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A divide and conquer approach to fast loop modeling
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We describe a fast ab initio method for modeling local
segments in protein structures. The algorithm is based on
a divide and conquer approach and uses a database of
precalculated look-up tables, which represent a large set
of possible conformations for loop segments of variable
length. The target loop is recursively decomposed until the
resulting conformations are small enough to be compiled
analytically. The algorithm, which is not restricted to
any specific loop length, generates a ranked set of loop
conformations in 20–180 s on a desktop PC. The prediction
quality is evaluated in terms of global RMSD. Depending
on loop length the top prediction varies between 1.06 Å
RMSD for three-residue loops and 3.72 Å RMSD for eight-
residue loops. Due to its speed the method may also be
useful to generate alternative starting conformations for
complex simulations.
Keywords: homology modeling/polypeptide conformations/
protein folding/structure prediction

Introduction

Determination of protein structures that have not been solved
experimentally is frequently done by comparative modeling
techniques (Moult et al., 1999). Copying parts of the target
structure, which are assumed to be superimposable, from a
known protein structure serves as a framework. Structurally
variable regions, referred to as loops, have to be treated
separately. Because loops often show the greatest variation
in amino acid sequence and are usually less restrained in
conformation than the core regions, they cannot easily be
taken from the parent structure. Their prediction remains one
of the main problems in comparative protein modeling (Moult
et al., 1999). One problem is the generation of a good set of
alternative structures for evaluation with a scoring or energy
function. A number of different approaches have been investi-
gated in the literature to tackle this problem, which can be
divided in at least three categories: analytical, optimization
and database methods.

Analytical methods to predict the conformation of short
peptides date back to the pioneering work of Go and Scheraga
(Go and Scheraga, 1970). It is possible to predict the conforma-
tion of fragments with up to six rotable torsion angles using
rigid geometry, i.e. keeping idealized bond lengths and bond
angles, by solving a set of equations representing geometric
transformations. A number of publications have further
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addressed this problem (Bruccoleri and Karplus, 1985; Palmer
and Scheraga, 1991; Manocha et al., 1995; Wedemeyer and
Scheraga, 1999), but the results show that no generalized
analytical solution beyond six torsion angles is possible (Go
and Scheraga, 1970; Palmer and Scheraga, 1991). Bruccoleri
and Karplus (Bruccoleri and Karplus, 1987) have extended
the approach, solving small fragments analytically and enumer-
ating the solutions of larger ones. Combinatorial approaches
have been studied by several groups (Moult and James, 1986;
Bruccoleri et al., 1988; Brower et al., 1993; Bruccoleri, 1993;
Fidelis et al., 1994; Pedersen and Moult, 1995; Deane and
Blundell, 2000). A discretization of solution space is required
to limit the combinatorial explosion. A restricted set of
(φ,ψ) torsion angles is used to approximate all possible
conformations. This ranges from uniform conformational sam-
pling to distributions biased towards more populated regions of
the (φ,ψ) map. In addition, techniques to limit the combinatorial
explosion have been used, e.g. pruning parts of the search tree
which are too far apart to be spanned. The search algorithm
can either generate the conformations on the fly or separately
from modeling. Deane and Blundell (Deane and Blundell,
2000) have presented an interesting fast ab initio method to
predict loop conformations up to eight residues in length. They
use a set of eight carefully chosen (φ,ψ) torsion angles,
representing over 96% of all possible five-residue fragments
with �1 Å RMSD, to generate a database enumerating all
combinations up to 12 residues in length. A two-residue
overlap on each side of the loop is used to select fitting
fragments, allowing up to eight residues to be predicted. The
average RMSD ranges between 1.3 Å for three-residue loops
and 3.9 Å for eight-residue loops.

