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Pancreatic cancer (PACA), which is characterized by an immunosuppressive nature,
remains one of the deadliest malignancies worldwide. Aberrant DNA methylation (DNAm)
reportedly influences tumor immune microenvironment. Here, we evaluated the role of
DNA methylation driven genes (MDGs) in PACA through integrative analyses of
epigenomic, transcriptomic, genomic and clinicopathological data obtained from TCGA,
ICGC, ArrayExpress and GEO databases. Thereafter, we established a four-MDG
signature, comprising GPRC5A, SOWAHC, S100A14, and ARNTL2. High signature
risk-scores were associated with poor histologic grades and late TNM stages. Survival
analyses showed the signature had a significant predictive effect on OS. WGCNA revealed
that the signature may be associated with immune system, while high risk-scores might
reflect immune dysregulation. Furthermore, GSEA and GSVA revealed significant
enrichment of p53 pathway and mismatch repair pathways in high risk-score
subgroups. Immune infiltration analysis showed that CD8+ T cells were more abundant
in low score subgroups, while M0 macrophages exhibited an opposite trend. Moreover,
negative regulatory genes of cancer-immunity cycle (CIC) i l lustrated that
immunosuppressors TGFB1, VEGFA, and CD274 (PDL1) were all positively correlated
with risk-scores. Furthermore, the four signature genes were negatively correlated with
CD8+ lymphocytes, but positively associated with myeloid derived suppressor cells
(MDSC). Conversely, specimens with high risk-scores exhibited heavier tumor mutation
burdens (TMB) and might show better responses to some chemotherapy and targeted
drugs, which would benefit stratification of PACA patients. On the other hand, we
investigated the corresponding proteins of the four MDGs using paraffin-embedded
PACA samples collected from patients who underwent radical surgery in our center
org February 2022 | Volume 13 | Article 8039621
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and found that all these four proteins were elevated in cancerous tissues and might serve
as prognostic markers for PACA patients, high expression levels indicated poor
prognosis. In conclusion, we successfully established a four-MDG-based prognostic
signature for PACA patients. We envisage that this signature will help in evaluation of
intratumoral immune texture and enable identification of novel stratification biomarkers for
precision therapies.
Keywords: pancreatic cancer, DNA methylation driven gene, prognostic signature, tumor immune,
precision medicine
INTRODUCTION

Pancreatic cancer (PACA) is a highly fatal malignancy, with a 5-
year survival rate of less than 10% (1). The current classical TNM
staging system as well as biomarkers, such as CA 19-9 and CA
125, are not efficient and accurate enough in diagnosing and
predicting prognosis of patients with PACA. Recent genomic
profiling studies have revealed tremendous heterogeneity in
PACA and potentially actionable gene alterations in small
subsets of patients, implying the feasibility of targeted therapies
or immunotherapies (2, 3). However, results from earlier clinical
trials on immunotherapies for blocking PD1/PD-L1 in PACA
patients did not yield encouraging results, with the obtained poor
responses attributed to immunosuppressive conditions in the
PACA tumor microenvironment (TME), including a scarcity of
CD8+ T cells and a recruitment of myeloid cells, respectively (4).

Epigenetic changes have long been reported to play important
roles in carcinogenesis, tumor progression as well as immune
escapes. DNA methylation (DNAm), a major type of epigenetic
alterations (5), has been shown to alter promoter regions by
methylating CpG dinucleotides, thereby causing gene silencing,
including some tumor suppressor genes (6). RNA modifications,
especially N6-methyladenosine (m6A), confer malignant cells
with the abilities to reversibly alter their transcriptional profiles
rapidly and reversibly in order to survive the stressful
microenvironment (7). Deregulated DNAm can act as an early
diagnostic and prognostic biomarker, suggesting its potential for
the management of various cancers (8, 9). Besides, tumor
immunogenicity and immune cells, as long as anti-tumor
responses, are reportedly influenced by DNAm and m6A (10,
11). Epigenetic changes in PACA have been reported to influence
the immune microenvironment and patient outcomes (12, 13).
However, due to the complexity and obscurity of epigenetics, it is
difficult to interpret the biological effects of these epigenetic
biomarkers. We hypothesized that due to the regulatory
relationship between DNAm and gene expressions,
identification of methylation-regulated differentially expressed
genes, also referred to as methylation-driven genes (MDGs), and
assessment of their features may help in elucidating the
characteristics of PACA.

Therefore, we performed a comparative integrated analysis of
transcriptome, DNAm and clinical data from TCGA and ICGC
datasets to identify prognostic MDGs in PACA. Then, we used
these markers to establish and validate a predictive signature
across all included datasets from TCGA, ICGC, GEO and
org 2
ArrayExpress databases. Finally, based on this signature, we
evaluated the molecular characteristics of PACA subgroups,
especially its correlation with immune TME, as well as its
utility in therapeutic response prediction.
MATERIALS AND METHODS

A schematic presentation of the research procedure is shown
in Figure 1.

Data Acquisition and Preprocessing
Transcriptomic data, DNAm data, somatic mutation data and
clinicopathological data of the TCGA-PAAD project were
downloaded from the TCGA database. Differential expression
analysis was performed using an integrated TOIL GTEx and
TCGA transcriptic dataset, obtained from the UCSC Xena
database (https://xena.ucsc.edu/). The workflow software, Toil,
was used to reprocess raw data in GTEx and TCGA to correct
batch effects as well as merge data for pan-analyses (14).
FIGURE 1 | A flow chart of the current study.
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Transcriptomic, DNAm and clinical data of ICGC-PACA-AU
(15) and ICGC-PACA-CA (16) projects were obtained from the
ICGC database. Summarily, the ICGC-PACA-AU project
contains RNA sequencing data (seq) and microarray data
(array) which were used as individual datasets according to
specific analyses, whereas the ICGC-PACA-CA dataset
contains a lot of “NA” values either in the expression matrix
or in the clinical data, which made it unsuitable for some
subsequent analyses. Besides, level 3 data of GSE62452,
GSE78229, and E-MTAB-6134 datasets were downloaded from
the GEO and ArrayExpress databases, using the following
inclusion criteria: (1) PACA transcriptomics studies either by
sequencing or microarray, (2) Studies analyzing adult
participants (older than 18 years), (3) Study participants or
samples were not restricted to some specific type, such as long
survival or vascular invasions among others, (4) Sample sizes
were over 30.

Screening for Differentially Expressed
Genes and Functional Enrichment of
MDGs
Differentially expressed genes (DEGs) between tumor and
normal tissues from TCGA-PAAD and GTEx datasets were
screened using the “limma” package implemented in R, with
thresholds of p < 0.05 and |log2FC| > 1. Methylation-driven
genes (MDGs) are hypo and hypermethylated genes that are
predictive of transcription and thus functionally relevant for a
particular disease. Identification of MDGs was achieved by
integrating DNAm and mRNA sequencing data from TCGA-
PAAD and ICGC-PACA-AU projects, using the “MethylMix” R
package. According to the instructions by the authors,
MethylMix integrates DNA methylation from normal and
tumorous samples and matched gene expression data via a
three-step algorithm (17, 18). (1) Genes are filtered by
identifying transcriptionally predictive methylation. (2) The
methylation states of a gene are identified using univariate beta
mixture modeling approach to identify subgroups of patients
with similar DNA methylation level for a specific CpG site (19).
(3) Hyper and hypomethylated genes are defined relative to
normal by comparing the methylation levels of each methylation
state to the mean of the DNA methylation levels of normal tissue
samples using a Wilcoxon rank sum test. Differentially expressed
MDGs, present at the intersection of DEGs and MDGs, as well as
all DEGs were subjected to functional enrichment analyses by
GO and KEGG, using the ConsensusPathDB databases.

