. For any e (-][z2 -a[, 0),
each ratio zy/(hj ) can be computed to high relative accuracy, s can al, and we
can bound the error in computing g() as before.

Finally we consider the case n. Let an dn a and 5j dj dn, nd let

n 2

n() .= 5j -z nd Cn()0.

We seek the root n A dn e (0, [z[[2 + [an) of the equation

f(, + z + + + 0.

Let n be the computed root so that n dn + n. For any p e (0, ]z2 + ]an]), each
2rtio zj/(hj p) can be computed to high relative accuracy, as can a, and we can

bound the error in computing g() as before.
In practice the root-finder cannot make ny progress at a point where it is

impossible to determine the sign of gi() numerically. Thus we propose the stopping
criterion

(9) [gi()[ n( + lai[ + i()[ + [i()),

where, as before, the right-hand side is an upper bound on the round-off error in
computing gi(p). Note that for ech i, there is at least one floating-point number
that stisfies this stopping criterion numerically, namely, fl(pi).

We hve not specified the method used to find the root of gi(). We used a modi-
fied version of the rational interpolation strategy in [9] for the numerical experiments,
but bisection and its variations [26], [28] or the improved rational interpolation strate-
gies in [15], [25] would also work. What is most important is the stopping criterion
and the fct that, with the reformulation of the secular equation given above, we can

find a that satisfies it.

3.3. Numerical stability. In this subsection we show that & and re indeed
close to a and z, respectively, as long as the root-finder guarantees that each gi
satisfies the stopping criterion (9).

Since f (Ai) 0, we have

j=2
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DIVIDE-AND-CONQUER FOR SYMMETRIC TRIDIAGONAL EIGENPROBLEM 179

and

( )f(,) f(,) f(A,) (- A) 1 +
.= (dd ,)(d A)

Since the computed eigenvalue i satisfies (9), we have

so that

(0)

Note that for any and j,

Substituting these relations into (10), we get

or

1 r/n

i.e., all the eigenvalues are computed to high absolute accuracy. Applying (8) in
Lemma 3.2 to both H and H, we have

n n

a 1 +E (Aj dj) and & 1 --E (Xj dj),
j=2 j=2

and therefore

(11)
n

( i)
j=l

n

1 nj=lD
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180 M. GU AND S. C. EISENSTAT

and

To show that is close to z, we further note that for any and j, we have

+ < +

Substituting these relations into (10) and using the Cauchy-Schwartz inequality, we
get

< 2n
-1 .= I(d )(d a)ll/:

Since I.1 + I111 IIHIIN, w have

1-n I"il2 + IlzllN 1 +
.= I(dj Xi)(dj

2nllHll2 l(d )(d

( 1 )
Letting llgl/((1 -)lzl), this implies that

for every 2 E j 5 n, provided that y < 2.
Let X A a(dy $)/z for all and j. Suppose that we pick r 6n2

in (4). Then ]zyl k 6n211Hl12, Assume further that n < 1/100. Then E 2/5,
and (12) implies that I1 nllgiI2 for 11 and j. Thus

I1 YIy2,j# (dj di) Ij=2,j# (dj di) Izl 1 +
j--1 Zi ]

and, since 2i and zi have the same sign,

(()n _1)
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DIVIDE-AND-CONQUER FOR SYMMETRIC TRIDIAGONAL EIGENPROBLEM 181

(13) <lz, exp --1 < (e--1) an/2

where we have used the fact that an/(2[zi[) < 1 and that (ex- 1)/x < e- 1 for
0<x<l.

One factor of n in T and the bounds (11) and (13) comes from the stopping
criterion (9). This is quite conservative and could be reduced to log2 n by using a

binary tree structure for summing the terms in i(#) and @(#). The other factor
nof n comes from the upper bound for y=l (Aj j) in (11) and Hj=(1 + aji/zi)

in (13). This also seems quite conservative. Thus we might expect the factor of n2 in
T and the bounds (11) and (13) to be more like O(n) in practice.

