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Abstract 
 

DNA methylation is the best characterized of the different layers that make 

up the epigenetic setting. Most of the studies characterizing DNA 

methylation patterns have been restricted to particular genomic loci in a 

limited number of human samples and pathological conditions. The 

recently arrived single-base-resolution technologies for DNA methylation 

are extremely helpful tools, but are not yet applicable and affordable for 

studying large groups of subjects. Herein, we present a compromise 

between an extremely comprehensive study of a human sample 

population with an intermediate level of resolution of CpGs at the genomic 

level. We obtained a DNA methylation fingerprint of 1,628 human samples 

where we interrogated 1,505 CpG sites. The DNA methylation patterns 

revealed show this epigenetic mark to be critical in tissue-type definition 

and stemness, particularly around transcription start sites that are not 

within a CpG island. For disease, the generated DNA methylation 

fingerprints show that, during tumorigenesis, human cancer cells 

underwent a progressive gain of promoter CpG island hypermethylation 

and a loss of CpG methylation in non-CpG island promoters. Although 

transformed cells are those where DNA methylation disruption is more 

obvious, we observed that other common human diseases, such as 

neurological and autoimmune disorders, had their own distinct DNA 

methylation profiles. Most importantly, we provide proof of principle that 

the obtained DNA methylation fingerprints might be useful for 

translational purposes by showing that are able to identify the tumor type 

origin of Cancers of Unknown Primary (CUPs). Thus, the DNA methylation 

patterns identified across the largest spectrum of samples, tissues and 

diseases reported to date constitute a baseline for developing higher-

resolution DNA methylation maps, and provide important clues 

concerning the contribution of CpG methylation to tissue identity and its 

changes in the most prevalent human diseases. 

 
The microarray data from this study have been submitted to the NCBI Gene 
Expression Omnibus (http://www.ncbi.nlm.nih.gov/geo) under accession number 
GSE28094. 
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INTRODUCTION 

 

Epigenetics encompasses a large number of mechanisms underlying 

embryonic development, differentiation and cell identity, including DNA 

methylation and histone modifications (Bernstein et al. 2007; Hemberger et al., 

2009). The existence of distinct epigenomes might explain why the same 

genotypes generate different phenotypes, such as those seen in Agouti mice 

(Michaud et al. 1994), cloned animals (Humpherys et al. 2001), and 

monozygotic twins (Fraga et al. 2005; Kaminsky et al., 2009). Most importantly, 

epigenetic alterations are increasingly recognized as being involved in human 

diseases (Das et al. 2009), such as cancer (Jones and Baylin 2007; Esteller 

2008) and imprinting (Feinberg 2007), neurological, (Urdinguio et al., 2009), 

cardiovascular (Gluckman et al., 2009) and autoimmune (Richardson, 2007) 

disorders, among others. For the first time it is possible to define whole 

epigenomes, which represent all epigenetic marks in a given cell type, thanks to 

the development of powerful new genomic technologies (Bernstein et al. 2007; 

Esteller 2007; Jones and Baylin 2007; Bonetta 2008; Lister and Ecker 2009). 

Furthermore, coordinated epigenomic projects are starting to be launched 

(Jones et al., 2008; Abbot 2010).  

One of the earliest studied epigenetic marks in eukaryotes is cytosine 

DNA methylation, which acts as a stably inherited modification affecting gene 

activity and cellular biology. Determining the complete DNA methylome entails 

describing all the methylated nucleotides in an organism. The gold standard 

technique for analyzing the methylation state of individual cytosines is bisulfite 

sequencing in which unmethylated cytosines are converted to uracils and read 

as thymines, while methylated cytosines are protected from conversion. Bisulfite 

sequencing yields precise nucleotide resolution data, but this method has been 

limited to relatively small genome coverage (Rakyan et al. 2004; Eckhardt et al. 

2006; Frigola et al. 2006; Zhang et al., 2009), although it has proved useful for 

analyzing viral DNA methylomes (Fernandez et al., 2009). Alternative 

approaches involve the isolation of methylated fractions of the genome by 

methylation-sensitive restriction (Lippman et al. 2005; Irizarry et al., 2008), or 
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immunoprecipitation with a methylcytosine (Weber et al. 2005; Keshet et al. 

2006; Weber et al., 2007; Down et al., 2008) or methyl-CpG binding domain 

antibody (Ballestar et al., 2003; Rauch et al., 2009), combined with hybridization 

to genomic microarrays or ultrasequencing. This is exemplified by the recent 

DNA methylation analyses of the Arabidopsis genome (Zhang et al. 2006; 

Vaughn et al. 2007; Zilberman et al. 2007), which are further expanded by using 

sequencing-by-synthesis (MethylC-Seq) technology (Lister et al. 2008) and 

shotgun bisulfite genomic sequencing (Cokus et al., 2008). In representing 

mouse pluripotent and differentiated cells, bisulfite sequencing has covered 

roughly 1 million distinct CpG dinucleotides (4.8% of all CpGs) (Meissner et al., 

2008) and two human cell lines (one each from embryonic stem cells and fetal 

fibroblasts) have been analyzed using MethylC-Seq, including 94% of the 

cytosines in the genome (Lister et al., 2009). Using whole-genome bisulfite 

sequencing, the DNA methylome analysis of peripheral blood mononuclear cells 

from a single-case has also been recently reported (Li et al., 2010). 

Only a small number of base-resolution DNA methylomes have been 

described so far. Nevertheless, even with the enormous advantages that 

genetic sequencing has over DNA methylation characterization with respect to 

time and technology, very few full genomes have been reported, either. From 

the genetic standpoint, this current shortage of information is being tackled 

through the development of efforts such as the 1,000 Genomes Project (Siva 

2008; Kuehn 2008) or by genome-wide association scan (GWAS) studies in 

which an association with a phenotype or a disease can be established if we 

limit the number of nucleotides assessed and thus the extent of coverage of the 

genome (Cantor et al., 2010; Ku et al., 2010). We decided to combine these two 

approaches —extremely extensive analyses of hundreds of normal and 

disease-associated cells and tissues with intermediate coverage of CpG 

dinucleotides— to obtain a DNA methylation fingerprint of 1,628 human 

samples corresponding to healthy individuals and in those affected by the 

diseases most commonly associated with death in the western world, such as 

cancer, neurological disorders and cardiovascular disease.  
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RESULTS 

 

Description of 1,628 samples and analysis of 1,505 CpG sites 

We first studied the genomic DNA from 1,628 human samples 

corresponding to 424 normal tissues (180 leukocytes, 97 colon mucosa and 227 

other normal samples), 1,054 tumorigenic samples (premalignant lesions, 

primary tumors and metastases) and 150 non-cancerous disorders, such as 

brain lesions from Alzheimer’s disease, dementia with Lewy bodies, aortic 

atherosclerotic lesions, myopathies and autoimmune disorders. 