Construction of an MDG-Based
Prognostic Signature
The TCGA-PAAD cohort was set as the training cohort. To
determine the relationships between MDGs and overall survival
(OS) of PACA patients, first, we subjected the differentially
expressed MDGs to K-M analysis (Log-rank test) and
univariate Cox regression analyses, then, statistically significant
genes were selected and subjected to least absolute shrinkage and
selection operator (LASSO) regression analysis to filter signature
genes using the “glmnet” package to filter signature genes (20).
Frontiers in Immunology | www.frontiersin.org 3
Three-fold cross-validation and 1000 iterations were conducted
to reduce the potential instability of the results. The optimal
tuning parameter l was identified via 1-SE (standard error)
criterion. Then, a prognosis classifier was developed based on the
individual-level risk scores derived from the selected prognostic
MDG signature. For each patient, the risk score was a sum of the
products of the expression levels of the prognostic signature
MDGs and the corresponding regression coefficients (b) derived
from LASSO model.

Correlation Between Signature Gene
Expression and Methylation
Correlations between methylation and mRNA expression levels
of the signature genes were evaluated by the “corrplot” package,
while the relationships between DNAm and OS were determined
by K-M survival and univariate Cox analyses. The latest data on
the Illumina Human Methylation 450K platform, including
IllmnID (probe ID), UCSC RefGene Names (related gene
symbols) and UCSC RefGene Group (Functional genomic
distribution, FGD) were obtained from the official website
(https://support.illumina.com).

Assessment of the Predictive Power of the
Established Signature
To validate our prediction model, we used K-M analysis and
time-dependent receiver operator characteristic (ROC) curves
(21) to evaluate their predictive effects in validation datasets. To
identify whether our four-MDG signature depended on other
clinicopathological factors, such as age, gender, AJCC 7th TNM
stage, and histologic grade, in predicting OS, we performed
univariate and multivariate Cox regression analyses using the
“survival” package, then analyzed the resulting correlations.
Moreover, we validated the rationality of the signature using
GEPIA (22), HPA (23), cBioPortal (24), TIMER 2.0 (25),
STRING (26) and GeneMANIA (27) databases. Specifically,
genetic alterations were evaluated in cBioPortal, mRNA and
protein expression profiles as well as their prognostic values were
evaluated in GEPIA and HPA, levels of immune cell infiltration
levels were explored in TIMER 2.0, while protein-protein
interaction (PPI) and gene interaction networks were
constructed in STRING and GeneMANIA databases.

Construction of WGCNA Co-Expression
Networks and Significant Module
Identification
The weight gene co-expression networks of high and low risk-
score patients from TCGA-PAAD cohorts were constructed
respectively via a standard WGCNA procedure (28). A soft
power threshold of 9 was selected, based on the criterion of
approximate scale-free topology (R2 > 0.90), to calculate the
adjacencies and Topological Overlap Matrix (TOM) for further
clustering gene modules as well as correlating of these modules to
risk-scores. The module with a minimum value of preservation
Z-summary score was chosen for comparing the co-expression
networks between low and high risk-score subgroups and
distinguishing them. Moreover, we performed gene ontology
February 2022 | Volume 13 | Article 803962
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(GO) analysis to assess the relevant functional categories of the
selected module, then visualized the resulting network via
Cytoscape software (29). Hub genes and key modules in the
network were further identified using cytoHubba and MCODE
plugins in Cytoscape.

Subgroup Analyses of Molecular
Characteristics
Several molecular characteristic analyses were performed after
assigning TCGA-PAAD and ICGC-PACA-AU patients into
h igh or low r i sk - s co r e subgroups ba s ed on our
predictive signature:

1. Gene Set Enrichment Analysis (GSEA) and Gene Set
Variation Analysis (GSVA) were conducted, the GO and
KEGG gene sets fromMSigDB (http://www.gsea-msigdb.org/
gsea/msigdb) were chosen as the reference.

2. Cancer-Immunity Cycle, which manages the delicate balance
between the recognition of non-self and prevention of
autoimmunity, plays an important role in elimination of
cancers (30). Expression patterns of genes that inhibited
this cycle in training and validation cohorts were
explored based on a gene list acquired from Tracking
Tumor Immunophenotype website (http://biocc.hrbmu.edu.
cn/TIP) (31).

3. The abundance of 22 tumor infiltrating immune cell types
were calculated using the Cell‐type Identification By
Estimating Relative Subsets Of RNA Transcripts
(CIBERSORT) algorithm (32) and presented in violin plots.
Another algorithm, the single sample gene set enrichment
analysis (ssGSEA) was applied to estimate the immune
infiltrations of 16 cell types and 13 immune-associated
features (33). The most common immune checkpoint
genes, PDCD1 (PD1) and CTLA4 were also assessed.

4. Vésteinn Thorsson et al. identified six immune subtypes across
all cancers, namely wound healing (C1), IFN-g dominant (C2),
inflammatory (C3), lymphocyte depleted (C4), immunologically
quiet (C5) and TGF-b dominant (C6), which are characterized
by differences inmacrophage or lymphocyte signatures, Th1:Th2
cell ratio, extent of intratumoral heterogeneity, aneuploidy,
extent of neoantigen load, overall cell proliferation, expression
of immunomodulatory genes and prognosis respectively (34).
We attempted to categorize pancreatic samples in each of the
datasets according to this system by “ImmuneSubtypeClassifier”
package.

5. Landscapes of somatic mutations and tumor mutation
burdens (TMB) of the TCGA-PAAD cohort were visualized
using the “maftools” package, while TMB distributions and
their influence on OS were explored in the TCGA-PAAD
cohort.