Various methods relying on local optimization such as the
minimum perturbation random tweak (Fine et al., 1986;
Shenkin et al., 1987; Smith and Honig, 1994), local moves
(Eloffsson et al., 1995), importance sampling by local minim-
ization of randomly generated conformations (Lambert and
Scheraga, 1989a,b,c) and global energy minimization by map-
ping a trajectory of local minima (Dudek and Scheraga, 1990;
Dudek et al., 1998) were also used. Other methods relate to
the optimization of an energy function. These include molecular
dynamics simulations (Bruccoleri and Karplus, 1990; Tanner
et al., 1992; Rao and Teeter, 1993; Nakajima et al., 2000),
Monte Carlo and molecular dynamics (Rapp and Friesner,
1999), biased probability Monte Carlo search (Abagyan and
Totrov, 1994; Evans et al., 1995; Thanki et al., 1997), Monte
Carlo with simulated annealing (Higo et al., 1992; Carlacci
and Englander, 1993, 1996; Collura et al., 1993; Vasmatzis
et al., 1994; Fiser et al., 2000), scaling relaxation and multiple
copy sampling (Rosenfeld et al., 1993; Zheng et al., 1993a,b,
1994; Rosenbach and Rosenfeld, 1995; Zheng and Kyle, 1994,
1996) and self-consistent mean field optimization (Koehl and
Delarue, 1995). The resulting loop conformations may cover
only a subset of the solution space and are not necessarily
close to the native structure.
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With the increasing number of structures deposited in the
Protein Data Bank (PDB) (Abola et al., 1997) it is possible to
model unknown loop conformations according to loop struc-
tures of known proteins. This was first developed by Jones
and Thirup (Jones and Thirup, 1986), who selected fragments
from the PDB for electron density fitting. Similar approaches
have been used in comparative modeling (Chothia and Lesk,
1987; Claessens et al., 1989; Summers and Karplus, 1990;
Tramontano and Lesk, 1992; Levitt, 1992; Topham et al.,
1993; Lessel and Schomburg, 1994; Martin and Thornton,
1996; Li et al., 1999). Fragments are selected from a database
of many known structures based on overlap with the framework
on both ends and sorted according to geometric criteria or
sequence similarity. Databases usually contain longer polypep-
tide fragments to increase predictive power. Sudarsanam et al.
(Sudarsanam et al., 1995) use a database of all possible dimers
to construct loops in a similar way to enumerative methods.
The overlap between fragment and framework alone is unlikely
to yield satisfactory results (Tramontano and Lesk, 1992). Van
Vlijmen and Karplus (Van Vlijmen and Karplus, 1997) have
shown that the results of database methods can be improved
by subsequent optimization and ranking using the CHARMM
energy function (MacKerell et al., 1998). An algorithm combin-
ing database searches with ab initio methods has been proposed
by Martin et al. (Martin et al., 1989). They use a database of
backbone conformations to predict long loops. For short loops,
and the central part of loops predicted from the database, they
rely on the ab initio method of Bruccoleri and Karplus
(Bruccoleri and Karplus, 1985).

Database methods are able to approximate most of the
antibody hypervariable loops quite closely, suggesting that
these proteins form a specific sub-space of foldings based on
certain ‘key residues’ (Chothia and Lesk, 1986, 1987). This
concept has been generalized to determine the conformation
of the loop, with limited success (Ring et al., 1992; Oliva
et al., 1997; Rufino et al., 1997; Wojcik et al., 1999). Antibody
loops have been found to form similar structures, allowing
strict classification (Chothia and Lesk, 1987; Chothia et al.,
1989; Martin and Thornton, 1996; Morea et al., 1998). Many
groups have developed classification methods for loops
(Sibanda and Thornton, 1985; Kwasigroch et al., 1996; Sun
and Jiang, 1996; Geetha and Munson, 1997; Oliva et al., 1997;
Rufino et al., 1997; Wintjens et al., 1997; Li et al., 1999).
The most common criteria for classification include loop length,
torsion angle conformation and type of adjacent secondary
structure. In the present study, we introduce a novel algorithm
for the generation of conformations as needed for prediction
of loop fragments in proteins. We define loop fragments as
those sections of the amino acid chain not containing secondary
structure. The initialization of the look-up tables is separated
from modeling and has to be executed only once. A number
of look-up tables, containing loop segments of variable length,
are generated and used to improve the performance in terms
of both computing time and accuracy of the loop construction.
The actual loop prediction is based on the so-called divide
and conquer approach.