Supplementary Table 1 shows the complete list of samples studied. The age 

of donors ranged from six months to 102 years, with an average age of 57 

years. 40% (n = 648) were men, 38% (n = 623) were women, the gender of the 

remaining 22% (n = 357) not being known. 87% (n = 1,421) of the samples 

were from European volunteers and patients, while 4% (n = 59) and 2% (n = 36) 

were from Asian and North American populations, respectively; the origin was 

not known for 7% (n = 112) of cases. Finally, 93% (n = 1,512) of the samples 

were primary tissues obtained at the time of the clinically indicated procedures, 

while 7% (n = 116) were obtained from established cell lines. Supplementary 

Figure 1 summarizes the described sample distribution. For all these samples 

we obtained the DNA methylation fingerprints defined by the status of 1,505 

CpG sites located from -1,500 bp to +500 bp around the transcription start sites 

(Supplementary Figure 2) of 808 selected genes using the GoldenGate® DNA 

methylation BeadArray (Illumina, Inc.) assay (Bibikova et al., 2006; Christensen 

et al., 2009; Byun et al., 2009). The panel of genes includes oncogenes and 

tumor suppressor genes, imprinted genes, genes involved in various signaling 

pathways, and those responsible for DNA repair, cell cycle control, metastasis, 

differentiation and apoptosis (Bibikova et al., 2006; Christensen et al., 2009; 

Byun et al., 2009). 69% (n = 1,044) of the 1,505 CpG sites studied are located 

within a canonical CpG island (Takai and Jones, 2002), while 31% (n = 461) are 

situated outside CpG islands (Supplementary Figure 2). All human 

chromosomes, except the Y-chromosome, are represented among the CpG 
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sites analyzed (Supplementary Figure 2). CpG sites in “CpG island shores”, 

regions of comparatively low CpG density within 2 Kb of CpG islands, are not 

printed in the array used and their biological relevance has already been 

extensively studied (Irizarry et al., 2009; Doi et al., 2009). Briefly, in our case, 

four probes were designed for each CpG site: two allele-specific oligos (ASOs) 

and two locus-specific oligos (LSOs). Each ASO-LSO oligo pair corresponded 

to either the methylated or unmethylated state of the CpG site. After bisulfite 

treatment conversion, the remaining assay steps were identical to those of the 

GoldenGate® genotyping assay using Illumina-supplied reagents and 

conditions, and the arrays were imaged using a BeadArray Reader (Illumina 

Inc.). Each methylation data point was represented by fluorescent signals from 

the M (methylated) and U (unmethylated) alleles. Before analyzing the CpG 

methylation data, we excluded possible sources of technical biases that could 

have influenced the results. Every beta value in the GoldenGate® platform is 

accompanied by a detection p-value, and we observed that a threshold p-value 

above 0.01 indicated unreliable beta values (130 CpGs). X-chromosome CpG 

sites with female-specific DNA methylation (Reik and Lewis, 2005) were also 

excluded (44 CpGs). Finally, 9 CpG sites that were unmethylated in all normal 

and disease-associated samples were also excluded. Using these filters, 1,322 

CpGs proved to be reliable and were used subsequently in the study. Further 

technical information is provided in Supplementary Methods. The precise DNA 

methylation status of every CpG dinucleotide analyzed in each of the 1,628 

samples studied is freely available by downloading from NCBI Gene Expression 

Omnibus (http://www.ncbi.nlm.nih.gov/geo) under accession number 

GSE28094. 

 

DNA methylation fingerprint of human normal tissues 

 We analyzed first the DNA methylation fingerprints for 424 human normal 

tissues. Of the 424 normal tissues studied, only 1% (n = 17) of CpGs 

(corresponding to 14 genes) were methylated in all the samples studied 

(Supplementary Table 2). These exclusively methylated CpG dinucleotides 

were preferentially located outside CpG islands (82%) (Fisher’s exact test, 

p=1.97e-5). Conversely, 37% (n = 488) of the CpGs, corresponding to 359 5’-
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ends of genes, were exclusively unmethylated in every normal tissue studied 

(Supplementary Table 3). These always-unmethylated CpG dinucleotides 

were almost exclusively located within CpG islands (98%) (Fisher’s exact test, 

p=2.20e-85) and were associated with housekeeping expression genes (Fisher’s 

exact test, p=1.13e-4) (Supplementary Methods). Most importantly, significant 

differential DNA methylation (Kruskal-Wallis rank sum test, p<2.21e-16) was 

encountered between different normal samples of 511 CpG dinucleotides using 

elastic net classifiers, which enabled their distinction on the basis of tissue type 

using an unsupervised hierarchical clustering approach (Figure 1a). The 511 

CpG sites described correspond to 359 genes and, providing further validation 

to the data, 220 genes (61%) (220) and 137 (38%) were previously identified as 

genes with tissue-specific DNA methylation using the same 1,505 CpG platform 

(Byun et al., 2009) or a 27,000 CpG microarray (Nagae et al., 2011), 

respectively. Illustrative examples of genes found in the three sets, and also 

confirmed by bisulfite genomic sequencing in another independent study 

(Eckhardt et al., 2006), include TBX1 (T-Box 1), OSM (Oncostatin M) and 

GP1BB (Glycoprotein IB Platelet Beta Polypeptide). Examples of tissue-specific 

CpG methylation further validated by pyrosequencing (“technical replicates”) are 

shown in Supplementary Figure 3. 

For our 359 genes with tissue type specific CpG methylation, their 

expression patterns in the 21 normal tissues are known (GEO Expression 

Omnibus, GEO, http://www.ncbi.nlm.nih.gov/geo/, Supplementary Methods). 

Unsupervised clustering analysis of the expression of these 359 genes 

discriminates each normal tissue type, as the CpG methylation did, reinforcing 

the association between DNA methylation and transcriptional silencing of the 

neighboring gene for these targets (Supplementary Figure 3). Strikingly, the 

CpG sites for which methylation status was the most valuable for discriminating 

between tissue types were those located in non-CpG island 5’-ends (Fisher’s 

exact test, p=5.85e-49). These data support the long-standing hypothesis that 

most housekeeping genes contain CpG islands around their transcription start 

sites, while half of the tissue-specific genes have a CpG island at their 5’-ends 

and the other half are 5’-CpG poor (Illingworth and Bird, 2009). The top-scoring 

genes with defined organ-specific DNA methylation are listed in 
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Supplementary Table 4. The tissue-type-specific DNA methylation patterns, 

which are in line with previous observations in humans (Eckhardt et al., 2006; 

Shen et al., 2007; Christensen et al., 2009; Byun et al., 2009), also match the 

developmental layers in which the tissues originated (endoderm, mesoderm or 

ectoderm) (Fig. 1a), implying the existence of germ-layer-specific DNA 

methylation (Sakamoto et al., 2007). Interestingly, 49 CpG sites corresponding 

to 26 imprinted genes were also included in the assay (Supplementary Figure 

4). We observed that CpG sites located outside differentially methylated regions 

(DMRs) (Dindot et al., 2009; Monk et al., 2010) behaved like the CpGs of non-

imprinted genes in normal tissues: CpGs located within and outside CpG 

islands were unmethylated and methylated, respectively (Supplementary 

Figure 4). However, CpGs within DMRs were 50% methylated in all normal 

tissue types studied (Supplementary Figure 4). 