6. The Genomics of Drug Sensitivity in Cancer (GDSC)
database was explored to predict chemotherapy and
targeted therapy responses (35), using statistical models
from gene expression (mRNA sequencing data) and drug
sensitivity data of cell lines from GDSC. This prediction was
performed by the “pRRophetic” package, then half-maximal
inhibitory concentrations (IC50s) of each drug were
Frontiers in Immunology | www.frontiersin.org 4
estimated (36). The subclass mapping algorithm was used
to predict clinical responses to immune checkpoint blockade
by integrating our data with a famous published metastatic
melanoma dataset, comprising 47 metastatic melanoma
patients that responded to immunotherapies (37, 38). To
identify potential compounds targeting high risk-score
related biological mode, also known as Mode of Action
(MoA), the Broad Institute’s Connectivity Map (CMap)
analysis (39) was adopted in microarray datasets, then we
selected compounds that were significantly enriched in at
least two datasets.
Histopathological Evaluation
To investigate the corresponding proteins of the four MDGs, we
evaluated paraffin-embedded PACA samples obtained from
patients subjected to radical surgery from August 2014 to
August 2017 in our center. Prior to their inclusion, all patients
were required to provide written informed consents according to
the International Conference on Harmonization and the
Declaration of Helsinki. This retrospective study was approved
by the Institutional Review Board (IRB) of Zhujiang Hospital
(2021-KY-078-01). To analyze specific marker expressions under
consistent conditions, tissue microarrays were constructed for 70
cases of PACA and matched para-cancerous tissues by standard
methods (40). The paraffin-coated microarray slides were placed
on a 60°C heating block for 20 min and washed with xylene, then
incubated in citrate buffer (pH 6.0) for 5 min at 120°C.
Endogenous peroxidase was blocked by 0.3% H2O2 for 10 min.
The slides were incubated with 5% BSA in PBS at room
temperature for 1 h, followed by incubation with appropriated
primary antibodies at 4°C for overnight, then with horseradish
peroxidase (HRP) anti-rabbit IgG antibodies for 1 h. Then color
was developed by incubation with DAB Substrate kit (ZSGB-
BIO, ZLI-9017). After washing in PBS, tissue sections were
counterstained with hematoxylin. The primary antibodies used
in our study included anti-human GPRC5A antibody (1:200,
ABclonal, A8173), anti-human SOWAHC antibody (1:300,
Proteintech, 24033-1-AP), anti-human S100A14 antibody
(1:300, ABclonal, A10394), and anti-human ARNTL2 antibody
(1:150, Bioss, BS-11446R). Five representative fields of each
sample (at least three for extremely fibrotic or necrotic
samples) were selected using CaseViewer 2.4 software to
ensure homogeneity as well as representativeness at a
magnification of 400 X. Expression levels of the four MDGs
were evaluated as average optical density (AOD) using ImageJ
software (41, 42). Experimental data were statistically analyzed
by paired t-test. The associations between protein expression
levels and OS/RFS of patients were explored by Kaplan–Meier
survival analyses and Cox regression analyses.

Statistical Analysis
All data-mining work was performed using packages, limma
(Version 3.46.0) (43), MethylMix (Version 2.20.0) (18),
clusterProfiler (Version 4.3.1) (44), survminer (Version 0.4.9),
survival (Version 3.2.13), glmnet (Version 4.1.2) (45), pheatmap
(Version 1.0.12), corrplot (Version 0.90), timeROC (Version 0.4)
February 2022 | Volume 13 | Article 803962
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(46), WGCNA (Version 1.70.3) (28), maftools (Version 2.6.5)
(47) and pRRophetic (Version 0.5) implemented in R software,
version 4.0.2. For all analyses, two-tailed p ≤ 0.05 was set as the
threshold for determining statistical significance.
RESULTS

Differentially Expressed Methylation-
Driven Genes
We obtained a total of 350 samples (179 tumor and 171 normal)
with 183 and 167 samples being obtained from TCGA and GTEx
databases, respectively. RNA sequence, DNAm, and clinical data
were available for 182 samples. Analysis of gene expression and
DNAm data using MethyMix algorithm and thresholds of
|log2FC| > 1, p < 0.05 and Cor < -0.3 as cut-offs, resulted in
identification of 6361 DEGs and 75 differentially expressed
MDGs . Among the MDGs , 53 were found to be
hypomethylated and elevated in tumor samples while 22 were
hypermethylated and down-regulated (Figures 2A–C and Table
S1). Functional enrichment analysis revealed that up-regulated
DEGs were significantly enriched (p < 0.05) in terms related to
tumor microenvironments and immune texture, including
collagen formation, degradation of extracellular matrix
organization and rheumatoid arthritis (Figure S1C).
Meanwhile, up-regulated MDGs were enriched in the IL-3
signaling pathway, FGFR1 as well as S1P3 pathways and some
important biological processes, including cell adhesion, epithelial
to mesenchymal transition (Figure S1E). Down-regulated DEGs
and MDGs were enriched in pathways regulating normal
functions, including glucagon signaling and pancreatic
secretion (Figures S1D, F).

Construction of MDG-Based Signature
To assess their relationships with OS, the 75 differentially
expressed MDGs were subjected to K-M survival and
univariate Cox regression analyses. Among them, 35 MDGs
were significantly correlated with OS (p < 0.05) (Table 1 and
Figures 2D, E). To further shrink the gene screening scope, these
candidate MDGs featured coefficients (not zero) in a further
LASSO multivariate Cox regression model, in which these genes
were required to appear 1000 times of 1000 repetitions. The
penalty was established through 10-fold cross‐validations
(Figures 2F, G). Finally, four MDGs, GPRC5A, SOWAHC,
S100A14 and ARNTL2, were selected as prognostic genes for
the signature. Notably, methylation was inversely correlated with
mRNA expression levels of these signature genes (Figure 2C).
Then, the predictive model was established by adding the
product of the expression level and relative coefficient of each
gene in the LASSO regression as follows: Risk score = (0.009380 *
expression value of GPRC5A) + (0.014534 * SOWAHC
expression value) + (0.002176 * S100A14 expression value) +
(0.227490 * ARNTL2 expression value). Positive coefficients of
these genes implied that their upregulation represented poor OS
for PACA patients. Therefore, patients in the high risk-core
subgroup exhibited significantly worse OS than those in the low-
Frontiers in Immunology | www.frontiersin.org 5
risk subgroup, while AUCs of ROC for 1-, 3-, and 5-year OS were
0.746, 0.735 and 0.740, respectively. Overall, these results
indicated that our model had a high predictive value
(Figures 3A–C).

Validation of the Four-MDG Signature
Survival Analysis
We validated the established signature using ICGC, GEO and
ArrayExpress datasets. Specifically, survival analyses showed that
high risk scores were significant predictors for OS. Meanwhile,
AUCs for 1-, 3-, and 5-year OS in these validation datasets were
all larger than 0.5 in validation datasets, indicating the robustness
of the predictive value of our four-MDG signature (Figures 3A–I
and Figure S2A–I). Although our signature was constructed
based on OS data of the TCGA-PAAD cohort, K-M curves for
recurrence-free survival (RFS) revealed a positive correlation
between higher risk-scores and shorter RFS in PACA patients
(Figures 3J, K and Figure S2J, K).

Univariate and Multivariate Cox Regression Analysis
To investigate whether our four-MDG signature was an
independent prognostic biomarker, we performed Cox
regression analysis in the TCGA-PAAD dataset (Figure S3).
Both univariate and multivariate analyses revealed that the risk-
score was a positive risk factor for OS of PACA patients. Hazard
ratio (HR) values and their corresponding 95% confidence
interval (95% CI) were 7.542 (3.238-17.567) and 7.489(3.063-
18.311) for univariate and multivariate analyses, respectively. In
the validation datasets, ICGC-PACA-AU (seq), ICGC-PACA-
AU (array) and E-MTAB-6134 datasets, the signature also
showed the potential to work as an independent prognostic
marker (Figure S3).

Correlations With Clinical Features
1We investigated whether some important clinicopathological
features, namely histologic grades (G grades, G1: well
differentiated, G2: moderately differentiated, G3: poorly
differentiated, G4: undifferentiated) (48, 49) and TNM stages,
which have long been ascertained to be prognostic in PACA
patients (50, 51), were correlated with our signature. In all the
four datasets TCGA-PAAD, E-MTAB-6134, GSE62452 and
GSE78229 providing G grade data, highly graded samples
tended to exhibit higher risk-scores (Figure S4A), indicating
that higher risk-scores may be associated with lower
differentiated and more malignant tumors.