Materials and methods

Divide and conquer approach

The idea of the divide and conquer approach is to divide the
loop into two segments of half the original length, choosing a
good central position. These sub-segments can then be recurs-
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Fig. 1. Vector representation of an amino acid. The end point (EP) is the
vector from an arbitrary origin to the C� atom. The vector from the C� atom
to the N atom of the following amino acid (N�) is called the end direction
(ED). The end normal (EN) vector is defined as the normal to the plane
formed by the Cα, C� and N� atoms.

ively divided and transformed, until the problem is small
enough to be solved analytically (‘conquered’). The positions
of main-chain atoms for segments of a single amino acid can
be calculated analytically, using the vector representation
described below. Longer loop segments can be reconstructed
by geometrically transforming the coordinates for single amino
acids back into the context of the initial problem. For this
we need to define an unambiguous way to represent the
conformation of any given residue along the chain.

Vector representation
The conformation of an amino acid is given by the positions
of its three backbone atoms, N, Cα and C�. This corresponds
to three vectors, one for each atom. The absolute position of
any atom in Cartesian space can also be expressed in relation to
a neighboring atom. We decided to represent the conformation
relative to the C� atom. Its absolute position forms the end
point (EP). The vector from C� to the N atom of the following
residue (N�) is called the end direction (ED), whereas the
end normal (EN) is the normal vector of the plane defined by
Cα, C� and N�, as shown in Figure 1. Using rigid geometry,
i.e. idealized values for both bond length and bond angles,
this representation allows us to define the necessary operations
to concatenate loop fragments, by transforming their relative
orientation, to be subsequently used in the divide and con-
quer method.

Vector operations
Three operations have to be defined for the algorithm to work.
The first operation is the re-orientation of two fragments. Let
S and E be two conformations, representing the first and last
residue in a loop, and O be the conformation of the new
origin. It is possible to re-orient the whole loop relative to the
new origin, such that it superimposes with O, using the
following operations:

subtract EPO from EPE and EPS
rotate EDS to match EDO and apply the same rotation to EDE
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Fig. 2. A loop as described by three connected conformations in vector
representation. Conformation i starts in the origin and spans the first half of
the loop. Conformation j starts at the location described by conformation i
and spans the second half of the loop. Conformation c describes the whole
loop and is the concatenation of the other two conformations. Given any
two of these conformations it is possible to calculate the third one, applying
the transformations described in the text. The single vectors are described in
Figure 1.

rotate ENS to match ENO and apply the same rotation to ENE.

Given this operation it is possible to define the concatenation
and decomposition of two loop segments. Let i and j be two
loop segments, with the corresponding conformations S and E
for the first and last residue in the segment. A concatenation
C of these two segments consists of re-orienting Sj and Ej to
match Ei. Si and Ej will then represent the start and end of the
concatenated loop C. Similarly, given the central conformation
of a loop segment i, it is possible to decompose it in two
parts, spanning origin to i and i to end, respectively. Figure 2
shows the relationship between three conformations in vector
representation.

Database generation
The actual database generation requires a list of (φ,ψ) angle
pairs from a Ramachandran plot (Ramachandran and
Sasisekharan, 1968) distribution to be compiled. The February
2001 version of PDBSELECT 90 (Hobohm et al., 1992;
Hobohm and Sander, 1994) list, containing PDB identifiers
with �90% sequence identity, was processed to extract the
(φ,ψ) angles of loop regions. The rationale behind this high
sequence cut-off being that we intended to retain as much
variation in the loops with near identical sequence as possible,
in order to better sample the weaker represented areas of the
Ramachandran plot. In addition, only high-resolution X-ray
structures solved at 2.5 Å or better were used, as lower
resolution structures tend to contain more errors in the loops.
The (φ,ψ) angles were computed using the DSSP (Kabsch and
Sander, 1983) software and segments of regular secondary
structure discarded. This reduces redundancy caused by widely
populated regions of the Ramachandran plot associated with
α-helices and β-sheets. The (φ,ψ) angles of over 1 100 000
residues were extracted and stored in a single table, in random
order. The resulting distribution is shown in Figure 3. Whenever
a new residue is considered during the subsequent database
generation, different conformations are generated from these
(φ,ψ) angles.