 Within the same tissue type, interindividual DNA methylation differences 

were minimal. For example, the DNA methylation deviation plot for the 1,322 

CpG sites studied in leukocyte samples from 180 healthy donors showed little 

heterogeneity (Figure 1b). However, it is interesting to note that the main DNA 

methylation differences between individuals occurred at CpG sites located 

outside CpG islands in comparison to CpG island-associated CpG dinucleotides 

(Wilcoxon test, p=3.52e-39) (Figure 1b). One interesting issue concerned the 

putative impact of aging on the DNA methylation patterns of normal tissues in 

humans (Christensen et al., 2009; Teschendorff et al., 2010; Rakyan et al., 

2010) and mice (Maegawa et al., 2010). Our analysis of the leukocyte samples 

from the 180 healthy donors (Figure 1b) revealed sets of genes that were 

significantly hypermethylated (n = 43) or hypomethylated (n = 25) during the 

normal aging process (Figure 1c and Supplementary Table 5). Examples of 

age-specific CpG methylation further validated by pyrosequencing are shown in 

Supplementary Figure 4. It is encouraging to note that there are genes with 

age-related methylation found in our study that were also identified in the 

mentioned previous reports using the same 1,505 CpG platform (Christensen et 

al., 2009) or the 27,000 CpG microarray (Teschendorff et al., 2010; Rakyan et 

al., 2010). Among these, we can underline for the age-hypermethylated genes 

MYOD1 (Myogenic Differentiation Antigen 1) and for the age-hypomethylated 

genes representative examples include CARD15 (Caspase Recruitment 
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Domain-containing protein 15), ACVR1 (Activin Receptor Type I) and SOD3 

(Superoxide Dismutase 3). Furthermore, we also found that the CpG 

hypermethylation events in aging were significantly more likely to occur in the 

promoters of those genes with enriched polycomb occupancy (Fisher’s exact 

test, p=3.83e-8; permutation p-value 0.0014) and the presence of bivalent 

histone domain (3mK4H3 + 3mK27H3) (Fisher’s exact test, p=9.03e-4; 

permutation p-value 0.0354) in embryonic stem cells (Supplementary Figure 

4), as was recently suggested (Rakyan et al., 2010; Teschendorff et al., 2010). 

 In addition to the tissue-type-specific DNA methylation patterns, one 

group of normal cells had distinctive DNA methylation profiles: embryonic and 

adult stem cells (Figure 1d). Adult and embryonic stem cells both had DNA 

methylation fingerprints that did not resemble any of the differentiated primary 

normal tissues studied (Fig. 1d). Furthermore, we confirmed that the previously 

studied samples from multipotent adult stem cells (Aranda et al., 2009) had 

different DNA methylation fingerprints than pluripotent embryonic stem cells 

(Fig. 1d). Herein, we went further to show that induction of differentiation of 

both types of stem cells through different lineages produced DNA methylation 

fingerprints that resembled those present in the corresponding normal 

differentiated tissues, such as muscle or neuron (Fig. 1d). Interestingly, in vitro-

differentiated material from adult and embryonic stem cells did not completely 

recapitulate the DNA methylation patterns present in the corresponding primary 

differentiated tissues and there were always deficiently methylated CpG sites. 

Supplementary Table 6 provides examples of these in muscle and neuronal 

tissues. Supplementary Figure 5 shows examples of tissue-specific CpG 

methylation, unachieved upon in vitro differentiation of stem cells and validated 

by pyrosequencing analysis.  

 

DNA methylation fingerprint of human cancer 

We studied next the DNA methylation fingerprints for 1,054 human 

tumorigenesis samples. Genetic and epigenetic alterations both contribute to 

cancer initiation and progression (Jones and Baylin, 2007; Esteller, 2008). One 

of the first epigenetic alterations found in human cancer was the global low level 

of DNA methylation in tumors compared with healthy tissue counterparts 
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(Feinberg et al., 1983). Global DNA hypomethylation is accompanied by 

hypermethylation of CpG islands at specific promoter regions. Nowadays, 

hypermethylation of the CpG islands in the promoter regions of tumor-

suppressor genes is also recognized as a major event in the origin of many 

cancers (Jones and Baylin, 2007; Esteller, 2008). Tumor suppressor genes 

disrupted by DNA methylation-associated transcriptional silencing in sporadic 

tumors include the retinoblastoma tumor suppressor gene (Rb), VHL 

(associated with von Hippel–Lindau disease), the cell cycle inhibitor p16INK4a, 

hMLH1 (a homologue of MutL Escherichia coli) and BRCA1 (breast-cancer 

susceptibility gene 1) (Jones and Baylin, 2007; Esteller, 2008). Using candidate 

gene approaches and early epigenomic technologies, a CpG island 

hypermethylation profile of human primary tumors emerged that suggesting that 

a defining DNA hypermethylome could be assigned to each tumor type 

(Costello et al., 2000; Esteller et al., 2001; Ballestar and Esteller, 2008). Herein, 

we have analyzed the DNA methylation fingerprints of 1,054 human 

tumorigenesis samples, including 855 primary malignancies (611 solid tumors 

from 19 tissue types and 244 hematological malignancies), 50 metastatic 

lesions, 25 premalignant lesions, 82 cancer cell lines and 42 cancers of 

unknown primary origin (CUPs) (Supplementary Table 1). The DNA 

methylation map that emerges shows a tumor-type-specific profile characterized 

by the progressive gain of CpG methylation within CpG island-associated 

promoters and a cumulative loss of CpG methylation outside CpG islands in the 

different steps of tumorigenesis.  