In the TCGA dataset, risk scores were remarkably different
among signature-stratified patients, with higher risk scores in T2
stage and Stage 1 patients. Moreover, it seemed that older
patients recorded higher risk scores than their young
counterparts although the correlation between age and risk-
scores was not statistically significant (Figure S4B). In other
datasets, the age/risk-score correlations were either non-
significant (Figure S4C) or unavailable due to lack of the
necessary data. These results suggested that independent of
gender and age, our four-MDG signature can stratify patients
with different pathological stages.
February 2022 | Volume 13 | Article 803962
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Characteristic of Each Signature Gene
We analyzed the expressions of 4 signature genes, GPRC5A,
SOWAHC, S100A14 and ARNTL2 using online tools, and found
that their mRNA values were all upregulated in PACA, relative to
adjacent normal tissues (Figure S5B). These high expressions
not only indicated shorter OS, but were also negatively correlated
with disease free survival (DFS) (Figure S5A). Moreover,
immunohistochemical pathology (IHC) revealed that
Frontiers in Immunology | www.frontiersin.org 6
corresponding proteins encoded by GPRC5A, SOWAHC, and
ARNTL2 genes predicted unfavorable prognosis (Figure S5C).
Apart from being affected by dysregulated methylation, these
upregulated MDGs could also be concurrently influenced by
gene amplifications, a main type of copy number variation
(CNV). Screening the cBioPortal website revealed that their
gene amplifications were detected in 0 - 4% of TCGA-PAAD
patients (Figure S5D), indicating that they have minimal
FIGURE 2 | Establishment of a four-MDG signature. (A) Venn diagram showing DEGs and MDGs from the TCGA and ICGC datasets. (B) Volcano plot of DEGs with
the four-MDG signature gene marked. (C) Distribution maps showing the degree of methylation degree (the top row) of the four signature genes and their correlation
plots (the bottom row) between mRNA expression and DNAm levels. (D) K-M curves for the four MDGs in the TCGA dataset. (E) Univariate Cox regression of the
four signature genes in the TCGA dataset. (F) LASSO coefficient profiles of the 35 genes in the TCGA dataset. (G) Selection of the optimal parameter (lambda) in the
LASSO model.
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influence on gene expressions. PPI and gene-gene networks
obtained from STRING and GENEMANIA databases revealed
that these four genes do not closely interact with each other
(Figures S6A, B).

We performed further analyses using TIMER 2.0, a
comprehensive website for systematical analysis of immune
infiltrates, while all analyses were adjusted by tumor purity and
only the Pearson correlation coefficients were obtained. We
adopted CIBERSORT, the most common and accurate
algorithm for immune infiltration estimating, for analysis of all
cell types except for myeloid-derived suppressor cells (MDSCs),
whose abundance was obtained by Tumor Immune Dysfunction
and Exclusion (TIDE) algorithm (52). All statistically significant
correlations are shown in Figure S7. In summary, signature
genes were negatively correlated with CD8+ T cells, but
positively with immunosuppressive cell types, such as T
regulatory cells (Tregs), M0 macrophages, dendritic cells (DCs)
and MDSCs.

Methylation Status of the Signature Genes
Correlation heatmaps showed that S100A14 expression was
inversely associated with methylation levels across all the seven
CpG sites, although their beta values revealed different
Frontiers in Immunology | www.frontiersin.org 7
coefficients with S100A14 expression (Figures 4A, B). We
further analyzed the relationship between methylation levels
(beta values) and patient outcomes, and found that beta values
of 3/7 S100A14 cg sites were significantly correlated with shorter
OS, while another 3/7 were significantly associated with better
outcomes (Figures 4C–J). Comparable findings were observed in
cg sites of GPRC5A, SOWAHC and ARNTL2 genes (Table S2
and Figures S8A–C). These findings showed that DNAm and
expression levels, as well as their influence on OS, were not
consistent. Particularly, not all CpG sites exhibited significant
correlations with expressions of the corresponding genes or
patient prognosis (Figure 4J), indicating the intricate influence
of epigenetic regulation. Due to the complexity of CpG
deviations, MDGs might be more suitable to serve as
biomarker candidates for PACA, reflecting both epigenetic and
functional (or transcriptomic) situations.

Co-Expression Network Construction and
Module Identification
During WGCNA analysis, we constructed two co-expression
networks for high or low risk-score patients and clustered genes
using average-linkage hierarchical clustering. Results were
segmented according to the set criteria to obtain different gene
TABLE 1 | Univariate Cox regression analysis results of the 35 MDGs.

Gene HR HR (95% CI) P value

KLF4 1.26 1.26 (1.06–1.48) 0.007
ARL4D 1.24 1.24 (1.05–1.47) 0.012
GPRC5A 1.27 1.27 (1.12–1.43) <0.001
DOK5 1.2 1.2 (1.05–1.38) 0.01
EPHX4 1.28 1.28 (1.11–1.47) <0.001
ANXA13 1.11 1.11 (1.01–1.21) 0.027
SLC45A3 1.22 1.22 (1.06–1.4) 0.004
PTPRH 1.2 1.2 (1.03–1.4) 0.019
SEC11C 0.77 0.77 (0.6–0.98) 0.035
LRRC31 1.08 1.08 (1.01–1.17) 0.033
CXCL3 1.12 1.12 (1.02–1.23) 0.022
PHYHD1 1.24 1.24 (1.06–1.46) 0.008
CSTA 1.18 1.18 (1.05–1.32) 0.005
IGFL3 1.17 1.17 (1.08–1.27) <0.001
HCAR1 1.13 1.13 (1.03–1.24) 0.01
TMEM97 1.28 1.28 (1.1–1.5) 0.002
CLDN18 1.05 1.05 (1–1.11) 0.036
AMIGO2 1.45 1.45 (1.22–1.73) <0.001
SOWAHC 1.68 1.68 (1.32–2.13) <0.001
CLDN23 1.16 1.16 (1.02–1.31) 0.023
HTR1B 1.12 1.12 (1.01–1.24) 0.039
MTMR11 1.19 1.19 (1.02–1.38) 0.031
CLDN4 1.26 1.26 (1.09–1.47) 0.003
S100P 1.17 1.17 (1.07–1.27) <0.001
FXYD3 1.19 1.19 (1.04–1.36) 0.012
PPP1R14D 1.19 1.19 (1.07–1.33) 0.001
LPCAT4 1.26 1.26 (1.08–1.47) 0.004
KRT20 1.06 1.06 (1.01–1.11) 0.026
AGR2 1.11 1.11 (1.02–1.22) 0.023
S100A14 1.2 1.2 (1.09–1.33) <0.001
ARNTL2 1.68 1.68 (1.38–2.04) <0.001
C5orf38 0.89 0.89 (0.81–0.97) 0.009
GREB1L 1.17 1.17 (1.04–1.32) 0.01
CD55 1.22 1.22 (1.05–1.41) 0.01
S100A2 1.16 1.16 (1.08–1.25) <0.001
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modules, then two clustering trees (dendrograms) with 30
modules were plotted for each subgroup (Figure 5A).
Although we found no perfect consistency between two
dendrograms, we hypothesized that most of the modules
would show significant preservation between the subgroups,
and that those non-preserved modules could explain the
changes of network properties between the high and low risk-
score subgroup networks. Results indicated that most modules
Frontiers in Immunology | www.frontiersin.org 8
showed strong evidence of preservation, with the exception of
skyblue and saddlebrown, which contain 76 and 68 genes
respectively (Figures 5B, C). However, further enrichment
analysis revealed that saddlebrown module genes were not
enriched in any pathway. Therefore, we chose skyblue as the
non-preserved module. The low Z-summary score obtained in
the skyblue module implied a low degree of preservation,
indicating that it was possible to distinguish expression levels
A B

D
E F

G IH

J K

C

FIGURE 3 | Validation of the four-MDG signature in the TCGA-PAAD, ICGC-PACA-AU (seq), and ICGC-PACA-CA datasets. (A, D, G) K-M survival curves showing
OS of patients in the high and low risk-score subgroups across three datasets. (B, E, H) Time‐dependent ROC curves of the signature. (C, F, I) Risk-score
distribution plots for the three datasets. In each plot, from top to bottom: distribution of risk-scores, distribution of survival status, expression patterns of the four
genes. (J, K) K-M analysis for RFS of high and low risk-score subgroups in TCGA-PAAD and ICGC-PACA-AU (seq) datasets.
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of module genes between patients with high and low risk- scores
(Figure 5D). However, this module seemed to be not
significantly related to OS (Figure 5E) since the p value was
just above 0.05.

