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A Document Image Model and Estimation Algorithm
for Optimized JPEG Decompression

Tak-Shing Wong, Charles A. Bouman, Fellow, IEEE, Ilya Pollak, and Zhigang Fan

Abstract—The JPEG standard is one of the most prevalent
image compression schemes in use today. While JPEG was de-
signed for use with natural images, it is also widely used for the
encoding of raster documents. Unfortunately, JPEG’s charac-
teristic blocking and ringing artifacts can severely degrade the
quality of text and graphics in complex documents. We propose
a JPEG decompression algorithm which is designed to produce
substantially higher quality images from the same standard JPEG
encodings. The method works by incorporating a document
image model into the decoding process which accounts for the
wide variety of content in modern complex color documents. The
method works by first segmenting the JPEG encoded document
into regions corresponding to background, text, and picture
content. The regions corresponding to text and background are
then decoded using maximum a posteriori (MAP) estimation. Most
importantly, the MAP reconstruction of the text regions uses a
model which accounts for the spatial characteristics of text and
graphics. Our experimental comparisons to the baseline JPEG
decoding as well as to three other decoding schemes, demonstrate
that our method substantially improves the quality of decoded
images, both visually and as measured by PSNR.

Index Terms—Decoding, document image processing, image en-
hancement, image reconstruction, image segmentation, JPEG.

I. INTRODUCTION

B
ASELINE JPEG [1], [2] is still perhaps the most widely

used lossy image compression algorithm. It has a simple

structure, and efficient hardware and software implementations

of JPEG are widely available. Although JPEG was first devel-

oped for natural image compression, in practice, it is also com-

monly used for encoding document images. However, docu-

ment images encoded by the JPEG algorithm exhibit undesir-

able blocking and ringing artifacts [3]. In particular, ringing ar-

tifacts significantly reduce the sharpness and clarity of the text

and graphics in the decoded image.

In recent years, several more advanced schemes have been

developed for document image compression. For examples,
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DjVu [4] and approaches based on the mixed raster content

(MRC) model [5] are designed specifically for the compression

of compound documents containing text, graphics and natural

images. These multilayer schemes can dramatically improve

on the trade-off between the quality and bit-rate of baseline

JPEG compression. However, the encoding processes of these

advanced schemes are also substantially more complicated

than the JPEG algorithm. The simplicity of the JPEG algorithm

allows many high performance and memory efficient JPEG

encoders to be implemented. Such encoders enable JPEG to

remain as a preferred encoding scheme in many document

compression applications, especially in certain firmware based

systems.

Many schemes have been proposed to improve on the quality

of JPEG encoded images. One approach is to adjust the bit

usage of the image blocks during encoding [6]–[8]. In this ap-

proach, the bit rate is adjusted in accordance to the content of

the blocks so as to achieve better rate-distortion characteristics.

However, although this approach usually improves the PSNR

of the decoded image, it does not address the JPEG artifacts di-

rectly. Also, images which have been compressed cannot take

advantage of these schemes. Alternatively, another approach

applies postprocessing steps in the decoding process to sup-

press JPEG artifacts [9]–[15]. The schemes in [9], [10] reduce

blocking artifacts by methods derived from projections onto

convex sets (POCS). In [11], [12], prior knowledge of the orig-

inal image is introduced in the decoding process with a Markov

random field (MRF). The decoded image is then formed by

computing the maximum a posteriori (MAP) estimate of the

original image given the JPEG compressed image. Adaptive

postfiltering techniques are suggested in [13]–[15] to reduce

blocking and/or ringing artifacts in the decoded image. Filter

kernels are chosen based on the amount of detail in the neigh-

borhood of the targeted pixel to suppress JPEG artifacts without

over-blurring details. A review of postprocessing techniques can

be found in [16]. Still another approach requires modifications

to both the encoder and the decoder. An example is given by

the scheme in [17] which applies the local cosine transform

to reduce blocking artifacts. Despite much work that has been

done to improve the JPEG decoding quality, however, most of

the schemes proposed are designed primarily for natural images

rather than documents.

In this paper, we propose a JPEG decompression scheme

which substantially improves the decoded image quality for

document images compressed by a conventional JPEG encoder.