First, unsupervised clustering of the DNA methylation profiles obtained 

from the 855 primary tumors demonstrated that each type of malignancy had its 

own aberrant DNA methylation landscape (Figure 2a). From a quantitative 

standpoint, 1,003 CpG sites (76% of the 1,322 validated CpGs) had significantly 

different methylation levels between tumor types (Kruskal-Wallis rank sum test, 

p<2.2e-16). The distinction of primary tumors by their tissue of origin was 

maintained even when we subtracted the tissue-type specific DNA methylation 

described above (511 CpG sites, Supplementary Table 4) from the analysis of 

the DNA methylation profiles for each normal tissue (Fig. 2b). Comparing each 

tumor type with its corresponding normal tissue, 729 CpG sites (55% of the 

1,322 CpGs) showed differential DNA methylation. Using these tumor/normal 
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differentially methylated CpG sites, overall human primary tumors were 

characterized by increased levels of CpG dinucleotide methylation: 68% (n = 

496) were hypermethylated and 32% (n = 233) were hypomethylated (t test, 

p=3.521e-5) (Figure 2c). Most importantly, the location of these DNA 

methylation events differed: CpG dinucleotide hypermethylation occurred within 

CpG islands (78%) while CpG hypomethylation was present in 5’-ends of non-

CpG island genes (78%) (Fisher’s exact test, p=2.59e-47; permutation p-value 

<0.001) (Figure 2c). A DNA methylation deviation plot for the 1,322 CpG sites 

studied in all normal primary tissues (n = 390) vs. all primary tumors (n = 855) 

shows the hypermethylated CpG sites within CpG islands and hypomethylated 

CpG sites outside CpG islands observed in the malignancies (Figure 2c) 

(Paired Wilcoxon test p<2.2e-16). CpG sites with cancer-specific differential 

methylation according to tumor type in comparison with their corresponding 

normal tissue are provided in Supplementary Table 7. Examples of cancer 

type-specific CpG methylation further validated by pyrosequencing are shown in 

Supplementary Figure 6. Those CpG sites with highly specific methylation 

changes occurring only in one tumor type are shown in Supplementary Table 

8. Interestingly, we also confirmed the previous observation (Schlesinger et al., 

2007; Ohm et al., 2007; Widschwendter et al., 2007) that the CpG 

hypermethylation events in cancer were significantly more likely to occur in the 

promoters of those genes with enriched polycomb occupancy (Fisher’s exact 

test, p=5.03e-6; permutation p-value 0.0012) and the presence of bivalent 

histone domains (3mK4H3 + 3mK27H3) (Fisher’s exact test, p=5.97e-4; 

permutation p-value 0.0278) in embryonic stem cells (Supplementary Figure 

6). We also found evidence to reinforce the link between the 5’-end CpG 

methylation and transcriptional silencing (Jones and Baylin 2007; Esteller 2008) 

by developing expression microarray studies (Supplementary Methods) in the 

19 primary colorectal tumors from which we had obtained the DNA methylation 

profiles. We observed that the median expression of all the CpG 

hypermethylation-associated genes was significantly lower than in those CpG 

hypomethylation-linked genes (Kruskal-Wallis test, p=1.56e-8) (Supplementary 

Figure 6). 

For our largest set of samples with paired normal-tumor tissues from the 

same patient (41 cases of colorectal cancer), we observed that of the 1,322 
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CpG sites studied, CpG dinucleotides within CpG island promoters became 

significantly more DNA-methylated in 79% of cases (34 of 43 normal/tumor 

pairs) (Wilcoxon test, p=2.47e-7), while CpGs located in non-CpG island 

promoters more commonly underwent DNA hypomethylation events, in 51% of 

cases (22 of 43 normal/tumor pairs) (Wilcoxon test, p = 0.001). If we consider 

the colorectal tumor population as a whole, in 68% of cases (28 of 41) the 

primary malignancy gained CpG dinucleotide methylation within promoter CpG 

islands and non-CpG island promoters, while in 15% of tumors (6 of 41) the 

gain of CpG island methylation occurred in a context of loss of promoter non-

CpG island methylation (Figure 3a). Interestingly, 17% of cases (7 of 41) 

featured a loss of methylation in both promoter CpG islands and non-CpG 

island promoters (Figure 3a). Thus, the presence of hypermethylation of 

promoter CpG islands appears to be a common hallmark of human tumors, but 

there are subsets of cancers that present other DNA methylation profiles at 

promoter CpG sites that suggest additional and complex aberrant DNA 

methylation pathways in tumorigenesis. For example, the possibility that DNA 

hypomethylation events at CpGs located in non-CpG island promoters, typical 

of genes with restricted tissue-specific expression (Illingworth and Bird, 2009), 

can cause a loss of cellular identity in transformed cells is worth further 

investigation.  

As cancer cell lines are a major tool in biomedical research, we next 

examined how the DNA methylation profiles of cell lines differ from those of the 

primary tumor types. The analyses of the DNA methylation fingerprints of 82 

human cancer cell lines representing 14 tumor types (Supplementary Table 1) 

showed that, overall, they preserved their original cancer type-specific profile 

and underwent an increase in the levels of CpG dinucleotide methylation in 

comparison with the corresponding normal tissues (Paired Wilcoxon test, 

p<2.2e-16) (Supplementary Figure 7), as occurs with most primary tumors. 

Examples of CpG methylation in cancer cell lines further validated by 

pyrosequencing are shown in Supplementary Figure 7. In the same line as 

primary malignancies, the hypermethylated CpG sites in cancer cell lines 

occurred significantly more often within CpG islands (Supplementary Figure 

7), while CpG hypomethylation events mainly happened around transcription 

start sites that did not contain a CpG island (Paired Wilcoxon test, p<2.2e-16) 
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(Supplementary Figure 7). However there were qualitative and quantitative 

differences. First, human cancer cell lines had significantly greater 

hypermethylation of promoter CpG islands and non-CpG island promoters 

(Paired Wilcoxon test, p<2.2e-16) (Supplementary Figure 7). At this stage, we 

cannot distinguish whether these greater changes are associated with the in 

vitro growth of these cells over many years, or if the DNA methylation changes 

were more detectable because there was no contaminating normal tissue, as is 

the case in primary tumors. Second, there are a set of specific CpG sites that 

only undergo differential DNA methylation in cancer cell lines (Supplementary 

Table 9) that enable them to be classified into a distinct clustering arm in the 

unsupervised analysis (Figure 3b). We further tested the association between 

hypermethylated CpGs at the 5’-ends and transcriptional silencing of the 

corresponding gene by treating five cancer cell lines (SW480, HN-011A, HN-

011B, IGR37 and IGR39) with the DNA demethylating agent 5’-aza-2’-

deoxycytidine, followed by gene expression microarray analysis 

(Supplementary Methods). We observed that while genes with associated 

hypermethylated CpGs had a low median expression compared with their 

corresponding normal tissues, upon treatment with the hypomethylating agent 

their expressions were restored (Supplementary Figure 8). 