To identify features associated with our four-MDG signature,
we performed a more detailed analysis of the skyblue module.
Results from GO enrichment analysis (Figure 5F) showed that
the 76 module genes were mainly enriched in two main
biological processes, namely immune dysregulations
(comprising Antigen processing and presentation, Allograft
rejection, and Autoimmune thyroid disease, among others)
and virus infection reactions (such as EB virus infection,
Hepatitis C infection, and Viral myocarditis). A detailed
description of the specific link between those enriched genes
and corresponding biological processes is shown in Figure 5G.
To identify key nodes in the module, we adopted Cytoscape
software and its plugin cytoHubba to calculate the strength of
Frontiers in Immunology | www.frontiersin.org 9
intra-module connectivity of each gene. The top six hub genes
identified included UBE2L6, OAS1, OAS2, OAS3, EPSTI1 and
IFIT3, most of which were associated with immune regulation
and response to DNA damage, according to the GeneCards
database (https://www.genecards.org/) (Figures 5H, I). The
MCODE plugin revealed the key sub-networks of the skyblue
module (Figures 5J, K). The module’s nodes included some HLA
genes, suggesting that these networks could be involved in
immune responses especially antigen presenting. Overall, these
results suggested that the four-MDG signature may be associated
with tumor immune functions.

Functional Annotation of the Signature
To further elucidate the possible mechanisms underlying our
signature model, we performed GSEA to identify enriched
KEGG pathways and GO biological processes in TCGA-
PAAD, ICGC-PACA-AU (seq), ICGC-PACA-CA and E-
A B

D E F G

IH

J

C

FIGURE 4 | Exploration of S100A14 cg sites. (A) Pearson’s correlation between DNAm levels of the cg sites and S100A14 mRNA expression levels. (B) DNAm
beta value heatmaps of S100A14. (C–I) K-M survival curves showing OS of patients with high and low beta values at each cg site in the TCGA-PAAD dataset.
(J) Univariate Cox regression analysis for OS of S100A14 cg sites in the TCGA dataset.
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MTAB-6134 data sets. The top 50 GO biological processes and
KEGG pathways were selected according to logFC values in each
dataset (Table S3). Some pathways and processes, such as p53
signaling pathway, mismatch repair, bladder cancer and systemic
lupus erythematosus, were repeatedly enriched in high risk-score
Frontiers in Immunology | www.frontiersin.org 10
subgroups, indicating that higher risk-scores were associated
with carcinogenesis, immune dysregulation, mismatch repair
and DNA damage responses (Figure 6A and Figure S9A).
Furthermore, we performed GSVA to analyze differentially
enriched pathways. Results revealed significant enrichment of
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FIGURE 5 | WGCNA of patients in the high and low risk-score subgroups in the TCGA-PAAD dataset. (A) Dendrograms of high and low risk-score subgroups.
(B) The Preservation Zsummary of co-expression modules. (C) The Preservation Z-Statistics of co-expression modules. (D) Scatter plot for the module membership
vs. gene significance for risk-scores in the skyblue module. (E) Scatter plot for module membership vs. gene significance for OS in the skyblue module.
(F) Functional enrichment analysis of skyblue module genes for KEGG pathways. (G) Distribution of some skyblue module genes involved in specific links in the
enriched KEGG pathways. (H) The six hub genes of skyblue module identified by cytoHubba. (I) Some pathways associated with the hub genes. (J, K) Two of the
three key sub networks of the skyblue module.
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the p53 signaling pathway, mismatch repair, carcinogenesis of
several malignancies, as well as ERBB and VEGF signaling
pathways (Figure 6B, Figure S9B and Table S4). Overall,
these results indicated that high risk-scores of the signature
were associated with activation of the tumor suppressor p53,
DNA mismatch repair, disturbed immune system and cancer
intrinsic pathways.

High Signature Risk-Scores Indicate
Immunosuppressive Features of Tumor
Microenvironment
Immune Infiltrations and Checkpoint Gene
Expressions
Based on the variation in immune-related pathways or processes
enriched among subgroups, we evaluated immune infiltration
levels to further characterize their immunologic landscapes
across TCGA-PAAD, ICGC-PACA-AU and E-MTAB-
6134 datasets.

Patients in high and low risk scores subgroups exhibited
significant differences, with higher abundance of CD8+ T cells,
lower infiltrations of regulatory T (Treg) cells and M0
macrophages (naive or non-polarized macrophages) observed
in low risk-score subgroups during CIBERSORT analysis
(Figure 7A) in TCGA-PAAD and E-MTAB-6134 datasets
(Figure S12A), suggesting a possible association between our
estab l i shed signature and the immunosuppress ive
Frontiers in Immunology | www.frontiersin.org 11
microenvironment. ICGC-PACA-AU dataset showed a
remarkable trend that lower risk-score samples were more
infiltrated with CD8+ T cells, although did not reach statistical
significance (Figures S10A , S11A). Correlation plots
demonstrated that risk-scores were negatively associated with
infiltration of CD8+ T cells, but positively correlated with M0
macrophages (Figure 7B). In ssGSEA analysis, 2 immune cell
types (CD8+ T cells and T helper cells) and 2 immune functions
(Cytolytic activity and Type II IFN responses) were significantly
related to risk-scores in all datasets (Figures 7C, D and Figure
S10–12C, D).

In TCGA-PAAD and E-MTAB-6134 datasets, PD1 and
CTLA4 expressions were significantly higher in low risk-score,
than in high risk-score subgroups (Figure S13A, B), while
differences in the ICGC-PACA-AU datasets were not
statistically significant. Since PD1 and CTLA4 are mainly
expressed on the surface of lymphocytes, their upregulation
may have resulted from the abundantly infiltrated immune
cells. Notably, elevated PD1 or CTLA4 levels indicate an
exhausted status of immune cells, which is a common
occurrence in cancers (53).

Negative Regulatory Genes of the
Cancer-Immunity Cycle
We downloaded the 42 negative regulatory cancer-immunity
cycle (CIC) genes from the TIP website, then analyzed their
A

B

FIGURE 6 | Functional enrichment of the signature based on GSEA (A) and GSVA (B) in TCGA-PAAD and ICGC-PACA-AU datasets.
February 2022 | Volume 13 | Article 803962

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Xiao et al. MDG-Based Signature of Pancreatic Cancer
expression patterns across each cohort. Expression levels for
twelve of them, namely CD274, CXCL8, DNMT1, EZH2,
ICAM1, IDO1, NECTIN3, SMC3, TGFB1, VEGFA, MICB, and
PDCD1LG2, were positively correlated with risk scores, in at
least four datasets, with no negative correlation in any dataset.
Most of these genes were upregulated in the high-risk group
(Figures 8A, B). Among them, TGFB1 and VEGFA are tumor-
secreted immunosuppressive factors, while CD274 (PDL1) and
PDCD1LG2 are both PD1 ligands and cel l-surface
immunosuppressive factors. Notably, elevated PDL1 levels have
been associated with poor prognostic outcomes (54, 55).