4. Deflation.

4.1. Deflation for symmetric arrowhead matrices. Let

z D

where D diag(d,..., d) and z (z,..., z). We now show that we can reduces

H to a symmetric arrowhead matrix that further satisfies

[d-dy[ k TI[H[]2, for #j and [zi k 7[[g[[2

(cf. (4)), where z is specified in 3.3. We illustrate the reductions for n 3, 3,
and j 2.

Assume that Izil < TIIHII2. Then

(14) H z2 d2 z2 d2
z3 d3 0

0 I + O(TIlHII2)
d3 ]

We perturb zi to zero. Then H is perturbed by o(IIHIIe), di is an eigenvalue of the
perturbed matrix and is deflated. The (n- 1) x (n- 1) leading principle submatrix of
the perturbed matrix is another symmetric arrowhead matrix with smaller dimensions.
This deflation rule is stable (see (1)).

Now assume that Idi- djl < TIIHII2. Apply a Givens rotation G to H to zero out
Zi:

(5)

GHGT c s z2 d2
-s c z3 d3

I Ir d2c2 A- d3 82 c8(d3 d2)
0 cs(d3-d2) d2s2+d3c2

(r d22 A- d3 82
0

o / + O(rllHII2),
d282 -b d3c2 ]

5 These rules have previously appeared in [1,51 and [19].D
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182 M. GU AND S. C. EISENSTAT

42 2 /r, and zi/r. We perturb cs(di dj) to zero. Thenwherer- zi + z, c= zj s-

GHGT is perturbed by O(TIIHII2). djs2 + dc2 is an eigenvalue of the perturbed
matrix and can be deflated. The (n- 1) (n- 1) leading principle submatrix of the
perturbed matrix is another symmetric arrowhead matrix with smaller dimensions.
This deflation rule is also stable (see (1)).

4.2. Local deflation. In the dividing strategy for ADC (see (a)), we write

(16) T- 1 0 0 3k+lll DI 0 Q 0 0
0 0 Qg. 3k+9.f: 0 De 0 0 Q2T

(QU)A(QU)T,
where Q is the first matrix in (16) and UAUT is the spectral decomposition of the
middle matrix.

Note that Q is a block matrix with some zero blocks. When we compute the
matrix-matrix product QU, we would like to take advantage of this structure. Since
the main cost of ADC is in computing such products, we get a speedup of close to a
factor of two by doing so. This is not done in any current implementation of CDC.

If the vector (k+lT1, /3k+2f2T) has components with small absolute value, then
we can apply reduction (14). The block structure of Q is preserved. If D1 has two
close diagonal elements, then we can apply reduction (15). The block structure of Q
is again preserved. We can do the same when D2 has two close diagonal elements.

However, whenD has a diagonal element that is close to a diagonal element in D2
and we apply reduction (15), the block structure of Q is changed. To illustrate, assume
that after applying a permutation the first diagonal element of D1 is close to the last
diagonal element of D2. Let Q (ql, (1) and Q2 ((2, q2); let D1 diag(d2, 1)
and 02 diag(2, dN); and let 3k+llT (Z2, 51T) and /k+2f2T (52T, zg). By
assumption, d2 and dN are close. When we apply the Givens rotation

1

to the middle matrix in (16) to zero out ZN, we create some nonzero elements in the
second and Nth columns of Q"

Ok-f-1 Z2
T T

2 ZN
0 1 0

T 1 0 0 0 0 GTG 1 bl GTG QT 0 0
o o o o o

zN dN 0 0 qT2

Ok+ r T 2T 0 0 1 0

(o o o
1 0 0 0 0 1 /)1 (1T 0 0
0 sq2 0 2 cq2 2 2 0 0

0 dN --sq 0 cq
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+ O(TllTll2),

where d2 d2c2 + dN 82 and aN d2s2 + dNc2.
Note that g is an approximate eigenvalue of T and can be deflated. The corre-

sponding approximate eigenvector is the last column of the first matrix. The leading
(N- 1) x (N- 1) principle submatrix of the middle matrix is again a symmetric
arrowhead matrix and can be deflated in a similar fashion until no diagonal element
of/)1 is close to a diagonal element of/)2.