Our scheme works by first segmenting the image into blocks

of three classes: background, text, and picture. Image blocks

of each class are then decompressed by an algorithm designed
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Fig. 1. Overview of the proposed scheme. The luminance component is used to segment the JPEG compressed image into three classes of image blocks. The
segmentation map is then used to determine the class of each block and to select the algorithm used to decode the block.

specifically for that class, in order to achieve a high quality

decoded image. In particular, one important contribution of

our work is the introduction of a novel text model that is

used to decode the text blocks. Our text model captures the

bimodal distribution of text pixels by representing each pixel

as a continuous combination of a foreground color and a back-

ground color. During the decoding process, the foreground and

background colors are adaptively estimated for each block. As

demonstrated in Section VII, the text regions decoded with this

text model are essentially free from ringing artifacts even when

images are compressed at a relatively low bit rate.

The three classes of blocks used in our scheme have different

characteristics and they suffer differently from JPEG artifacts.

The background blocks correspond to the background of the

document and smooth regions of natural images. Due to the

smoothness of the background blocks, they are susceptible to

the blocking artifacts. The text blocks are comprised of the text

and graphic regions of the image. These blocks contain many

sharp edges and they suffer most severely from the ringing arti-

facts. The remaining picture blocks consist of irregular regions

of natural images. They suffer from both ringing and blocking

artifacts. As noted in [18], the high-frequency content in these

highly textured blocks makes the JPEG artifacts less noticeable.

Thus, we simply use the conventional JPEG decoding to decode

the picture blocks.

We describe the structure of our decoding scheme in Sec-

tion II. For the luminance component, we then present the prior

models used to decode the background blocks and the text

blocks in Section III, and the MAP reconstruction algorithms in

Section IV. We introduce our block based segmentation algo-

rithm in Section V. Following this, in Section VI, we extend the

decoding scheme to the chrominance components to address the

low signal-to-noise ratio and low resolution commonly seen in

the encoded chrominance components. Finally in Section VII,

we present the experimental results and compare our scheme

with three other existing JPEG decoding algorithms.

II. OVERVIEW OF THE PROPOSED SCHEME

Under the JPEG encoding scheme, a color image is first con-

verted to the color space [19], [20], and the chromi-

nance components are optionally subsampled. After this pre-

processing, each color component is partitioned into nonover-

lapping 8 8 blocks, and each block from the components un-

dergoes the three steps of forward discrete cosine transform

(DCT) [21], quantization, and entropy encoding. For an achro-

matic image, the preprocessing stage is omitted. The problem

of JPEG decoding is to reconstruct the original image from the

encoded DCT coefficients.

Fig. 1 shows the block diagram of our approach to JPEG de-

coding. First, the segmentation algorithm classifies the image

blocks from the luminance component into three classes corre-

sponding to background, text, and picture. Next, the color com-

ponents of the JPEG image are decoded. For each color compo-

nent, the segmentation map is used to determine the class of each

block contained in the color component. Each block is then de-

coded with an algorithm designed to achieve the best quality for

the given block class. After decoding the color components, the

chrominance components are interpolated to the original resolu-

tion if they have been subsampled. Finally, the image in

color space is transformed to the desired output color space, usu-

ally sRGB [22].

We introduce our notation by briefly reviewing the achro-

matic JPEG codec. We denote random variables and vectors by

uppercase letters, and their realizations by lowercase letters. Let

be a column vector containing the 64 intensity values of the

block . Then the DCT coefficients for this block are given by

, where is the 64 64 orthogonal DCT transfor-

mation matrix. The JPEG encoder computes the quantized DCT

coefficients as round , where is a set of

quantization step sizes. A typical JPEG decoder takes the in-

verse DCT of the quantized coefficients to form an 8 8 block

of pixels . We also use to denote the quanti-

zation operation so that .

In our scheme, JPEG decoding is posed as an inverse problem

in a Bayesian framework. This inverse problem is ill-posed be-

cause JPEG quantization is a many-to-one transform, i.e., many

possible blocks can produce the same quantized DCT co-

efficients . We regularize the decoding problem by devel-

oping a prior model for the original image and computing the

MAP estimate [23] of the original image from the decoded DCT

coefficients.
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Specifically, for a particular preprocessed color component,

the conditional probability mass function1 of given is

determined from the structure of the JPEG encoder as

if

otherwise.
(1)

Let be the vector concatenating of every block from the

color component, and let be the vector of the corresponding

quantized DCT coefficients. Then the probability of given

is given by

if for all

otherwise.
(2)

This forward model simply reflects the fact that for every block

, the quantized DCT coefficients can be calculated

deterministically given a specific set of pixel values .