Immune Subtypes
To further investigate the characteristics of the immune
microenvironment in PACA tissues, we categorized samples in
each datasets. TCGA-PAAD, ICGC-PACA-AU (seq), E-MTAB-
6134, GSE62452 andGSE78229 datasets exhibited similar patterns,
while ICGC-PACA-AU (array) and ICGC-PACA-CA showed
differently. This was attributed to possible heterogeneities across
different studies and platforms. Notably, in almost all the datasets,
C3 (inflammatory) subtypes were more abundant in the low risk-
score subgroup, than in high risk-score subgroups. Moreover, C3
and C2 (IFN-g dominant) subtypes were predominant inmost low
risk groups (Figure 8C). Previous studies have shown that C3
subtypes are associated with the most favorable prognosis, due to
Frontiers in Immunology | www.frontiersin.org 12
the type I immune responseneeded for cancer control (56) aswell as
themost pronouncedTh17 signature (57), C2was IFN-g dominant
and showed a less favorable survival outcome compared toC3 (34).

Somatic Mutation Landscape
of the Subgroups
We identified the top 10 genes with the highest mutation rates in
each subgroup (Figures 9A, B). Notably, KRAS, TP53, SMAD4
and CDKN2A mutations were the most common in both
subgroups, of which KRAS and TP53 were the most dominant,
with rates above 50% in both groups. Missense mutations were
the most common, followed by nonsense and frameshift
deletions. Moreover, patients in the high risk-score subgroup
(median TMB: 37mut/Mb) exhibited higher TMBs than those in
the low risk-score subgroup (median TMB: 28mut/Mb, p < 0.05,
Figures 9A, B, D), implying that patients with high-risk scores
have better responses to immune checkpoint blockade (ICB)
treatment (58). Notably, signature risk-scores were positively
correlated with TMB (R = 0.2, p = 0.011, Figure 9C), while
survival analyses showed that higher TMB levels were
significantly associated with shorter OS (p = 0.035, Figure 9E).

Prediction of Therapeutic Responses
Due to differences in TMB between subgroups, we investigated
the likelihood of responses to immune checkpoint blockade
A B

DC

FIGURE 7 | Immune infiltration status of TCGA-PAAD dataset. (A) Abundances of 22 immune cells by CIBERSORT. (B) Upper: correlation between of CD8+ T cell
infiltration with the signature; lower: correlation between M0 macrophage with the signature. (C, D) Immune cell infiltration analysis and immune function enrichment
by ssGSEA.
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(ICB) therapy. Currently, the ICB therapy has not yet been
approved as a routine treatment strategy for PACA patients,
while stratification biomarkers are still debatable. We adopted
the Subclass mapping algorithm to compare the expression
profiles of the two subtypes we defined in the previously
mentioned dataset (38). to those of the TCGA-PAAD dataset
and predicted the likelihood of immunotherapeutic responses.
Patients in the high-risk subgroup were found to be more likely
to respond to CTLA-4 ICB therapy than those with low risk-
scores (Bonferroni corrected p = 0.02, Figure 10B).

Given that chemotherapies, such as FOLFIRINOX (5-
fluorouracil, leucovorin, oxaliplatin and irinotecan) and
Frontiers in Immunology | www.frontiersin.org 13
gemcitabine plus nab-paclitaxel regimens, remain the standard
strategies for the clinical management of advanced PACA (59),
with targeted therapy being of benefit to a small set of patients,
we tried to assess responses to drugs collected in GDSC database
by integrating and analyzing the transcriptomic data of TCGA-
PAAD and ICGC-PACA-AU (seq) cohorts with those data
embedded in GDSC. Results showed that some of these drugs
exhibited significantly lower IC50 values, indicative of more
sensitivity in one subgroup relative to the other (Figure 10C
and Table S5). Notably, patients in the high risk-score subgroup
in both cohorts were found to be more sensitive to three
chemotherapy drugs (docetaxel, paclitaxel and gemcitabine),
A
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FIGURE 8 | Features of the immune-related biomarkers between patients in high and low risk-score subgroups. (A) Heatmaps of 12 CIC negative regulatory genes
in TCGA-PAAD, ICGC-PACA-AU and E-MTAB-6134 datasets. (B) Correlations between CTLA4, PDCD1, CD274 (PDL1) and risk-scores in TCGA-PAAD, ICGC-
PACA-AU (seq), E-MTAB-6134, GSE62452 and GSE78229 datasets. (C) Distribution of immune subtypes across all included datasets.
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although differences of gemcitabine IC50 distribution subjects in
the TCGA cohort were non-significant (Figure 10A). Besides,
high risk score patients in both cohorts were sensitive to
dasatinib and bleomycin (Figure S14).

Moreover, MoA analysis revealed 31 compounds targeting 37
biological actions or pathways, including the topoisomerase
irinotecan, which is one of the basic components of the
FOLFIRINOX regimen (Table S6 and Figure 10C).

Histopathologic Validation of
the Four MDGs
We validated the prognostic values of the MDG expressions via
TMA-based IHC experiments in 70 paired PACA samples and
adjacent non-tumorous tissues. Due to high heterogenous and
fibrous features of PACA, 18 ineffective pairs were eliminated. The
elimination criteria were: (1) Fibrous cancerous tissue with less than
three representativefields containingmore than50 cells, (2)Adjacent
tissues containing typical malignant cells, and (3) Tumorous tissues
Frontiers in Immunology | www.frontiersin.org 14
full of mucous deposit. The clinicopathological characteristics of
PACA patients were shown in Table 2 and Table S7.

The four MDGs were significantly upregulated in PACA tissues
compared to those in para-cancerous tissues (Figures 11A–E).
Elevated expressions of these genes were associated with worse
outcomes, shorter OS and RFS (Figures 12A–H and Figure S15).
Uni- and multi-variate cox regression analyses indicated that
expression levels of GPRC5A and S100A14, as well as TNM stages
played important roles in PACA prognosis (Figures 12I–J).
DISCUSSION

There is an urgent need to elucidate the underlying mechanisms
of the PACA microenvironment, and to identify novel
prognostic biomarkers. Epigenetics, especially DNAm, has
shown promise in understanding carcinogenesis, cancer
progression and immune surveillance of malignancies (60, 61).
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FIGURE 9 | Somatic mutation features between subgroups in the TCGA-PAAD dataset. (A, B) Somatic mutation landscape and TMB status of low-risk (A) and
high-risk (B) subgroups. (C) Correlation between TMB levels with risk-scores. (D) Comparisons of TMB distributions of the two subgroups by t-test. (E) K-M survival
curves showing OS of patients with high and low TMB. (*p<0.05).
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However, DNAm is either a driving force of malignancies, or a
consequence of genomic deregulation in these malignancies (62).
In this study, we found that the methylation loci of the same gene
can exert divergent impacts, as evidenced by the heterogeneity
and complexity of these epigenetic changes. Therefore, it is
important to distinguish between epigenetic changes that
promote phenotypes and those “passenger” alterations without
any biological effects (63, 64). Moreover, the challenging tasks to
interpret their biological effects hindered the utility of pure
epigenetic biomarkers.