Thus, ignoring permutations of the columns of Qi and the diagonal elements of
Di, after a series of these interblock deflations T can be written as

(17) T: (-271 2) (/1 ) (1 2)T-t-O(TllTII2)A2

/2 is a diagonal matrix whose diagonal elements are the deflated eigenvalues and the
columns of X2 are the corresponding approximate eigenvectors. HI is the symmetric
arrowhead matrix

o Do
51 D1
52 D2

where the dimension of/)0 is the number of deflations, /)l and/)2 contain the un-
deflated diagonal elements of D1 and D2, and 5o, 51, and 52 are defined accordingly.
X1 is of the form

(18) .1 1_ 0 p
0 Qo,2 0 Q2

where the column dimension of both (0,1 and Oo,2 is the number of deflations and
the columns of (1 and (2 are those columns of Q1 and Q2 not affected by deflation.

If some diagonal element of/)0 is close to a diagonal element of either/)1 or/)2,
then we can use reduction (15) to deflate without changing the structure of X1. In
the following we assume that no further such deflation is possible.

Let D1/IIT be the spectral decomposition of 1. Then

r--(1 "2) ( r1/171T
/2 ) (.(1 -(2)T+o(TIITII )2

--(z11 2) ( /1
~A2 ) (lrl 2)T-"O(TllTII2)"

Thus (.(11, -J’2) is an approximate eigenvector matrix of T. The matrix -1 rl can
be computed while taking advantage of the block structure of Jl.

We refer to these deflations as local deflations since they are associated with
individual subproblems of ADC.
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4.3. Global deflation. To illustrate global deflation, we look at two levels of
the dividing strategy (see (2)); for simplicity, we denote unimportant entries of T by
x:

where T1, T2, TI,, and T,2 are principle submatrices of T of dimensions (i + j + 1)
(i + j + 1), (N j 2) (N j 2), i, and j x j, respectively.

Let Q1,2D1,2QIT,2 be the spectral decomposition of T1,2, and let fl,T and /1T,2 be
the first and last rows of Q,2, respectively. Then

TI,1
x

T= /i+2e Q1,2D1,2QIT,2

Xel T2
TI,1 xi

x
(19) = Y i+2fl,2 D1,2 i+j+211,2

x
Xl T2

where Y diag(Ii, 1, Q1,2, 1, IN-i-j-2).
Let ds be the sth diagonal element of D,2, and let f8 and 18 be the sth components

of f,2 and/1,2, respectively. Then, ignoring all zero components, the (i + s + 1)st
row of the middle matrix in (19) is (i+2fs, ds, i+j+21s). Thus if both Ii+2fsl and
Ifli+y+2/-sl are small, then we can perturb tlem both to zero. d-s is an approximate
eigenvalue of T and the (i + s + 1)st column of Y is the corresponding approximate
eigenvector. This eigenvalue and its eigenvector can be deflated from all subsequent
subproblems. We call this global deflation.

Consider the deflation procedure for computing the spectral decomposition ofT
in 4.2. If I/i+2f[ is small, then it can be perturbed to zero. This is a local deflation
if only I/i+2jl is small, and a global deflation if [/i+j+2s[ is also small.

5. Acceleration by the fast multipole method. Suppose that we want to
evaluate the complex function

n

(:0)
j=l

at rn points in the complex plane, where {cy}yn__ are constants and () is one of
log(C), 1/, and 1/2. The direct computation takes O(nm) time. But the fastD
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multipole method (FMM) of Carrier, Greengard, and Rokhlin [10], [16] takes only
O(n + m) time to approximate (I)() at these points to a precision specified by the
user.6 In this section we briefly describe how FMM can be used to accelerate ADC.
A more detailed description appears in [17] and [18] in the context of updating the
singular value decomposition.

Let

z D

where D diag(d2,..., dn) is an (n- 1) (n- 1) matrix with d2 < d3 < < dn,
z (z2,..., Zn)T is a vector of length n- 1, and a is a scalar. Let UAUT denote the
spectral decomposition of H, with U (ul,..., Un) and A diag(A1,..., AN).