The comprehensive collection of human tumorigenesis samples studied 

here allowed us to address two other interesting aspect of cancer epigenetics: 

timing and progression. For genetic changes it is well known that there is an 

accumulation of genetic events that drive the carcinogenesis process from the 

healthy tissue to early premalignant lesions and finally to established full-blown 

tumors and metastasis, as exemplified by colorectal tumorigenesis (Fearon and 

Vogelstein, 1990). Candidate gene approaches and limited epigenomic 

strategies have also indicated that this could be a pathway leading to aberrant 

DNA methylation changes (Fraga et al., 2004). Our analysis of the DNA 

methylation signatures in progressive samples of three different tumorigenesis 

pathways (colon, breast and endometrial cancers) demonstrated the increasing 

degree of CpG dinucleotide methylation within promoter CpG islands and a loss 

of CpG methylation outside CpG islands in consecutive steps (Figure 3c). The 

DNA methylation deviation plot for the 1,322 CpG sites in colorectal adenomas 

vs. primary colorectal tumors, breast hyperplasias vs. primary breast tumors 
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and endometrial hyperplasias vs. primary endometrial carcinomas 

demonstrated that the full-blown tumors had significantly greater 

hypermethylation of promoter CpG islands in association with the loss of CpG 

methylation in non-CpG islands than their corresponding premalignant lesions 

(Paired Wilcoxon test, p<2.2e-16) (Figure 3c). Most importantly, for colorectal 

tumors where we had DNA from brain metastasis available, these distant 

metastasis lesions achieved higher levels of promoter CpG island 

hypermethylation and lower levels of non-CpG island methylation than the 

primary colon malignancies (Paired Wilcoxon test, p<2.2e-16), suggesting that 

these pathological entities are the final stages of the disease. In fact, the DNA 

methylation unsupervised clustering analyses of primary tumors, local liver 

metastases and distant brain metastases from the same colorectal cancer 

patient showed that there were specific hypermethylated CpGs in the brain 

metastases (Supplementary Table 10 and Figure 3d). Examples of specific 

CpG methylation in the brain metastasis of colorectal tumors validated by 

pyrosequencing are shown in Supplementary Figure 8. 90% of cancer deaths 

are attributable to the development of metastasis (Mehlen and Puisieux, 2006), 

so these findings might have a translational value for the prediction of the 

metastatic capacity of a particular tumor, as has recently been shown for 

hypermethylated microRNA loci (Lujambio et al., 2008), and it might be a useful 

molecular marker in the decision process for the medical and surgical 

intervention in the disease. 

The DNA methylation fingerprints of human cancer obtained in our study 

can also provide additional important molecular diagnostic and prognostic 

biomarkers for the management of neoplasias. One example we have assessed 

is the case of the clinical entities classified as Cancers of Unknown Primary 

Origin (CUPs). These are patients that present metastatic diseases for which 

the primary site cannot be found despite standard investigation. The median 

survival in randomized studies of these patients is extremely poor (Abbruzzese 

et al., 1995), but if it were possible to predict the primary tumor site, the patient 

could be treated with a site-specific program, potentially resulting in better 

survival than that provided by non-specific treatment, for which the current 

median is only 7 months (Greco and Pavlici, 2009). We have analyzed the DNA 

methylation fingerprints of 42 CUPs and compared the DNA methylation 
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landscapes obtained with those from the aforementioned human malignancy 

collection where the original tissue type was known. We were able to assign a 

given tumor type for these CUPs in 69% (29 of 42) of cases using L1-

regularized logistic regression with misclassification (R, version 2.10) to create 

a prediction heatmap (Figure 3e). A proposed foster primary in these 29 cases 

was also achieved by conventional clustering analysis (Supplementary Figure 

8). Most importantly, the tumor type prediction of the CUPs based on the DNA 

methylation analyses was fullly confirmed in 78% of cases (7 of 9) for which 

detailed pathological analysis developed at a later stage in a blind fashion was 

able to provide a diagnosis. We might also conclude that the remaining 31% (13 

of 42) of the studied CUP cases did not represent any of the 19 tumor types 

included in our analysis (Supplementary Table 1). The three most common 

tumor types present in the DNA methylation-assigned CUPs were colorectal 

cancer (34%, 10 of 29), non-small cell lung cancer (17%, 5 of 29) and breast 

tumors (17%, 5 of 29). These cases are particularly interesting because the 

introduction of targeted therapies, such as treatment with epidermal growth 

factor receptor (EGFR) antibodies in colorectal cancer, small-molecule inhibitors 

for EGFR mutations in lung adenocarcinoma and more personalized 

chemotherapy options for breast cancer as a function of the hormonal and 

ERBB2 receptor status have improved the outcome of these patients (Harris 

and McCormick, 2010). Thus, it is tempting to propose that the prediction of a 

foster primary site for CUPs based on the DNA methylation profiles might 

identify a more specific treatment regimen for these patients that would improve 

their quality of life and survival. 

 

DNA methylation fingerprint of human non-cancerous human diseases  

We also analyzed the DNA methylation profiles for 150 non-cancerous 

human diseases. Although most of the aberrant DNA methylation patterns 

described in human disease have been reported for cancer, there is no reason 

to believe that disrupted DNA methylation signatures are not present, and might 

drive other common human diseases (Feinberg et al., 2007), such as 

neurological (Urdinguio et al., 2009), cardiovascular (Gluckman et al., 2009) 

and autoimmune (Richardson, 2007) disorders. The data on DNA methylation 
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changes outside cancer are still scarce, but this could be more likely because of 

the small number of studies devoted to these pathologies than because DNA 

methylation disruption is genuinely of little importance in the origin and 

progression of these diseases. To address this issue, we analyzed the 

corresponding target tissues of 150 non-cancerous human diseases, including 

cerebral cortex lesions from Alzheimer’s (n = 11) and dementia with Lewy 

bodies (n = 13), atherosclerotic lesions from the aorta (n = 18), skeletal muscle 

from myopathies (n = 17), leukocytes from autoimmune disorders (n = 21) and 

other non-tumoral diseases and tissues (n = 70) (Supplementary Table 1).  