The database generation is initiated by concatenating differ-
ent conformations of two single-residue fragments. Between
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Fig. 3. Ramachandran plot of the over 1 100 000 (φ,ψ) angles, extracted
from protein structures with �90% sequence identity and a resolution of
2.5 Å or better, used to create the look-up tables.

10 000 and 1 000 000 different conformations are generated
using Monte Carlo sampling, i.e. randomly selected. Due to
the random character of the process, the resulting conformations
approximate the true distribution of conformations observed
in protein structures. Both the end location of each segment
and its central point are stored in the table using the vector
representation. The central point is the overlapping residue
(i.e. Ei and Sj) between the two segments from which the table
entry was concatenated. It contains information for dividing
the segment during database searches. The location of the
starting residue (Si) needs not be stored, as it is assumed to
lie in the origin of Cartesian space. During database searches
the query will thus have to be re-oriented to match this implicit
starting conformation. Tables with higher order than two-
residue segments are then created, starting with three residues,
then four, etc. This process relies on the ability to concatenate
the conformations stored in lower order tables to extrapolate
longer loop segments. It is made possible by using the
previously defined vector operations. Monte Carlo sampling
is again used to cover conformation space in randomly selecting
segments for concatenation. The process is repeated until all
tables up to a chosen length have been completed. This is not
limited to any specific loop length, although it can be expected
that the coverage of solution space decreases for longer loops.
The database represents all amino acid types. No special
allowance is made for proline residues, which have a different
Ramachandran distribution. This was necessary because includ-
ing this difference would cause a combinatorial explosion
during database generation. A filter was instead implemented
to remove illegal proline conformations during the search stage.

Search algorithm
The anchor regions for the algorithm are defined as the
single amino acids preceding and following the loop structure
(transformed in vector representation). Using the divide and
conquer approach, a loop of length n with an orientation O
will be first matched against the look-up table for that length.
The loop will be re-oriented to allow comparison with the
database entries. Each entry contains a list of candidates from
the look-up table, each with its central residue conformation.
The candidate loop is divided into two loop segments of length
n/2 (or n/2 � 1 and n/2 if n is an odd number). Using its
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central point information the loop is re-oriented and compared
with a table of length n/2 in the following step. The process
is repeated until the query conformation has reached a single
residue. At this point the coordinates of the three backbone
atoms can be calculated, by transforming them back into the
original orientation O.

The search algorithm was designed to produce a list of
possible solutions within seconds. The look-up table content
is stored in a hash container sorted by the Euclidian distance
D between the two anchor regions:

D � [Σi � 1,2,3 (EPi)2]1/2 (1)

The hash container currently divides the look-up table in 64
bins. Instead of searching all entries it is possible to search
only a fraction of each table, typically between 5 and 20%, to
retrieve all entries with distances below a given cut-off. The
search criterion, SC, for the tables is given by the distance
between the target anchor region, transformed in vector repres-
entation, and each table entry. To save computing time the
square-root was omitted from the formula:

SC � λEP * Σi � 1,2,3 (EP1i – EP2i)2 �

λED * Σi � 1,2,3 (ED1i – ED2i)2 �

λEN * Σi � 1,2,3 (EN1i – EN2i)2 (2)

λEP, λED and λEN are scaling factors used to adjust the relative
weight of the three vectors. λED and λEN are generally set to
1. Increasing λEP will reduce the impact of chain orientation
towards the anchor fragment, whereas reducing it will increase
the propensity to select conformations with better orientation
to the anchor fragment. This rule on average reduces the
number of conformations to �500, or any number the user
chooses. These are subjected to a number of filters, before a
ranking is calculated.

The first filter relates to the geometry of the residue preceding
the C-terminal anchor region. Due to the loop being constructed
from the N- to C-terminus, any deviation from the idealized
rigid geometry will deform the residue preceding the C-
terminal anchor region. Let n be the C-terminal residue and
n – 1 the one preceding it. The chain continuity filter, CC,
checks the following conditions:

(i) bond length C�n – 1 to Nn is 1.4 � 0.5 Å
(ii) bond angle Cαn – 1, C�n – 1 to Nn is 121° � 15°

(iii) ωn – 1 torsion angle is 180° � 20°.