If, moreover, has the prior probability density , the MAP

estimate for based on observing is then given by

Referring to (2), we see that the first term in the function we are

minimizing, , is either zero or . Thus, we must

ensure that the first term is zero in order to obtain a minimum.

According to (2), this is accomplished by enforcing the con-

straints for all . In other words, our MAP solu-

tion must be consistent with the observed quantized coefficients.

Therefore, the MAP estimate of given is the solution to the

constrained optimization problem

subject to for all (3)

In practice, we solve the optimization problem (3) separately

for the three classes of blocks. Let , , and be the

vectors of all pixels from the background, text, and picture

blocks, respectively. The optimization problem for each class

uses a prior model specific to the class. For the text blocks,

we use a prior distribution parameterized by a vector

of hyperparameters , and compute the joint MAP estimate

for and by maximizing their joint probability density

. The optimization sub-problems for

the background and text blocks are respectively given by

(4)

1Here, and in the rest of the paper, we simplify notation by denoting all proba-
bility mass and density functions by �, whenever the random variables that they
describe can be inferred from their arguments. Whenever an ambiguity may
arise, we denote the probability mass or density function of the random variable
� by � .

subject to for all background blocks , and

(5)

subject to for all text blocks . For the pic-

ture blocks, we simply adopt the conventional JPEG decoding

algorithm.

III. PRIOR MODELS FOR THE LUMINANCE BLOCKS

A. Prior Model for the Luminance Background Blocks

To enforce smoothness across the boundaries of neigh-

boring background blocks, we model the average intensities

of the background blocks as a Gaussian Markov random

field (GMRF) [24], [25]. We use an eight-point neighbor-

hood system and assume only pairwise interactions between

neighboring background blocks specified by the set of cliques

.

Let be the vector of all pixels from the background blocks

of the luminance component. The Gibbs distribution of the

GMRF is then given by

(6)

where and are the parameters of the distribution, and

is the average intensity of the block . The

parameters are chosen as if and are hor-

izontal or vertical neighbors, and if and are

diagonal neighbors.

B. Prior Model for the Luminance Text Blocks

We choose the prior model for the text blocks of the lumi-

nance component to reflect the observation that text blocks are

typically two-color blocks, i.e., most pixel values in such a block

are concentrated around the foreground intensity and the back-

ground intensity. For each text block , we model its two pre-

dominant intensities as independent random variables and

. To accommodate smooth transitions between the two in-

tensities and other variations, we model each pixel within block

as a convex combination of and plus additive white

Gaussian noise denoted by . With this model, the th pixel

in block is given by

(7)

where the two gray levels, and , are mixed together by

which plays a role similar to the alpha channel [26] in com-

puter graphics. The random variables are mutually inde-

pendent, zero-mean Gaussian random variables with a common

variance .

Let be the vector containing the alpha values of the pixels

in the text block , and let be the vector concatenating for

all the text blocks. Further, let and be the vectors of all

and random variables for all text blocks, respectively.

We assume that the following three objects are mutually inde-

pendent: the additive Gaussian noise, , and the pair .
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Fig. 2. Marginal probability density function of an alpha value � , for � �
��. As the alpha value controls the proportion of the two intensities � and
� present in a text pixel value, the density function’s support is ��� ��. The
bimodal nature of the density function with peaks at 0 and 1 models the clus-
tering of the text pixel values around � and � .

It then follows from (7) that the conditional probability den-

sity function of the vector of all the pixel values of the text

blocks, given , and , is given by the Gaussian density

(8)

where is a 64-dimensional column vector with all entries equal

to 1.

Since models the proportion of the two intensities

and present in , we impose that with

probability one. The fact that most pixel values in a text block

tend to cluster around the two predominant intensities is cap-

tured by modeling with a bimodal distribution having peaks

at 0 and 1. We model the components of as independent and

identically distributed random variables, with the joint proba-

bility density function (9), shown at the bottom of the page. As

shown in Fig. 2, the marginal density for each has support

on and peaks at 0 and 1. The parameter controls the

sharpness of the peaks, and, therefore, affects the smoothness of

the foreground/background transition in the decoded text.

To enforce smoothness of colors in nearby blocks, we model

spatial variation of the two predominant intensities of text

blocks as two Markov random fields (MRF’s) [24], [25]. We

use an eight-point neighborhood system and assume only pair-

wise interactions between neighboring blocks for the MRF’s.