Consider computing VTq for a vector q (q,... ,qn)T. By (5) in Lemma 3.1,
the ith component uq of UTq can be written as

where

T
zti q

-q + (Ai)

n
zkqk()

dk A
and

n 2

(I)2(A)
(dk A)2"

k=2

Thus we can compute UTq by evaluating (I)I(A) and (I)2(A) at n points. Since these
functions are of the form (20), we can do this in O(n) time using FMM. To achieve bet-
ter efficiency, we modify FMM to take advantage of the fact that all the computations
are real (see [17]-[19]).

Let T be an N N symmetric tridiagonal matrix. When ADC is used to compute
all the eigenvalues and eigenvectors, the main cost for each subproblem is in forming
)1U (see (17)), where1 is a column orthogonal matrix. 7 Each row ofIU is of the
form qTu (UTq)T and there are O(n) rows. Thus the cost of computingU is

O(n2) using FMM. There are log2 N levels of recursion and 2k-1 subproblems at the
kth level, each of size O(N/2k). Thus the cost at the kth level is 0(N2/2k) and the
total time is O(N2).

We may also have to apply the eigenvector matrix ofT to an orthogonal matrix Y,
e.g., when T is obtained by reducing a dense matrix to tridiagonal form [14, pp. 419-
420]. For each subproblem, we can apply the eigenvector matrix of the corresponding
symmetric arrowhead matrix directly to Y. The cost for each subproblem is O(Nn)
using FMM, and there are O(N/n) subproblems at each level. Thus the cost at each
level is O(N2) and the total time is O(N2 log2 N).

When ADC is used to compute only the eigenvalues, the main cost for each
subproblem is computing two vectors of the form qTu, finding all the roots of the
reformulated secular equation, and computing 2. We now show how to find all the
eigenvalues of H and all the components of in O(n) time.

6 The constant hidden in the O(.) notation depends on the logarithm of the precision.
7 )1 is also a block-structured matrix (see (18)). Here we view it as a dense matrix to simplify

the presentation, even though FMM is more efficient when it exploits this structure.D
o
w

n
lo

ad
ed

 0
1
/0

4
/1

3
 t

o
 1

5
0
.1

3
5
.1

3
5
.7

0
. 
R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r 

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
:/

/w
w

w
.s

ia
m

.o
rg

/j
o
u
rn

al
s/

o
js

a.
p
h
p



186 M. GU AND S. C. EISENSTAT

A root-finder computes successive approximations to each eigenvalue Ai. The
main cost is in evaluating the functions

n 2

+
j=2

dj )

To compute new approximations to all the eigenvalues simultaneously, we must eval-
uate f(,k) at n points. Since this function is similar to the form (20), we can do this
in O(n) time using FMM. Thus, assuming that the number of approximations to each
eigenvalue is bounded, all the eigenvalues of H can be computed in O(n) time.

To compute 2, note that (7) can be rewritten as

where

Iil v/(d- il)(in- di) exp(3(di))

i-1 n-1
1 log(j d) log(dj d) Z log(dj+l d)3(d)
\j=2 j=2

Thus we can compute all the components of in O(n) time using FMM.
We have shown that when computing all the eigenvalues of T using ADC, we can

solve each subproblem in O(n) time. Since there are O(N/n) subproblems at ech
level, the cost at each level is O(N) and thus the totM time is O(N log2 N).

6. Numerical results. In this section we compare ADC with three other algo-
rithms for solving the symmetric tridiagonal eigenproblem.

B/II: Bisection with inverse iteration [21], [23] (subroutines DSTEBZ and DSTEIN
from LAPACK [2]).

CDC: Cuppen’s divide-and-conquer algorithm [11], [12] (subroutine TREEQL
from netlib).

QR: The QR algorithm [8] (subroutine DSTEQR from LAPACK [2]).
ADC solves subproblems of size N 6 using the QR algorithm. Since none of the
test matrices is particularly large, FMM was not used.