 One of the most striking observations was that the described non-tumoral 

diseases in an unsupervised clustering had a distinct DNA methylation pattern, 

even if the tissue-specific CpG methylated sites were not included in the 

analysis (Figure 4a). In the cases of dementia with Lewy bodies (Figure 4b) 

and systemic lupus erythematosus (Supplementary Figure 9) the DNA 

methylation patterns obtained from the 1,322 CpG sites distinguished them from 

their corresponding normal tissues. Most importantly, the corresponding 

distinctions between brain samples of dementia with Lewy bodies vs. normal 

brain; and leukocytes of lupus patients vs. healthy donor samples was 

exclusively associated with CpG hypomethylation events in the disease tissue 

(Supplementary Table 11). Examples of dementia with Lewy bodies-specific 

CpG hypomethylation further validated by pyrosequencing are shown in 

Supplementary Figure 9. Interestingly, it has been recently described the 

sequestration of DNA methyltransferase 1 (DNMT1) in the cytoplasm of 

neurons from patients affected by dementia with Lewy bodies (Desplats et al., 

2011), a mechanism that could explain the hypomethylation events observed in 

this disease using our approach. Related to the lupus patients, it is noteworthy 

to consider that these samples were also previously analyzed using the same 

1,505 CpG array to search for DNA methylation differences between 

monozygotic twins (Javierre et al., 2010). Herein, they were studied in a more 

stringent manner because they were compared to a new large set of normal 

leukocytes (n=180) and with a higher cut-off value for methylation. Among the 

lupus-common genes derived from both studies, it is relevant to mention the 

hypomethylation event targeting PI3 (Proteinase Inhibitor 3), a protein that has 

been involved in psoriasis with an autoimmune component (Tjabringa et al., 
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2008). With the CpG array used we were unable to find any significant 

difference between brain samples from Alzheimer’s patients (Figure 4b), aorta 

samples from atherosclerotic lesions (Supplementary Figure 9), myopathies 

(data not shown) and their respective normal tissues.  

 The DNA methylation profiles obtained from the aforementioned non-

cancer disorders were distinct from those observed in tumors originating from 

the same cell type. Dementia with Lewy bodies’ patients had CpG site 

methylation patterns that distinguished them not only from normal brain (Figure 

4b), but also from neuroectodermal tumors, such as glioma and neuroblastoma 

(Figure 4c). Interestingly, brain samples from dementia with Lewy bodies’ 

patients were closer, from a DNA methylation fingerprint perspective, to 

neuroblastomas than to gliomas (Figure 4c), a characteristic that might be 

associated with the different cell biology of the disorders. Although in dementia 

associated with Alzheimer’s disease there is a high grade of neuronal cell death 

that causes an over-representation of glia cells in the studied samples (gliosis) 

(Jellinger and Stadelmann, 2001; Teaktong et al., 2003); in the dementia with 

Lewy bodies’ brain there is not such massive neuronal cell death (Jellinger and 

Stadelmann, 2001; Teaktong et al., 2003) and the DNA methylation profiles 

observed resembled those found in neuron-enriched samples, such as 

neuroblastomas. In this regard, the existence of different DNA methylation 

patterns among brain regions with different cell composition has also been 

suggested (Ladd-Acosta et al., 2007). Distinct DNA methylation profiles for non-

malignant and malignant disorders originating from the same cell type also 

occur for leukocytes of lupus patients displaying DNA methylation profiles that 

are different from those present in healthy donors or in leukemias 

(Supplementary Figure 9).  

 Overall, these findings suggest that few specific DNA methylation 

changes in non-cancerous human diseases could be responsible for the 

observed phenotypes of these entities; they nevertheless merit further attention. 

Most importantly, the specific DNA methylation changes found in the described 

disorders occurred in clear contrast to human cancer, where the DNA 

methylation profile undergoes a wide-ranging, global change characterized by 

the gain of promoter CpG island methylation and loss of non-CpG island 

methylation. These results underlie the multifactorial nature of human cancer 
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that involves epigenetic “hits” in almost all known cellular pathways, exemplified 

by the aberrant DNA methylation fingerprints obtained here.  

 

 

Discussion 

 

 The disruption of the DNA methylation patterns is emerging a common 

feature of human disease (Portela and Esteller, 2010) where cancer is the 

disorder where most of the studies have been focused (Jones and Baylin 2007; 

Esteller 2008). From the initial studies looking at single locus, we have now 

available a wide range of epigenomic techniques to study multiple CpG sites in 

the human genome. In addition to methods that isolate methylated fractions of 

the genome by methylation-sensitive restriction (Lippman et al. 2005; Irizarry et 

al., 2008), immunoprecipitation with a methylcytosine (Weber et al. 2005; 

Keshet et al. 2006; Weber et al., 2007; Down et al., 2008) or methyl-CpG 

binding domain antibody (Ballestar et al., 2003; Rauch et al., 2009) and the 

genome-wide bisulfite genomic sequencing approaches (Lister et al., 2009; Li et 

al., 2009), it is worth to highlight the DNA methylation bead microarrays 

(Bibikova et al., 2006). This approach has the advantage that it can be used in a 

common standard manner by different laboratories around the world with similar 

bioinformatic packages and the raw data can be user-friendly deposited and 

shared. Herein, using the first version of the DNA methylation bead microarray, 

that included 1,505 CpG sites corresponding to 808 genes, we have studied the 

largest collection of human samples to date, 1,628, that included 424 normal 

tissues, 1,054 tumorigenic samples and 150 non-cancerous disorders. Our data 

provide new clues about the DNA methylation profiles present in normal and 

disease-associated tissues and it also expand and confirm previous reports in 

this area obtained using the same platform (Christensen et al., 2009; Byun et 

al., 2009; Aranda et al., 2009; Javierre et al., 2010) or a second DNA 

methylation bead microarray that includes 27,000 CpG sites (Rakyan et al., 

2010; Teschendorff et al., 2010; Nagae et al., 2011). In normal cells, the derived 

picture reinforces the role of methylation in non-CpG island 5’-ends to 

determine tissue-specific expression, the shift in the DNA methylation 

landscape from pluripotent to differentiated cells and the existence of a DNA 

 Cold Spring Harbor Laboratory Press on June 13, 2014 - Published by genome.cshlp.orgDownloaded from 

http://genome.cshlp.org/
http://www.cshlpress.com


 19

methylation drift associated with aging. For transformed cells, the study 

demonstrate that tumors undergo mostly a progressive CpG hypermethylation 

within CpG islands while CpG hypomethylation occurs in 5’-ends of non-CpG 

island genes. For other human disorders, such as dementia with Lewy bodies 

and lupus, we show that they also possess a particular DNA methylation 

fingerprinting that it is mainly characterized by CpG hypomethylation events. 

One extra value of the current study it is that not only provide new DNA 

methylation markers for all the described normal and pathological setting, but it 

also validate previous results in aging (Christensen et al., 2009; Rakyan et al., 

2010; Teschendorff et al., 2010), tissue-specificity (Eckhardt et al., 2006; Byun 

et al., 2009; Christensen et al., 2009) or lupus (Javierre et al., 2010). 

Furthermore, the deposited data for the 1,628 human samples 

(http://www.ncbi.nlm.nih.gov/geo accession number GSE28094) can be a value 

resource for further biocomputational and meta-analysis studies. 