In addition, in the case of a text block, , neighboring to a

background block, , one of the two predominant intensities of

the text block is typically similar to the predominant intensity

of the background block. Therefore, the MRF’s also capture the

pairwise interaction of every such pair . For a background

Fig. 3. Potential function ���� � 	
��� � � �, � � ��, of the Markov
random fields used to characterize the spatial variation of the predominant colors
� and� . The threshold parameter � ensures that we avoid excessively pe-
nalizing large intensity difference between the two corresponding predominant
colors of two neighboring blocks.

block , we estimate its predominant intensity by obtained

from the background block decoding algorithm described in

Section IV-A. Then, our model for and is expressed by

the Gibbs distribution

(10)

where and are neighboring text blocks ,

is a text block, is a background block,

and are neighbors , and , where is a

threshold parameter, as depicted in Fig. 3. The first exponen-

tial function of (10) describes the pairwise interactions between

every pair of neighboring text blocks in the clique set

. For each such pair, the potential function encourages the

similarity of , and and the similarity of and . The

second exponential function of (10) captures the pairwise inter-

actions of every pair of neighboring blocks such that is

a text block and is a background block. For each such pair, the

value of or which is closer to is driven toward by

the potential function . In the potential function , the threshold

is used to avoid excessively penalizing large intensity differ-

ences which may arise when two neighboring blocks are from

two different text regions with distinct background and/or fore-

ground intensities.

From (8), (9), and (10), the prior model for text blocks of the

luminance component is given by (11), shown at the bottom of

the next page.

if for all

otherwise

(9)
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IV. OPTIMIZATION FOR DECODING THE

LUMINANCE COMPONENT

To decode the luminance component, we need to solve the op-

timization problems (4) and (5) with the specific prior models

(6) for the background blocks and (11) for the text blocks. We

use iterative optimization algorithms to solve the two problems.

For each problem, we minimize the cost function iteratively

through a series of simple local updates. Each update minimizes

the cost function with respect to one or a few variables, while the

remaining variables remain unchanged. One full iteration of the

algorithm consists of updating every variable of the cost func-

tion once. These iterations are repeated until the change in the

cost between two successive iterations is smaller than a prede-

termined threshold.

A. Optimization for Decoding the Luminance Background

Blocks

To decode the luminance background blocks, we minimize

of (6) subject to the constraints for

every background block . We solve this minimization problem

in the frequency domain. For the vector containing the DCT

coefficients of the block , we adopt the convention that the first

element is the DC coefficient of the block. Then, we can

express the average intensity of the block as , and

the original cost function, , becomes

(12)

where is the vector containing the DCT coefficients of

all the background blocks. We minimize the cost function (12)

subject to the transformed constraints for every

background block .

To perform the minimization, we first initialize by the

quantized DCT coefficients for each background block .

The algorithm then iteratively minimizes the cost function

with respect to one variable at a time. We first obtain the uncon-

strained minimizer for by setting the partial derivative of

the cost function with respect to to zero. Then, we clip the

unconstrained minimizer to the quantization range which

must fall in, and update by (13), shown at the bottom of the

page, where is the clipping operator which

clips the first argument to the range . Because the

cost function is independent of the AC coefficients, the AC co-

efficients remain unchanged.

B. Optimization for Decoding the Luminance Text Blocks

In order to decode the luminance text blocks, we must min-

imize the cost function of (11) subject to the constraint that

for every text block . We perform this task

using iterative optimization, where each full iteration consists

of a single update of each block, . The update of each block

is performed in three steps: 1) First, we minimize the cost with

respect to the alpha channel, ; 2) we then minimize with re-

spect to the two colors, ; 3) and finally we minimize

with respect to the pixel values, . These full iterations are re-

peated until the desired level of convergence is reached. We now

describe the procedures used for each of these three required up-

dates for a particular block .

The block update of is computed by successively mini-

mizing the cost with respect to at each pixel location . For

a particular , we can rewrite the cost function as a quadratic

function of in the form , where

(14)

(15)

(11)

(13)
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If , this quadratic function has the unique unconstrained

extremum at

(16)

If , the quadratic function is convex and the constrained

minimizer for is clipped to the interval . If ,

the quadratic function is concave and the constrained minimizer

for is either 0 or 1, depending on whether or

. In the case when , the quadratic function

reduces to a linear function of with slope , and the con-

strained minimizer for is either 0 or 1, depending on the

sign of b. Thus, the update formula for this particular is

if

if

if

(17)

where is the unit step function.