No allowance is made for cis prolines in the present
implementation. The high tolerance for varations in bond
length in (i) is due to technical reasons: Since the algorithm
tends to accumulate deviations from standard geometry on the
last C�–N bond length, using this high tolerance was empirically
shown to preserve potentially favorable solutions. Conforma-
tions passing this filter are assumed to be close enough in
rigid geometry that a constrained local optimization will be
sufficient to close the gap in backbone continuity. Another
filter is used to check Proline residues for approximately
admissible torsion angles. A van der Waals filter (VDW)
checks for inter-atomic collisions between non-bonded atoms,
eliminating those conformations showing distances between
two loop backbone atoms or loop and framework atoms of
�2.0 Å. The following filter is based on the preference of
amino acids for areas of the Ramachandran plot. The propensity
P is calculated for all conformations based on the method
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described by Deane and Blundell (Deane and Blundell, 2000).
The Ramachandran plot is divided into regions of 10�10
degrees. Pi,A, the propensity of amino acid A for area i, is
calculated as follows:

Pi,A � (ni,A / ntot,A) / (ni / ntot) (3)

ni,A is the number of amino acids of type A in region i and
ntot,A the total number of amino acids of that type. ni is the
number of all amino acids found in region i and ntot the total
number of all amino acid types in the Ramachandran plot.
The overall propensity for a fragment of length n is then
given as:

V � (Πi � 1,..., nPi,a) / n (4)

All conformations below a given cut-off for formula (4) are
removed. The propensity serves to exclude conformations for
amino acids which are in a particularly unfavored region of
the Ramachandran plot. Since the filters may be unable to
discriminate surface loops pointing away from the protein
core, a further filter was implemented as an attempt to select
conformations showing a compact structure. Compactness
criterion CD is calculated as the sum of the minimal distances
between the Cα atoms of every residue in the loop and the
protein framework Cα atoms:

CD � Σi � 1,.., k minj � 1,.., n[(Cαi – Cαj)2]1/2 (5)

Subsequently the energy Epot of each fragment was calculated,
using the residue-specific all-atom distance-dependent probab-
ility function (RAPDF) of Samudrala and Moult (Samudrala
and Moult, 1998). Epot is calculated only on the main chain
and Cβ atoms. Fragments with an Epot score above a fixed
threshold were removed.

For all remaining fragments the RMSD to the C-terminal
anchor region (the N-terminal being fixed), Erms, are calculated.
The fragments are either ranked according to Erms or a
combination of Erms and Epot, adjusted with a scaling factor.
The ranked fragments are then returned as output.

Parametrization and test sets
Because the accuracy of the predictions for different loops
may vary considerably, it is desirable to parametrize and test
the method on many different loops. A list including all loops
from 400 non-homologous proteins (�25% sequence identity
with each other) was extracted from the PDB, using random
selection from the PDBSELECT25 list (Hobohm et al., 1992;
Hobohm and Sander, 1994). Again, only structures solved at
a resolution of 2.5 Å or better were used. The regions outside
regular secondary structures, as identified from evaluating the
selected proteins with DSSP (Kabsch and Sander, 1983), were
defined as loops for this test. Loop segments between three
and 12 residues in length were selected according to the
following criteria: (1) no overlap between any two loops, (2)
the B factors for all main-chain atoms are �25 Å2 and (3) the
N- and C-termini are not used as test loops. This list was
divided into independent parametrization and test sets. The
parametrization set is composed of 200 protein structures with
777 loops in total. The test set consists of 637 loops from the
remaining 200 proteins. Table I shows the distribution per
loop length.