Identification of MDGs might provide a new horizon for
exploring biological effects of epigenetic regulation. Previous
studies have employed use of MethylMix as an algorithm for
identifying MDGs in diseases. MethylMix requires DNA
methylation from normal and disease samples and matched
disease gene expression data. Firstly, determination of
methylation degree does not rely on arbitrary thresholds.
Secondly, identification of a gene as hyper- or hypo-
Frontiers in Immunology | www.frontiersin.org 15
methylated gene is achieved by comparing its differential
methylation state between tumorous and normal tissues, and
looking for homogeneous subpopulations. Thirdly, matched
gene expression data was used to identify transcriptionally
predictive DNA methylation events by requiring a negative
correlation between methylation and gene expression of a
particular gene. Finally, MDGs are selected as methylation
possessing a significant predictive effect on their expression,
thereby implying that their methylation is predictive of
transcription and thus functionally relevant (65). This method
has been used to identify MDGs across several cancers, and its
reliability has been demonstrated (66, 67). In fact, integrating
multi-omics, comprising transcriptomics and epigenomics, is
expected to set up a platform for elucidating the underlying
mechanisms of PACA (68).

Although immunotherapy has resulted in encouraging
response rates in patients with various cancers, its efficacy in
PACA patients remain relatively elusive. Accumulating evidence
A B
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FIGURE 10 | Differential putative therapeutic responses. (A) Boxplots showing estimated IC50 values for docetaxel, paclitaxel and gemcitabine in the TCGA-PAAD
and ICGC-PACA-AU datasets. (B) Submap analysis revealed that patients with high scores might be more sensitive to CTLA-4 blockade therapy (Bonferroni-
corrected P = 0.02). (C) Venn plot of candidate chemo and targeted drugs identified by the GDSC database in TCGA and ICGC-AU datasets. (D) CMap database
analysis identified potential compounds targeting the four-MDG signature. (*p<0.05, **p<0.01, ***p<0.001, ns, non-significant).
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has suggested that the resistance is linked to complex, dual role of
the tumor microenvironment, which allows simultaneous PACA
promotion and suppression (69). Notably, desmoplastic reaction,
a histopathological hallmark for PACA is responsible for the
mechanical barrier, where it plays a role in preventing
vascularization, thereby limiting exposure to systematic
therapies (70, 71). Due to the relative paucity of infiltrated
lymphocytes, PACA has been described as a “cold tumor”.
However, recent evidence has shown that significant
heterogeneity exists in immune cell infiltrates among PACA
patients, with a significant positive association between
intratumoral CD8+ effector T cell densities and OS (72). In
animal models, depletion of Fox3+ regulatory T cells (Tregs)
elicited CD8+ T lymphocyte dependent anti-tumor immunity
(73). Moreover, inactivated or non-polarized macrophages (M0)
have been found to accumulate in various cancers, such as
PACA, breast cancer as well as head and neck squamous cell
carcinoma (74–76), with a strong association with shortened OS.
In addition, not only do tumor associated macrophages (TAMs)
and MDSCs directly induce T cell suppression through secreted
cytokines (77), they also indirectly induce PDL1 expressions on
malignant cell surfaces to inhibit anti-tumor immunities (78).
Therefore, success of immunotherapies in PACA patients will
rely on elucidating and targeting multiple key steps involved in
immune activation, as previously described in the cancer
immunity cycle (30). The four-MDG-based signature
established in our study will aid in evaluation of immune
status and might help stratify patients for immunotherapies.

Compared to other malignancies, such as breast cancer,
precision medicine therapies for PACA have not been
developed (79). Apart from those well-known somatic
mutations in KRAS, TP53, SMAD4 and CDKN2A genes,
PACA is highly heterogeneous with several alterations in many
other genes, including some epigenetic regulators such as
ARID1A, MLL3 and KDM6A (80). Particularly, these genetic
Frontiers in Immunology | www.frontiersin.org 16
alterations converge in intricate core pathways, such as those
regulating cell cycle control, epigenetics, as well as WNT/Notch
and EGFR signaling pathways, to form PACA hallmarks (81).
Despite the low frequencies of most individual genetic
mutations, the famous project Know Your Tumor (KYT), in
which PACA patients were allocated to matched targeted therapy
groups, encouragingly revealed that nearly 40% of all PACA
patients harbored at least one genetic alteration that might be
therapeutically targeted, while patients who have received
matched therapy exhibited significantly longer OS (82). In
summary, umbrella design tests aimed at multiplying therapies
in different biomarker-matched subgroups have potential
benefits for most PACA patients (83). Similarly, our predictive
signature has the potential to act as an alternative biomarker for
chemotherapy or targeted therapy.

Our prognostic model showed significant correlations with
immune cell infiltration and checkpoint expression in PACA,
while its risk-scores were positively correlated with TMB.
Previous studies have reported that TMB is a useful biomarker
for ICB selection, owing to its reflection of overall neoantigen
loads (84). Since the cutoffs for categorizing PACA, by TMB
stratifications, have not yet been defined, we referred to previous
studies (85), and defined TMB-L (low) as ≤5 mut/Mb, TMB-I
(intermediate) as ≥6 but <20 mut/Mb, and TMB-H (high) as ≥20
mut/Mb. In the TCGA-PAAD cohort, half of the low-point
samples fell into either the TMB-L or TMB-I category, while
more than 75% of the high-point samples were TMB-H
(Figures 9A, B), suggesting that our signature might have the
potential for identifying new predictive biomarkers for
ICB therapy.

It needs to be emphasized that, at the DEG screening stage, we
downloaded the merged transcriptomic data of TCGA-PAAD
(including 6 normal and 177 tumor) and GTEx pancreas samples
(167 normal) from the UCSC-XENA database, in order to
increase normal samples and reduce sampling bias. In
TABLE 2 | Datasets included in this study.

TCGA-PAAD ICGC-PACA-
AU

ICGC-PACA-
CA

GSE62452 GSE78229 E-MTAB-6134 GTEx Our center

Country USA Australia USA Germany Germany France,
Belgium

Europe China

Sample size (normal/
tumor)

4/179 0/430 0/314 61/69 0/50 0/309 167/0 52/52

Age (mean [min, max]) 64.9 [35, 88] 66.4 [33, 90] 65.2 [34, 88] 69 [46, 87] 65.1 (SD 9.8)* 64 [36, 87] – 58.8 [35,
75]

Gender (Male/Female) 97/80 236/193 152/118 – – 179/130 – 31/21
TNM
T (1/2/3/4) 7/21/140/3 -/3/4/- -/2/16/- – – 12/45/252/0 – 6/22/23/1
N (0/1) 48/125 5/- 10/19 – – 78/231 – 31/21
M (0/1) 168/5 – 7/2 – – – – 52/0
Stage (I/II/III/IV) 19/143/3/5 3/-/-/- 52/101/9/1 4/45/13/6 4/45/1/0 – – 17/29/6/0
Histologic Stage (G 1/2/3/
4)

24/94/47/4 – – 2/35/30/2 2/24/22/2 110/130/48/0 – –

Survival data OS, RFS OS, RFS OS, RFS OS OS OS, RFS – OS, RFS
Platform Illumina

RNAseq
Illumina RNAseq Illumina RNAseq Affymetrix

Array
Affymetrix
Array

Affymetrix Array Illumina
RNAseq

IHC
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addition, we selected those intersected MDGs from TCGA-
PAAD and ICGC-PACA-AU as candidates, rather than simply
integrating these datasets (through “SVA” or other similar
packages) into a larger one. We considered the deviances
across datasets from irrelevant researches were introduced by
various aspects, not just the so-called “batch effects”, in this
regard, it should be very cautious to integrate or normalize
several individual datasets by some algorithms forcibly.