The block update of the two colors, requires the

minimization of the cost function

(18)

where is the set of the nonpicture neighbor blocks of , and

is given by (19), shown at the bottom of the page.

Unfortunately, is a nonconvex function of

; however, the optimization problem can be simpli-

fied by using functional substitution methods to compute an

approximate solution to the original problem [27], [28]. Using

functional substitution, we replace the by

(20)

where and if is a text block, and

if is a background block. The coefficients

and are chosen as (21) and (22), shown at the bottom of

the page, where the primed quantities, and , denote the

values of the colors before updating. Each step function of the

form simply captures the inequality test .

Using this substitute function results in the quadratic cost

function given by

(23)

Since this cost is quadratic, the update can be computed in

closed form as the solution to

(24)

The block update of the pixels requires that the cost

function be minimized subject

to the constraint that . The solution to this

constrained minimization problem can be computed using the

three steps given by (25)–(27) at the bottom of the page. The

quantity is first transformed to the DCT

domain in (25). Then (26) clips these DCT coefficients to the

respective ranges they are known to be within. Finally in (27),

these clipped DCT coefficients are transformed back to the

space domain to form the updated pixels, . Because the DCT

is orthogonal, these three steps compute the correct constrained

minimizer for . Since we need to estimate and in the

spatial domain and enforce the forward model constraint in the

DCT domain, each block update must include a forward DCT

and a backward DCT.

if is a text block

if is a background block
(19)

if is a text block

if is a background block
(21)

if is a text block

if is a background block
(22)

(25)

for (26)

(27)
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Fig. 4. Pseudo-code of the update iterations for text block decoding. One full
iteration consists of updating every text block once. Each text block � is updated
in three steps which minimize the cost with respect to: 1) the alpha values in � ;
2) the predominant intensities �� � � �; and 3) the pixel intensities in � .

Fig. 4 gives the pseudo-code for the update iterations of the

text blocks. Since all the update formulas reduce the cost func-

tion monotonically, convergence of the algorithm is ensured.

Lastly, we briefly describe the initialization of the algorithm.

For each text block , we initialize the intensity values by

the values decoded by conventional JPEG. For and ,

we first identify the pixels decoded by conventional JPEG and

located within the 16 16 window centered at the block , and

we cluster the pixels into two groups using -means clustering

[29]. We then initialize by the smaller of the two cluster

means, and initialize by the larger mean. The alpha values

require no initialization.

V. BLOCK-BASED SEGMENTATION

Our segmentation algorithm classifies each luminance block

as one of three classes: background, text, and picture. Fig. 5

shows the block diagram of the segmentation algorithm.

We first compute the AC energy of each block by

, where is the th quantized DCT coefficient of

the block. If is smaller than the threshold , the block is

classified as a background block.

Next, we compute a 2-D feature vector for each block in order

to classify the remaining blocks into the text and picture classes.

The first feature component is based on the encoding length pro-

posed in [8], [30]. The encoding length of a block is defined as

the number of bits in the JPEG stream used to encode the block.

Typically, the encoding lengths for text blocks are longer than

for nontext blocks due to the presence of high contrast edges

in the text blocks. However, the encoding length also depends

on the quantization matrix: the larger the quantization steps, the

smaller the encoding length. To make the feature component

more robust to different quantization matrices, we multiply the

encoding length by a factor determined from the quantization

matrix. Suppose are the default luminance quantization step

Fig. 5. Block-based segmentation. The background blocks are first identified
by AC energy thresholding. A 2-D feature vector is then computed for each
block. Two Gaussian mixture models are obtained from supervised training: one
for the text class and one for the picture class. With these two models, the feature
vector image is segmented using the SMAP segmentation algorithm. The result
is combined with the detected background blocks to form the final segmentation
map.

sizes as defined in Table K.1 in [2], and are the quantization

step sizes used to encode the luminance component. We use the

quantity as a measure of the coarse-

ness of the quantization step sizes as compared to the default.