Criteria for evaluation
The accuracy of a single loop prediction is evaluated by
comparing it with the native conformation. A variety of
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Table I. Distribution of loopsa

Loop length Number of loops

Parametrization set Test set

3 175 156
4 149 144
5 114 102
6 88 80
7 81 50
8 64 35
9 48 26

10 23 20
11 25 12
12 10 12

aThe number of loops for each length in the parametrization and test sets
are given.

reasonable criteria for comparing loop conformations exists,
with a variation of the RMSD being the most common. It is
further possible to distinguish between ‘local’ and ‘global’
RMSD. The former considers a superposition of the two loops
to calculate the relative internal deviation, whereas the latter
superimposes the whole structure excluding the loops. It is
apparent that ‘local’ RMSD will be lower than ‘global’ RMSD,
as it excludes the possibility that the loop conformation may
be correctly predicted, but poorly orientated to the rest of the
protein. As has been argued by Fiser et al. (Fiser et al., 2000)
the two measures are correlated, with ‘global’ RMSD being
roughly equivalent to 1.5 times ‘local’ RMSD. In the present
paper, we have based our observations on ‘global’ RMS, as it
is the stricter measure and also solves the optimization problem
of choosing the correct orientation of the loop towards the
protein framework. The actual RMSD is calculated on the N,
Cα, C� and O atoms for each residue in the loop.

Results and discussion
Performance
The quality of our algorithm was evaluated using the test set,
which is composed of 1265 loops of length between three and
12 residues. We first investigated how well the algorithm was
able to cover the solution space, i.e. how accurate in terms of
global RMSD the best solution is. Since the look-up tables
are built from a large number of (φ,ψ) angles, coverage is
supposed to be high. However, the sampling is performed with
a fixed number of entries per table, so we were interested in
determining how the accuracy scales with the number of
entries of the look-up table. The lowest RMSD results for
various table sizes are shown in Table II. The method performs
gradually better with larger look-up tables, due to the greater
number of alternative loop conformations. The following tests
are performed on the largest look-up table size. Computation
time is found to scale linearly with loop length and the number
of entries of the look-up table. It ranges between roughly 20
(three-residue loop) and 180 s (12-residue loop) for up to 200
solutions generated from tables with one million entries. For
tables with 100 000 and 10 000 entries these values are,
respectively, one and two orders of magnitude smaller. This
linear behavior is not unexpected, since most of the time is
spent searching the look-up tables. Storage of the look-up
tables on hard-disk requires �38 MB per table for one million
entries. Storing a database to predict loops up to 12 residues
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Table II. Lowest RMSD results based on table sizea

Loop length RMSD (Å)

Large Medium Small

3 0.60 0.62 0.75
4 1.00 1.09 1.18
5 1.30 1.39 1.47
6 1.67 1.73 1.84
7 2.13 1.90 2.16
8 2.22 2.05 2.13
9 2.92 2.54 2.60

10 3.87 3.90 3.91
11 3.86 3.40 3.32
12 3.50 3.48 4.56

aThe lowest average backbone (N, Cα, C� and O atoms) RMSD results for
the parametrization set are given for three different look-up table sizes:
small (10 000 entries), medium (100 000 entries) and large (1 000 000
entries).

in length therefore requires �450 MB disk space. Required
computer memory also scales linearly with the number of
entries per look-up table. Keeping all necessary tables in
memory for a given loop requires ~300 MB for loops of length
12 residues and look-up tables with one million entries. Smaller
tables require ~30 MB (100 000 entries) and �5 MB (10 000
entries). Main memory requirements can be traded for computa-
tion speed by reading the tables from hard-disk during the
database search.

We investigated different Ramachandran plot distributions
to create the look-up tables. Alternatives included different
sets of loops and an artificial distribution with Gaussian
distributions approximizing main areas of (φ,ψ) angle space.
No significant difference was encountered.

Prediction accuracy
Given the possibility to find reasonable solutions in the
conformations produced by the algorithm, we were interested
in defining a set of computationally inexpensive filters to
reduce the alternatives for a subsequent optimization. These
were fitted using the previously described parametrization set
of 777 loops. Due to the way the algorithm builds the loop
backbone from the fixed N-terminal anchor residue to the
C-terminal anchor residue, we introduced the CC filter, which
eliminates conformations lacking elementary chain continuity.
For the test set this amounted to ~40%. The VDW filter was
also chosen to discard conformations invalidated by strong
steric clashes. The first step we intended to optimize was
the selection criterium SC. This has three interdependent
parameters, λEP, λED and λEN, one for each of the three vectors.
λEP differs from the other two insofar as the endpoint EP can
vary the most. We tested this by using different variations of
λEP, ranging from fixed values to linear and quadratic functions,
to search the training set. Using a fixed λEP � 0.5 produced
marginally better overall results. Changing λED and λEN pro-
duced very similar results with no clear trend (data not shown).