All codes are written in FORTRAN and were compiled with optimization enabled.
All computations were done on a SPARCsttion/1 in double precision. The machine
precision is e 1.1 x 10-16.

Let [,,] denote the N N symmetric tridiagonM matrix with on the off-
diagonals and ,...,N on the diagonM. We use the following test matrices, most
of which are taken from [21]"

a random mtrix, where the diagonal nd off-diagonM elements are uniformly
distributed in [-1, 1];
the Wilkinson matrixW [1, w, 1], where w ](N + 1)/2- i];
glued Wilkinson matrix W" 25 25 block mtrix, where each diagonal

block is the Wilkinson matrixW and the off-diagonal elementsk+ g,
for 1,...,24;

s For simplicity we consider the original secular equation. See [17] and [18] for a version of
FMM that can compute each gi(P) (and i() and i() and their derivatives) at a different point in

O(n) time. This is needed for the root-finders in [9], [15], [25] and to check the stopping criterion (9).D
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Matrix

type

Random

W/
10--14

[1, 2, 1]

[1, Yi, 11

[1/100, 1 -t- "i, 1/100]

TABLE 1
Execution time.

Order Execution time (seconds)

128 3.12 8.50 3.90 11.63
256 10.43 33.35 14.88 85.86
512 20.89 133.61 34.31 654.52
129 1.44 6.54 1.46 9.87
257 3.43 25.00 3.74 66.86
513 8.26 97.57 14.76 497.55
125 0.63 5.88 * 5.12
275 2.22 28.83 * 47.35
525 8.23 121.84 * 353.41
128 3.91 8.49 3.72 10.21
256 21.89 33.68 22.77 72.40
512 138.79 144.43 213.01 545.05
128 4.48 8.54 6.66 10.17
256 24.20 33.64 43.02 72.14
512 148.95 I35.48 302.06 544.65
128 4.57 16.93 6.86 9.83
256 24.45 102.81 43.01 70.65
512 149.50 692.64 301.58 539.48

Matrix

type

Random

W+
10--14

[1,2,1]

[1,%, 1]

[1/100, +, 1/100]

Order

N

128

256

512

129

257

513

125

275

525

128

256

512

128

256

512

128

256

512

TABLE 2
Residual.

max/

ADC B/II CDC QR

0.49 I0-I
0.43 10-1

0.23 10-1
0.67 10-1

0.17 10-1

0.44 10-2

0.11 100
0.27 10-1
0.15 x I0-I
0.41 I0"1

0.22 x 10-I

0.12 10-1

0.46 x 10-1

0.23 x 10-1

0.12 x I0-I
0.22 x i0-1
0.12 x 10-1

0.59 10-2

0.11 10-1

0.47 10-2

0.28 10-2

0.86 10-2

0.3,9 10-2

0.21 x 10-2

0.16 x 100
0.36 10-I
0.66 x I0-I

0.70 10-2

0.12 10-1

0.35 10-2

0.16 10-1

0.11 x 10-1

0.79 10-2

0.79 10-2

0.42 10-2

0.21 10-2

0.I0 101
0.74 100
0.13 101
0.59 x 100
0.15 x I0

0.67 100

0.31 i0-I

0.25 10-1

0.20 10-1
0.67 10-I
0.47 x 10-1

0.36 I0-I

0.11 10-1

0.11 I0-I

0.64 10-2

0.16 100
0.82 10-1
0.69 10-1

0.61 x I0-I

0.35 10-1
0.21 10-1

0.22 100
0.11 100
0.14 100
0.52 10-1
0.35 x 10-1
0.25 10-1

0.90 i0-I

0.64 10-1

0.47 10-I
0.60 10-1
0.38 I0-I

0.28 10-1
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TABLE 3
Orthogonality.