Overall, the goal of the research described here was to examine 

comprehensively human DNA methylation profiles from an extremely extensive 

range of samples that covers physiological changes (across different tissue 

types, sex, age, geography, differentiation vs. stemness, primary vs. cell 

culture, etc.) and human diseases (cancer and common non-tumoral diseases, 

such as neurological, cardiovascular and autoimmune disorders). The results 

obtained indicate that different DNA methylation fingerprints are observed in 

most of the described conditions, cancer samples being the result of the most 

extreme type of DNA methylation change observed, in which a profile of an 

increased degree of CpG dinucleotide methylation within promoter CpG islands 

and a loss of CpG methylation outside CpG islands is a common hallmark, as 

described above. A DNA methylation signature that becomes more distorted as 

the disease progresses, but that can provide potentially relevant clues for 

improving disease management for these patients, such as we have 

demonstrated for the CUP cases.  

We would like to underscore the relevance of the CUP DNA methylation 

fingerprints. In spite of the increasing sophistication in the diagnostic tools for 

malignancies, deaths due to CUP were estimated to be 45,230 in 2007 in USA 

(American Cancer Society, 2007). CUPs have an incidence of 6% among all 

malignancies and in 25% of cases, the primary site cannot be identified even on 
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postmortem examination (American Cancer Society, 2007). The inability to 

identify the primary site of the cancer and the impossibility to provide the right 

treatment has a large impact in the expected clinical outcome of these patients. 

Herein, the obtention of DNA methylation fingerprints for 1,054 tumorigenic 

samples allowed the classification according to cancer-type of almost 70% of 

the studied CUPs, a result that can make a difference in the prognosis of these 

patients. This is just an example of the possible translational use of the provided 

DNA methylation profiles. Other uses might follow and they will require further 

development, such as our finding of a distinct DNA methylation fingerprint 

between local liver metastases and distant brain metastases derived from 

colorectal tumors that might suggest the use of DNA methylation patterns to 

predict the metastatic spectrum of a given cancer. We would also like to 

highlight another promising step in the clinical benefit direction by the recent 

finding of 27,000 CpG site DNA methylation profiles in blood that are associated 

with bladder cancer risk (Marsit et al., 2011). 

One obvious limitation of our approach is the level of resolution, since 

only 1,505 CpG sites were interrogated. The increasing number of studies 

developed and underway using the 27,000 CpG site platform and the future 

reports using the new 450K CpG site microarray will be useful to further validate 

and complement the obtained DNA methylation profiles. We can only imagine 

how the firm, automatic and affordable establishment of whole genome 

sequencing of complete human DNA methylomes (Lister et al., 2009; Li et al., 

2010) will yield further knowledge about the role of DNA methylation in cellular 

identity and its loss in disease. Even so, the 1,628 DNA methylation fingerprints 

described herein, and displayed by tissue type and disease in Figure 5, are a 

promising starting point for understanding the variation of human DNA 

methylation over a range of normal and pathological conditions. 
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Methods 

 

Filtering of probes and samples 

Although the Illumina GoldenGate® Assay assay by Illumina is an established 

highly reproducible method for DNA methylation detection, there is currently no 

standard procedure for post-filtering of probes and samples is commonly used. 

Before analyzing the methylation data, we excluded explored several ways of 

excluding possible sources of biological and technical biases that could have 

affected the and improving the accuracy of the results. Every beta value in the 

GoldenGate platform is accompanied by a detection p-value. We based the 

criteria of filtering on these p-values reported by the assay. We examined two 

aspects of filtering out probes and samples based on the detection p-values, 

selecting a threshold and a cutoff. Our analyses indicated that a threshold value 

of 0.01 allows a clear distinction to be made between reliable and unreliable 

beta values. We selected the cutoff value as 5%. Following this criterion, we 

first removed all probes with detection p-values > 0.01 in 5% or more of the 

samples. As a second step, we removed all samples with detection p-values > 

0.01 in 5% or more of their (remaining) probes. In total, 130 probes and 87 

samples were removed. We also checked for and removed consistently 

unmethylated and methylated probes. We ignored all cell line samples and 

focused on the remaining 1521 (primary tissue) samples. All probes exhibiting a 

degree of methylation < 0.25 for all primary tissue samples were considered to 

be consistently unmethylated. Similarly, probes with a degree of methylation > 

0.75 for all primary tissue samples were considered to be consistently 

methylated. We identified nine consistently unmethylated probes; none of the 

probes fitted our definition for being consistently methylated. A known biological 

factor is that one copy of chromosome X is methylated in women (Reik and 

Lewis 2005) and therefore, we decided to identify and remove all probes with 

prominent gender-specific methylation, in order to avoid hidden bias in the 

subsequent analyses. We considered the set of 1,271 samples with gender 

information; approximately half of them were female. We defined a probe to be 

gender-specific if (1) the probe showed a significant differential methylation 

between the two sample groups, as determined by the Mann-Whitney U test 
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with FDR correction, and (2) the mean methylation degrees of females and 

males for this probe differed by at least 0.17 (a limitation of the GoldenGate 

assay). After excluding 130 probes that were not of sufficient quality, nine that 

were consistently unmethylated and 44 that were gender-specific, 1,322 probes 

were available for further statistical analyses. 

 

Analysis of differentially methylated probes 

The large cohort of heterogeneous methylation profiles allows us to identify 

differentially methylated probes under a variety of scenarios. We analyzed 

different groups of tissue samples separately (normal primary tissues, 

cancerous and non-cancerous diseases and cancer cell lines). We performed 

all statistical analyses using the R environment for statistical computing (version 

2.10; http://www.R-project.org.) . Further explanation about detection of 

differentially methylated probes and genes in each scenario, statistical analyses 

and graphical representations are provided in Supplemental Methods. 

 

Pyrosequencing 

Pyrosequencing assays were designed in order to analyze and validate the 

results obtained from the array under different scenarios. Sodium bisulfite 

modification of 0.5 µg of genomic DNA isolated from different tissues was 

carried out with the EZ DNA Methylation™ Kit (Zymo Research Corporation) 

following the manufacturer's protocol. Bisulfite-treated DNA was eluted in 15-µl 

volumes with 2 µl used for each PCR. The set of primers for PCR amplification 

and sequencing were designed with a specific program (PyroMark assay design 

version 2.0.01.15). Primer sequences were designed to hybridize with CpG-free 

sites to ensure methylation-independent amplification. PCR was performed with 

primers biotinylated to convert the PCR product to single-stranded DNA 

templates. We used the Vacuum Prep ToolTM (Biotage) to prepare single-

stranded PCR products according to the manufacturer’s instructions. 

Pyrosequencing reactions and quantification of methylation were performed in a 

PyroMark Q24 System version 2.0.6 (Qiagen). Graphs of methylation values 

show bars identifying CpG sites with values from 0% (white) to 100% (black). 