The propensity filters Pi,A and V were found to improve the
accuracy, by sieving out very unlikely conformations. In order
not to eliminate the possibly best solution, only conformations
with impossible torsion angles for certain residues can be
removed. This is in agreement with the results found by Deane
and Blundell (Deane and Blundell, 2000). The compactness
filter CD did not appear to improve the accuracy significantly.
Therefore, it was disabled after performing initial tests.
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Table III. Top X prediction accuracya

Loop length RMSD (Å)

1 3 5 10 20

3 1.06 0.89 0.80 0.74 0.69
4 1.62 1.35 1.25 1.18 1.11
5 2.22 1.75 1.62 1.45 1.38
6 2.88 2.38 2.21 1.98 1.81
7 3.62 2.65 2.52 2.37 2.21
8 3.72 2.97 2.70 2.50 2.40
9 4.95 4.12 3.75 3.22 3.01

10 6.92 5.30 4.69 4.59 4.40
11 5.88 5.40 5.12 4.15 4.10
12 6.73 5.64 4.93 4.39 4.19

aThe average backbone (N, Cα, C� and O atoms) RMSD over the test set
for the top X predictions.

Table IV. Prediction accuracy for the Deane and Blundell methoda

Loop length RMSD (Å)

Top Best

3 1.3 1.0
4 1.9 1.2
5 2.5 1.4
6 2.9 1.6
7 3.6 1.8
8 3.9 2.3

aThe top 1 and best average backbone (N, Cα, C� and O atoms) RMSD for
the parametrization and test set from the Deane and Blundell method.

The final ranking is computed as a linear combination of
Erms and Epot. A scaling factor is used to adjust the weight of
Erms. In order to optimize this factor all solutions generated
for the parametrization set are stored. A complete search for
the optimal value of the scaling factor has been performed.
The goal was to find the scaling factor giving the lowest
overall RMSD for all loops in the parametrization set. In the
current implementation this is 554. Using lower scaling factors
was found to increase fluctuation among the top ranking
solutions. Omitting the knowledge-based potential Epot from the
ranking does not significantly reduce the accuracy. Therefore,
filtering the solutions prior to ranking appears to make the
energy function largely redundant. The optimized ranking is
found to be on average a reasonable indicator for a probable
loop conformation, albeit with some variations. In some cases
it is possible to have several conformations with high RMSDs
obscuring the best solution. Therefore, we investigated how
well the native conformation would rank among the solutions.
In �99.5% of the test cases the native conformation would
be ranked first, and is generally ranked second in the remaining
cases. Table III shows the top X results (X � 1, 3, 5, 10, 20)
for the test set with the final set of filters and cut-offs. Figure
4 shows the superposition between predicted and real loops
from the test set.

Comparison with existing methods
While there are a number of existing loop modeling methods,
comparison is made difficult for several reasons. Different
methods used for calculating the RMSD give rise to divergent
results. Therefore, we have chosen to compare our results with
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Fig. 4. Three real fragments from 1ohk, shown in dark gray. The global
superposition of the best prediction is shown in light gray. The fragments
represent the loop backbone N, Cα, C atoms. (A) Residues 172–175
(RMSD � 0.35 Å), (B) residues 124–130 (RMSD � 1.83 Å), (C) residues
77–87 (RMSD � 3.37 Å).

Table V. Performance on non-loop regionsa

Type of structure Top 1 DB

RMSD (Å) σd RMSD (Å) σd

α 0.57 0.23 1.9 1.0
β 0.93 0.28 1.2 0.6
Mixture 1.51 0.93 2.6 1.5
Overall 1.22 0.83 2.2 1.4

aThe average backbone (N, Cα, C� and O atoms) RMSD and standard
deviation (σd) are calculated for all overlapping length five segments of
1IGD. Top 1, the top ranking result for the present method; DB, the results
from Deane and Blundell.

the method of Deane and Blundell (Deane and Blundell, 2000),
which is the most similar to the present method.