Matrix

type

Random

W+
10--14

[1,-i, 1]

[1/100, + /i, I/I001

Order

N ADC

128 0.94 x 10-1
256 0.66 x 10-1
512 0.35 x 10-1

129 0.78

257 0.39

513 0.19

125 0.64

275 0.33

525 0.20

128 0.70

256 0.47

512 0.39 x i0-1
128 0.62 x 10-1

256 0.49 x I0-1
512 0.35 x 10-1

128 0.78 x I0-1
256 0.62 x 10-1
512 0.61 X 10-1

N
B/II CDC

0.30 x 100
0.86 x 10-1
0.72 x 10-1

10-1

I0-I

10-1 0.12 x
10-1 0.56 x

10-1 0.16 x
10-1 0.34 x

10-1 0.78 X

10-1 0.35

0.35 10-I
0.19 I0-I

10-1

10-1

I0o

10-1

100
100

0.54 10"I
0.17 I0

0.30 100
0.54 10-1

0.89 I0-I

0.72 x i0-I

0.36 x l0

0.18 x 10o

QR

0.59 100
0.54 10

0.47 x I0

0.80 I0

0.13 101
0.13 101
0.38 "x 1’
0.31 i0

0.32 10

0.13 100
0.70 x 10-1

0.21

0.92

0.12

0.55

10o

100
101
100

0.35 10-1
0.23 i0-I

0.21 x 10-1

0.14 i0

0.17 x 10o

0.21 x 10o

0.76 x 10o

0.91 10-1

0.11 I0

0.93 10-I

0.44 I0-i
0.12 100
0.62 10-1

0.48 10-1

0.12 x 100
0.78 I0-I

0.40 10-i

the Toeplitz matrix [1, 2, 1];
the matrix [1, 7i, 1], where /i x 10 -6",
the matrix [1/100, 1 + -y, 1/100], where 7 10-6;
the test matrices of types 8-21 in the LAPACK test suite.9

WN+ has pairs of close eigenvalues, W+ hasclusters of 50 close eigenvalues, [1, 2,1] has
no close eigenvalues, [1, ai, 1] and [1/ 100, 1 + ai, 1/100] do not deflate, and [1/100, 1 +
(xi, 1/100] forces B/II to reorthogonalize all of the eigenvectors.

The numerical results are presented in. Tables 1-4. An asterisk means that the
algorithm failed. Since the numerical results in Tables 1-3 suggest that CDC and
QR are not as competitive, we only compare ADC with B/II for the LAPACK test
matrices (see Table 4).

The residual and orthogonality measures for ADC are always comparable with
those for QR and B/II, and ADC is roughly twice as fast as CDC for large matrices,
due to the differences in how deflation is implemented (see 4.2). In most cases ADC is
faster than the others by a considerable margin and in many cases is more than 5-10
times faster. When ADC is slower than B/II (by at most 10%), the matrix size is
large (N 512) and there are few deflations. These are cases where FMM would
make ADC significantly faster.

Acknowledgment. The results in 3 were first announced in a preprint of [20].
Using the ideas there, Borges and Gragg [7] independently derived similar results.

9 Types 1-7 are all diagonal matrices.D
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Order Execution time

N ADC B/II
128 4.64 8.68

256 24.27 33.63

512 140.04 133.58

128 2.32 12.66

256 9.37 76.99

512 44.62 517.45

128 0.01 12.36

256 0.04 84.54

512 0.17 613.86

128 5.24 8.64

256 25.88 33.52

512 144.37 132.32

128 4.54 8.75

256 24.44 33.94

512 141.57 133.83

128 4.61 8.66

256 23.49 33.53

512 131.57 132.03

128 5.16 8.61

256 24.88 33.55

512 134.86 131.96

128 4.50 8.71

256 23.44 33.99

512 131.71 133.53

128 4.54 8.68

256 24.18 33.73

512 139.29 132.47

128 2.67 12.88

256 11.78 76.55

512 63.23 521.70

128 0.01 12.34

256 0.04 83.95

512 0.17 614.26

128 5.08 8.58

256 25.47 33.32

512 142.16 131.26

128 4.46 8.68

256 24.12 33.72

512 139.29 132.75

128 1.85 12.86

256 6.26 75.81

512 21.07 517.17

TABLE 4
LAPACK test matrices.