 

Classification of CUPs 
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We used the advanced method L1-regularized logistic regression with 

misclassification to classify the 42 CUP samples in our dataset into one of the 

known cancer types. By classifying a CUP, this classifier gives probabilities 

(values between 0 and 1) for every known cancer type. A CUP prediction 

heatmap was derived in R (version 2.1.0) (Figure 3e). The CUP samples were 

selected on the basis of having a probability of being ascribed to a specific 

tumor type over 30%. The arrangement of the samples in the heatmap was 

established by (1) ordering the tumor types by the number of CUPs ascribed to 

each one, and (2) within each tumor type, ranking the CUPs from the highest to 

lowest probability of ascription. 

 

Expression data analysis 

CEL files containing normal tissue gene expression data were downloaded from 

GEO database. Data series, samples and analyses procedures are detailed in 

Supplementary Methods.  

 

Enrichment of PcG-marks and bivalent domains in different methylation 

groups 

The presence of PcG-marks and bivalent domains in different methylation 

groups was compared using Fisher’s exact test. In addition to Fisher’s exact 

test, we calculated permutation-based p-values to account for 

interdependencies between the methylation states of different CpGs. Briefly, we 

performed Fisher’s exact test in 104 random reassignments of the studied 

samples and calculated the proportion of resulting p-values that is lower than or 

equal to the originally obtained one. A genome-wide map of Polycomb target 

genes and 3mK4H3/3mK27H3-enriched genes in ESCs is available as 

supplemental material of the articles by Lee et al. (Lee et al. 2006) and Pan et 

al. (Pan et al. 2007), respectively. 

 

Human cancer cell lines and expression upon 5-aza-2´-deoxycytidine 

treatment 

Five cancer cell lines SW480 (colon), HN-011A and HN-011B (esophagus) and 

IGR37 and IGR39 (melanoma) were grown in DMEM medium supplemented 

with 4 mM glutamine, 10% FBS and 100 units/ml penicillin/streptomycin at 
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37ºC/5% CO2. All cell lines were treated with 1 µM 5-aza-2´-deoxycytidine 

(Sigma) for 72 h. Total RNA was isolated from all cell lines before and after 5-

aza-2´-deoxycytidine treatment, by Trizol extraction (Invitrogen), and 5 µg were 

hybridized on the Affymetrix Human GeneChip U133 Plus 2.0 expression array 

(Affymetrix, Santa Clara, CA). Expression data were normalized and analyzed 

following the same procedures described in Supplementary Methods. 
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Figure Legends 
 
 

Figure 1. DNA methylation fingerprints for human normal tissues. A. 

Unsupervised hierarchical clustering and heatmap including CpG dinucleotides 

with differential DNA methylation encountered between different normal primary 

samples. Tissue type and development layers are displayed in different colors 

indicated in the figure legends. Average methylation values are displayed from 

0 (green) to 1 (red) B. Deviation plot for the 1,322 CpG sites studied in 

leukocyte samples showing that little CpG methylation heterogeneity (yellow 

area) occurs overall at CpG sites within CpG islands (red lines in the track 

below), while more differences in CpG methylation are observed outside CpG 

islands (blue lines in the track below). C. Unsupervised hierarchical clustering 

and heatmap including sets of genes with high correlation values between 

hypomethylation (up) and hypermethylation (down) with aging. D. Unsupervised 

hierarchical clustering and heatmap showing the DNA methylation patterns of 

embryonic and adult stem cells, comparing them with corresponding normal and 

differentiated tissues (muscle, bone and neuron; and muscle and brain, 

respectively). 

 

Figure 2. DNA methylation fingerprint of human cancer. A. Unsupervised 

hierarchical clustering and heatmap showing distinction of primary tumor DNA 

methylation fingerprints according to the tissue of origin. B. Unsupervised 

hierarchical clustering and heatmap of primary tumors excluding CpG sites with 

tissue-specific methylation. C. Above, Pie charts displaying the percentage of 

hypermethylated CpG sites (red) and hypomethylated CpG sites (green) in 

human malignancies, and their distribution in CpG islands (CGI in red) and 

outside CpG islands (non-CGI in blue). Below, Deviation plot for the 1,322 CpG 

sites showing the great methylation heterogeneity (yellow area) of primary 

tumors in comparison with normal primary tissues.  

 

Figure 3. Scenarios of DNA methylation changes in human tumorigenesis. 

A. Bart plot showing the CpG hypermethylation or hypomethylation changes 

observed when comparing paired normal–tumor tissues from the same 
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colorectal cancer patient. They can be distinguished if the methylation change 

occurs in CpG island (CGI) or non-CpG island (non CGI) associated CpG. B. 

Unsupervised hierarchical clustering and heatmap including a set of specific 

CpG sites that undergo differential DNA methylation only in cancer cell lines. C. 

Deviation plot for the 1,322 CpG sites shows greater CpG methylation 

heterogeneity (yellow area) in established tumors (colon, breast and 

endometrial cancers) than in their corresponding premalignant lesions. D. DNA 

methylation unsupervised clustering analyses and heatmap of primary tumors, 

local liver metastases and distant brain metastases from the same colorectal 

cancer patient. A CpG methylation-specific pattern for brain metastases (green 

lanes) is observed. E. CpG methylation prediction heatmap showing the CUP 

classification to a specific tumor type. 

 

Figure 4. DNA methylation fingerprint in non-tumoral human diseases. A. 

Unsupervised hierarchical clustering and heatmap of several non-tumoral 

diseases showing distinct DNA methylation profiles. B. Unsupervised 

hierarchical clustering and heatmap showing significant differences between the 

DNA methylation patterns of dementia with Lewy bodies and normal controls. 

The CpG methylation platform used was unable to detect significant differences 

in the case of Alzheimer’s vs. healthy brain tissues. C. Unsupervised 

hierarchical clustering and heatmap showing differences between dementia with 

Lewy bodies and neuroectodermal tumors (glioma and neuroblastoma). 

 

Figure 5. A DNA methylation fingerprint of 1,628 human samples. 

Unsupervised hierarchical clustering and heatmap of all the CpG methylation 

maps obtained in the study, by tissue and disease type. 

 

 Cold Spring Harbor Laboratory Press on June 13, 2014 - Published by genome.cshlp.orgDownloaded from 

http://genome.cshlp.org/
http://www.cshlpress.com


http://genome.cshlp.org/
http://www.cshlpress.com


http://genome.cshlp.org/
http://www.cshlpress.com


http://genome.cshlp.org/
http://www.cshlpress.com


http://genome.cshlp.org/
http://www.cshlpress.com


http://genome.cshlp.org/
http://www.cshlpress.com