The method published by Deane and Blundell (Deane and
Blundell, 2000) shares several similar ideas with the present
work. It is also based on an algorithm for searching and
ranking a database of precalculated loop conformations. Their
strategy is to compute a complete enumeration of a simplified
set of eight torsion angle combinations. They report an upper
limit of loop length eight due to the combinatorial explosion.
Our approach works with arbitrary loop lengths. Both methods
make use of the same knowledge-based contact potential
(Samudrala and Moult, 1998) to improve the ranking. Their
method computes a set of loop conformations in the order of
up to 20 min (Deane and Blundell, 2000), whereas the present
work takes ~3 min on a 500 MHz PC. They use a test set of
400 high-resolution loops to validate their method. The main
results for their method are summarized in Table IV. Although
the test set used in this paper differs from that used by Deane
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and Blundell, we will nevertheless attempt to draw some
conclusions. As can be seen in Table III, the present method
performs better for loops up to five residues and slightly better
for eight-residue loops. For loops of six and seven residues it
performs as well as the one of Deane and Blundell on the top
1 solution. Longer loops cannot be compared due to length
restrictions on the other method. The diminishing accuracy for
longer loops can be explained considering the fixed size of
our look-up tables. For long loops it becomes increasingly
probable that some conformations are missed out altogether.
This is supported by the performance on loops of 10 or more
residues, where the average RMSD can become prohibitive.

To evaluate the prediction accuracy of the method on any
fragment in a protein, we have repeated the prediction of all
overlapping five-residue segments in 1IGD (immunoglobin
binding protein), a small 61-residue protein containing both
α-helices and β-strands. It has been already argued that this
test is of particular interest to comparative modeling, where
secondary structure elements are not well defined (Deane and
Blundell, 2000). The results are shown in Table V.

The present method has a significantly lower RMSD than
the Deane and Blundell method in all types of segments for
the test protein. The most significant improvement being for
α-helical and mixed segments, i.e. loops. This supports the
results from the previous test for loops of length five.

Conclusion
We have presented a novel fast ab initio loop construction
algorithm based on the divide and conquer approach. The
method uses a Ramachandran plot distribution to recursively
build look-up tables from the concatenation of smaller seg-
ments. This is not dependent on a particular Ramachandran
plot and can predict loop segments of any size as long as a
large enough number of conformations is stored in each table.
In practice we can compute loops of length 12 residues with
�450 MB of disk space. Memory requirements can be traded
for computational speed and range between 30 and 300 MB.
The search algorithm is designed to use a set of filters to allow
fast computation of a ranking in a matter of seconds or up to
3 min on a desktop PC. A number of filters are implemented
and several are found to be only weakly discriminating, with
the chain continuity, CC, offering the largest improvement.
Usage of backbone propensities also improves the results. The
ranking, based on geometric and energy criteria, is sufficient
to improve discrimination for short- to medium-sized loops of
up to five to six residues. This is confirmed by the comparison
with an existing method. The accuracy for longer loops
decreases due to the limited size of the look-up tables. Usage
of a more elaborate scoring function seems useful due to the
variance of RMSD for high-ranking solutions. Future work
will start by elucidating alternatives for the scoring function,
such as non-linear ranking schemes. A protocol for improving
the superposition between loop and anchor residues using
local optimization should also be considered. Increasing loop
flexibility by allowing variations of bond lengths and angles
during database generation will also be investigated.

Due to the speed at which the method is able to produce a
ranking, it may be interesting to use as a starting point for
longer energy minimizations, such as those used by Van
Vlijmen and Karplus (Van Vlijmen and Karplus, 1997) or
Fiser et al. (Fiser et al., 2000). This may prove to significantly
reduce the computation time for such methods, allowing faster
convergence than more distant starting conformations. Indeed,
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the method may be of use for the generation of alternative
starting conformations for complex simulations, such as
molecular dynamics.
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