Larger quantization step sizes correspond to larger values of

. We define the first feature component of the block by

(28)

where the parameter is determined from training. The

second feature component, , measures how close a block

is to being a two-color block: the smaller , the closer the

block is to being a two-color block. We take the luminance

component decoded by the convectional JPEG decoder and use

-means clustering to separate the pixels in a 16 16 window

centered at the block into two groups. Let and denote

the two cluster means. If , the second feature com-

ponent is computed by

(29)

If , we define .

We characterize the feature vectors of the text blocks and

those of the picture blocks by two Gaussian mixture models.

We use these two Gaussian mixture models with the SMAP seg-

mentation algorithm [31] to segment the feature vector image.

The result is combined with the background blocks detected by

AC thresholding to produce the final segmentation map.

Last, we describe the training process which determines the

parameter in (28) and the two Gaussian mixture models of

the text and picture classes. In the training process, we use a

set of training images consisting of 54 digital and scanned im-

ages. Each image is manually segmented and JPEG encoded
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Fig. 6. Classification rule for a chrominance block in a subsampled chromi-
nance component. Each chrominance block � corresponds to several luminance
blocks which cover the same area of the image. If these luminance blocks con-
tain a picture block, block � is labeled as a picture block. Otherwise, if the lu-
minance blocks contain a text block, block � is labeled as a text block. If all the
corresponding luminance blocks are background blocks, block � is labeled as a
background block.

with 9 different quantization matrices, corresponding to with

. For the th image encoded by the th quantization

matrix, we first compute the average encoding lengths of the text

blocks and the picture blocks, denoted by and respec-

tively. The parameter is then determined from the following

optimization problem:

(30)

Next, we obtain the Gaussian mixture model for the text class

by applying the EM algorithm to the feature vectors of the text

blocks of the JPEG encoded images, using the implementation

in [32]. To reduce computation, only 2% of the text blocks from

each JPEG encoded image are used to perform training. By the

same procedure, we obtain the Gaussian mixture model for the

picture class using the feature vectors of the picture blocks.

VI. DECODING OF THE CHROMINANCE COMPONENTS

In this section, we explain how to extend the luminance

decoding scheme to the chrominance components. To decode

a particular chrominance component, we first segment the

chrominance blocks into the background, text, and picture

classes based on the classification of the luminance blocks. If

the chrominance and luminance components have the same

resolution, we label each chrominance block by the class of the

corresponding luminance block. However, if the chrominance

component has been subsampled, then each chrominance block

corresponds to several luminance blocks. In this case, we

determine the class of each chrominance block based on the

classification of the corresponding luminance blocks according

to the procedure in Fig. 6.

The background and picture blocks of the chrominance

component are decoded using the same methods as are used

for their luminance counterparts. However, chrominance text

blocks are decoded using the alpha channel calculated from the

corresponding luminance blocks. If the chrominance compo-

nent and the luminance component have the same resolution,

TABLE I
PARAMETER VALUES SELECTED FOR THE PROPOSED ALGORITHM

the luminance alpha channel is used as the chrominance alpha

channel. However, if the chrominance component has been

subsampled, then the chrominance alpha channel is obtained by

decimating the luminance alpha channel using block averaging.

The only problem when the chrominance component has been

subsampled is that the corresponding luminance blocks may

include background blocks. For these luminance background

blocks, we must determine the alpha channel in order to per-

form the decimation. For such a luminance background block

, we can create the missing alpha channel by comparing its av-

erage intensity to the average values of the two predominant

intensities of its neighboring text blocks. If is closer to the

average value of , the alpha values of the pixels in the block

are set to 1. Otherwise, the alpha values of the background

pixels are set to 0.

The optimization for decoding the chrominance text blocks

is similar to the algorithm described in Section IV-B except for

the following changes. First, we initialize the two predominant

intensities and for each chrominance text block using

their MMSE estimates

(31)

where contains the pixel values of the block decoded by

the conventional JPEG decoder, and is the alpha channel of

the block computed from the luminance alpha channel. Second,

since the value of the alpha channel is computed from the lu-

minance component, the step of updating the alpha channel is

skipped in the algorithm of Fig. 4.