This study had some limitations. Firstly, both training and
validation cohorts had relatively small sample sizes, whereas the
platforms and pipelines were not uniform, making the
expression values from different cohorts less compatible.
Specifically, the cut-off values of the risk-scores across
subgroups in each cohort were not uniform. Secondly,
although we attempted to evaluate the molecular factors
Frontiers in Immunology | www.frontiersin.org 17
associated with our models, we did not elucidate the
underlying mechanisms of action. Thirdly, due to the limited
sample sizes, imbalance of clinical features, as well as missing
information of the datasets, it was difficult to carry out stratified
analyses in our research. Therefore, further studies are needed to
unravel these mechanisms.
CONCLUSIONS

In summary, we evaluated MDGs involved in PACA and
constructed a four-MDG-based signature for predicting
prognosis of PACA patients. Subgroup analyses across all
included cohorts revealed that our signature was significantly
correlated with immunosuppressive microenvironment in PACA.
A

B

D

E

C

FIGURE 11 | IHC evaluation of PACA samples collected from our center. (A–H) Expressions of the four MDG proteins in tumorous and corresponding para-tumor
tissues. (I) The MDG-corresponding protein levels were up-regulated in PACA tissues compared to non-cancerous tissues. (***p<0.001).
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Specifically, patients with high and low risk-scores might respond
differently to chemotherapy, targeted therapy and immunotherapy.
Further studies, usingmoredelicatedesignsandbigger sample sizes,
are needed to optimize and validate our predictive model.
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Supplementary Figure 1 | Overview of DEGs and differentially expressed MDGs.
(A, B) Expression (A) and methylation (B) heatmaps of 20 hypomethylated and 10
hypomethylated MDGs in the TCGA-PAAD dataset. (C, D) Pathway enrichment of
DEGs that were up-regulated (C) and down-regulated (D) in ConcensusPathDB.
(E, F) Pathway enrichment of hypomethylated (E) and hypermethylated (F)MDGs in
ConcensusPathDB.

Supplementary Figure 2 | Validation of the four-MDG signature in GSE78229, E-
MTAB-6134 and GSE62452 datasets. (A, D, G) K-M survival analysis for OS of the
high and low risk-score subgroups across the three datasets. (B, E, H) Time‐
dependent ROC curves of the signature. (C, F, I) Risk-score distribution plots
across the three datasets. In each plot, from top to bottom: distribution of risk-
scores, distribution of survival status, expression patterns of the four genes.
(J, K) K-M analysis for RFS of high and low risk-score subgroups in ICGC-PACA-
CA and E-MTAB-6134 datasets.

Supplementary Figure 3 | Cox regression analyses for clinicopathological
factors in TCGA, ICGC-AU, E-MTAB-6134 datasets.

Supplementary Figure 4 | Correlation between PACA clinicopathological features
and the four-MDGsignature. (A)Distributions of risk-scores across fourGgrades in the
TCGA-PAAD,E-MTAB-6134,GSE62452 andGSE78229databases. (B)Distributions
of risk-scores across different T stage, N stage, TNM stage and gender subgroups
respectively, as well as correlation between patient age and risk-scores in the TCGA-
PAAD dataset. (C) Distributions of risk-scores across different TNM stage subgroups,
andthecorrelationbetweenpatientageandrisk-scores in the ICGC-PACA-CAdataset.

Supplementary Figure 5 | Features of the four MDGs used to establish our
signature. (A)K-Mcurves showingRFSofpatients from theTCGA-PAADcohortbased
on GPRC5A, SOWAHC, S100A14, ARNTL2 expression. (B) Expression levels of the
four genes inPACAand normal pancreas samples in theTCGA-PAADdataset. (C) IHC
staining of GPRC5A, SOWAHCandS100A14 in PACA tissue fromHPA database. (D)
Genetic alterations in the four MDGs in the TCGA-PAAD dataset from cBioPortal
database. Columns and rows indicate tumor samples and MDGs, respectively.

Supplementary Figure 6 | PPI network constructed by STRING (A) and gene-
gene interaction network by GeneMANIA (B) of the four signature genes.
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Supplementary Figure 7 | Immune cells that were significantly correlated with
expressions of GPRC5A (A), SOWAHC (B), S100A14 (C) and ARNTL2 (D) from
TIMER 2.0 database.

Supplementary Figure 8 | Pearson’s correlation between DNAm levels of
the cg sites and mRNA expression of SOWAHC (A), ARNTL2 (B) and
GPRC5A (C).

Supplementary Figure 9 | Functional enrichment of the signature based on
GSEA (A) and GSVA (B) in ICGC-PACA-CA and E-MTAB-6134 datasets.

Supplementary Figure 10 | Immune infiltration status of ICGC-AU (seq) dataset.
(A) Abundances of 22 immune cells by CIBERSORT. (B) Upper: correlation
between of CD8+ T cell infiltration with the signature; lower: correlation between M0
macrophage with the signature. (C, D) Immune cell infiltration analysis and immune
function enrichment by ssGSEA.

Supplementary Figure 11 | Immune infiltration status of ICGC-AU (array)
dataset. (A) Abundances of 22 immune cells by CIBERSORT. (B) Upper: correlation
between of CD8+ T cell infiltration with the signature; lower: correlation between M0
macrophage with the signature. (C, D) Immune cell infiltration analysis and immune
function enrichment by ssGSEA.

Supplementary Figure 12 | Immune infiltration status of E-MTAB-6134 dataset.
(A) Abundances of 22 immune cells by CIBERSORT. (B) Upper: correlation
between of CD8+ T cell infiltration with the signature; lower: correlation between M0
macrophage with the signature. (C, D) Immune cell infiltration analysis and immune
function enrichment by ssGSEA.

Supplementary Figure 13 | Profiles of PDCD1 (PD1) and CTLA4 expression
patterns in TCGA-PAAD (A) and E-MTAB-6134 (B) datasets.

Supplementary Figure 14 | Differential putative therapeutic responses to
dasatinib and bleomycin in TCGA-PAAD (A) and ICGC-PACA-AU (B) datasets.

Supplementary Figure 15 | Associations between MDG proteins and RFS by
KM analysis.

Supplementary Table 1 | The final 75 differentially expressed MDGs. Sheet 1:
The final 75 differentially expressed MDGs. Sheet 2: The gene list of DEGs and
MDGs from TCGA-PAAD and ICGC-AU datasets.

Supplementary Table 2 | CpG sites of the four signature genes.

Supplementary Table 3 | KEGG pathways and biological processes enriched by
GSEA.

Supplementary Table 4 | KEGG pathways and biological processes enriched by
GSVA

Supplementary Table 5 | Candidate chemo and targeted drugs identified by the
GDSC database in TCGA-PAAD and ICGC-PACA-AU (seq) datasets.

Supplementary Table 6 | Candidate compounds identified by CMap analysis in
microarray datasets.

Supplementary Table 7 | Characteristics of PACA samples collected in our
center.
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