max/

g

ADC B/II ADC B/II
0.82 x 10-2

0.54 x 10-2

0.30 x 10-2

0.14 x 10-1

0.30 x 10-2

0.92 x 10-1
0.10 x 10-1

0.70 x 10-2

0.21 x 10-2

0.11 x i0-1

0.53 x 10-2

0.29 x 10-2

0.85 X 10-2

0.54 x 10-2

0.31 x 10-2

0.69 x 10-2

0.53 x I0-2

0.24 x 10-2

0.79 x 10-2

0.50 x 10-2

0.24 x 10-2

0.73 x 10-2

0.45 x 10-2

0.26 x 10-2

0.87 x 10-2

0.41 x 10-2

0.19 x 10-2

0.30 x i0-2

0.31 x 10-2

0.17 x 10.2

0.78 x 10-2

0.39 x i0-2

0.19 x 10-2

0.79 x 10-2

0.40 x 10-2

0.20 x 10-2

0.75 x 10.2

0.47 x 10-2

0.21 x 10-2

0.47 x 10-1
0.27 x 10-1
0.17 x 10-1

0.13 x 100
0.28 x 10-I
0.12 x 10-1

0.II x 10-1

0.45 10-2

0.38 x I0-2

0.45 x 10-1

0.28 x 10-1
0.17 x 10-1

0.46 x 10-1
0.25 x 10-1

0.16 x 10-1
0.43 x I0-i
0.20 x I0-1
0.13 x I0-i

0.46 x 10-1

0.24 x 10-1
0.12 x 10-1

0.49 x 10-1
0.24 x 10-1

o.13 x 10-1

0.22 x 10-1
o.13 x 10-1

0.14 x 10-1

0.30 x 10-1
0.38 x 10-1
0.16 x 10-1

0.13 x I0-I
0.98 x 10-2

0.44 x 10-2

0.25 x I0-1

0.14 x 10-1

0.13 x 10-1

0.20 x 10-1

0.13 x 10-1

0.13 x 10-1

0.45 x I0-1

0.38 x I0-1
0.15 x 10-1

0’34 x 10-2

0.27 x 10.2

0.12 x 10-2

0.86 x 10-1

0.66 x 10-1
0.47 x 10-1
0.12 x I0
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0.33 x 10-1

0.14 x i0-I

0.78 x 10-2
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0.62 x I0-I
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0.41 x 10-1

0.86 x 10-1

0.51 x 10-1

0.47 x 10-I
0.62 x 10-1
0.70 x 10-1

0.41 x 10-1

0.12 x 100
0.51 x I0-I

0.43 x 10-1
0.78 x 10-1
0.41 x 10-1

0.41 x 10-1

0.11 x 100
0.64 x 10-1

0.35 x I0-I

0.II x 100
0.51 x I0-1

0.33 x I0-1
0.16 x 10-1

0.59 x 10-2

0.20 x 10-2

0.90 x 10-1

0.70 x 10-i
0.31 x I0-I

0.62 x 10-1
0.51 x 10-1

0.33 x 10-1
0.70 x I0-1

0.35 x 10-1

0.31 x I0-1

0.16 x 100
0.25 x 100
0.21 x 100
0.20 x I0-I

0.27 x I0-1

0.84 x 10-1
0.70 x i0

0.52 x I0-1
0.21 x I0-I

0.22 x 10

0.17 x 100
0.20 x 10

0.19 x I0

0.30 x i0

0.20 x 10

0.33 x i0

0.15 x 100
0.25 x 100
0.28 x i0

0.39 x I0

0.29 x 10

0.12 x I0

0.17 x 100
0.13 x 100
0.11 x 100
0.93 x 10-1

0.15 x 100
0.58 x 10-1
0.82 x 10-1
0.29 x i0-I

0.39 x 10-1
0.29 x I0-I

0.16 x 100
0.92 x 10-1
0.16 x 100
0.97 x i0-I
0.10 x 100
0.17 x 100
0.12 x i0

0.45 x i0-I

0.16 x 10-1

0.20 x 10-1
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