Lastly, for a subsampled chrominance component, we need to

interpolate the component to restore its original resolution. We

apply linear interpolation to the background blocks and the pic-

ture blocks. For the text blocks, we perform the interpolation by

combining the decoded chrominance component with the high

resolution luminance alpha channel. We explain this interpola-

tion scheme in Fig. 7 for the case when the chrominance com-

ponent has been subsampled by 2 in both vertical and horizontal

directions. For each of the interpolated chrominance pixels, we

use the corresponding luminance alpha value as its alpha value,

and offset the decoded pixel value by the difference in alpha

values scaled by the range . The scheme can

easily be generalized to other subsampling factors. Using this

interpolation scheme, the resulting text regions are sharper than

they are when using linear interpolation.
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Fig. 7. Interpolation of chrominance text pixels when the chrominance component has been subsampled by 2 in both vertical and horizontal directions. For the
text pixel at position ����� of the decoded chrominance component, suppose its decoded value is � , its alpha value is � , and the two predominant intensities
are � and � . We first identify the corresponding luminance pixels at positions ���� ���� ���������� ������ ���, and ������ �����. Using the alpha
values of these luminance pixels, we then compute the corresponding pixels of the interpolated chrominance component by � � � � �� � � ��� � � �,
where � is the estimated luminance alpha value.

Fig. 8. Thumbnails of the original test images. The corresponding JPEG encoded images have bit rates 0.43 bits per pixel (bpp), 0.53 bpp, and 0.32 bpp, respec-
tively. All the three images were compressed with 2:1 chrominance subsampling in both vertical and horizontal directions.

VII. EXPERIMENTAL RESULTS

We now present the results of several image decoding ex-

periments. We demonstrate that our proposed algorithm signif-

icantly outperforms the conventional JPEG decoding algorithm

and three other existing JPEG decoding schemes. Table I sum-

marizes the parameter values chosen for the proposed algorithm.

In decoding the background blocks, the parameter in the cost

function (12) is a positive multiplicative constant whose value is

irrelevant in determining the minimizer. Therefore, it is omitted

from Table I.

To evaluate the performance of the proposed algorithm, we

use 60 test document images: 30 digital images converted from

soft copies, and 30 scanned images obtained using an Epson Ex-

pression 10000XL scanner and descreened by [33]. Each of the
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Fig. 9. Segmentation maps of (a) Image 1, (b) Image 2, and (c) Image 3. White: background blocks; red: text blocks; blue: picture blocks.

Fig. 10. Luminance component of a text region of Image 1. (a), (b) Original. (c), (d) Conventional JPEG decoding. (e), (f) The proposed scheme. (b), (d), and (f)
are enlargements of a small region of (a), (c), and (e) respectively.

60 images contains some text and/or graphics. Since our focus is

document images, we do not consider images that are purely pic-

tures. Six of the 30 digital images and 11 of the 30 scanned im-

ages are purely text/graphics with no pictures. None of the test

images were used for training our segmentation algorithm. We

discuss and demonstrate the visual quality of the decoded im-

ages using three example images shown in Fig. 8. Both Image 1

and Image 2 are digital images, and Image 3 is a scanned image.

They are all JPEG encoded with 2:1 chrominance subsampling

in both vertical and horizontal directions. We use high compres-

sion ratios to compress the images in order to show the improve-

ment in the decoded images more clearly.

We apply our segmentation algorithm, described in Sec-

tion V, to the JPEG encoded images. Fig. 9 shows that the

Authorized licensed use limited to: Purdue University. Downloaded on January 11, 2010 at 13:16 from IEEE Xplore.  Restrictions apply. 



2528 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 18, NO. 11, NOVEMBER 2009

Fig. 11. Chrominance component �� � of the region shown in Fig. 10.
(a) Original. (b) Decoded by conventional JPEG decoding and interpolated by
pixel replication. (c) Decoded by our scheme. (d) Decoded by our scheme but
interpolated by pixel replication.

corresponding segmentation results are generally accurate. It

should be noted that in the smooth regions of natural images,

many image blocks are classified as background blocks. This

classification is appropriate since it then allows our decoding

algorithm to reduce the blocking artifacts in these regions.

Figs. 10 and 11 demonstrate the improvement in text block

decoding using the proposed algorithm. Fig. 10(a) shows the

luminance component of a small text region computed from

Image 1. A small region within Fig. 10(a) is further enlarged in

Fig. 10(b) to show the fine details. Fig. 10(c) and (d) shows the

region of the JPEG encoded image decoded by the conventional

JPEG decoder. The decoded region contains obvious ringing ar-

tifacts around the text. Fig. 10(e) and (f) shows the same region

decoded by our scheme. Compared to Fig. 10(c) and (d), the

region decoded by our scheme is essentially free from ringing

artifacts and has a much more uniform foreground and back-

ground. In addition, the foreground and background intensities

are also faithfully recovered.

Fig. 11(a) shows the chrominance component for the

region in Fig. 10(a). The result decoded by the conventional

JPEG decoder and interpolated by pixel replication is shown

in Fig. 11(b). The decoded region is highly distorted due to

chrominance subsampling. Fig. 11(c) shows the region decoded

by the proposed scheme. Since the decoding is aided by the

luminance alpha channel, the visual quality of the decoded

region is much higher than that decoded by the conventional

JPEG decoder. To demonstrate the effect of interpolation of the

chrominance components, Fig. 11(d) shows the result decoded

by our scheme but interpolated by pixel replication. The text

region decoded by our scheme in Fig. 11(c) is much clearer and

sharper as compared to Fig. 11(d).

Fig. 12(c) shows the region completely decoded using

our scheme. A comparison with the same region decoded

by the conventional JPEG decoder in Fig. 12(b) reveals that

the proposed algorithm significantly improves the quality

of the decoded regions. Additional results for text regions in

Fig. 13(c)–15(c) shows that the proposed algorithm consistently

decodes the text regions at high quality.

We also compare our results with three existing JPEG de-

coding algorithms: Algorithm I proposed in [11], Algorithm II

proposed in [34], and Algorithm III proposed in [3]. Algorithm

I is a MAP reconstruction scheme. Both Algorithm II and Al-

gorithm III are segmentation based decoding schemes.

Algorithm I uses a Markov random field as the prior model

for the whole image. The scheme employs the Huber function

as the potential function of the MRF. Using gradient descent op-

timization, the scheme performs JPEG decoding by computing

the MAP estimate of the original image given the encoded DCT

coefficients. Figs. 12(d)–15(d) show the decoding results for the

text regions. Algorithm I significantly reduces the ringing arti-

facts in the text regions. However, because the prior model was

not designed specifically for text, the decoded regions are gener-

ally not as sharp as those decoded by our scheme. Also, because

the color components are decoded independently, the chromi-

nance components decoded by Algorithm I are of low quality.

Algorithm II uses the segmentation algorithm of [8] to clas-

sify each image block as background, text or picture. However,

in principle, Algorithm II can be used in conjunction with any

preprocessing segmentation procedure that labels each block

as background, text, or picture. Since our main objective is to

evaluate the decoding methods rather than the preprocessing

methods, we use our segmentation maps with Algorithm II. Al-

gorithm II uses stochastic models for the DCT coefficients of

the text blocks and of the picture blocks, and replaces each DCT

coefficient with its Bayes least-squares estimate. The algorithm

estimates the model parameters from the encoded DCT coeffi-

cients. The conventional JPEG decoded background blocks are

left unchanged by Algorithm II.

The text decoding results of Algorithm II, shown in

Figs. 12(e)–15(e), are only marginally improved over the

conventional JPEG decoding. During JPEG encoding, many

of the high-frequency DCT coefficients are quantized to zero,

which is a main cause of the ringing artifacts in the decoded

text blocks. However, due to the symmetry of the Gaussian

distributions assumed for the text blocks by Algorithm II, the

zero DCT coefficients are not altered at all by Algorithm II.
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Fig. 12. Text region from Image 1. (a) Original. (b) Conventional JPEG decoding. (c) The proposed algorithm. (d) Algorithm I [11]. (e) Algorithm II [34].
(f) Algorithm III [3].

Therefore, the prior model imposed by Algorithm II is insuffi-

cient to effectively restore the characteristics of the text.

Algorithm III assumes that the image has been segmented

into text blocks and picture blocks. It furthermore assumes that

the text parts have been segmented into regions each of which

has a uniform background and a uniform foreground. For each

text region, Algorithm III first uses the intensity histogram to es-

timate the background color, and applies a simple thresholding

scheme followed by morphological erosion to identify the back-

ground pixels. The scheme then replaces the intensity of each

background pixel with the estimated background color. Finally,

if any DCT coefficient falls outside the original quantization in-

terval as a result of this processing, it is changed to the closest

quantization cut-off value of its correct quantization interval.

For the picture blocks, Algorithm III smooths out blocking ar-

tifacts by applying a sigma filter to the nonedge pixels on the

boundaries of picture blocks, as identified by an edge detection

algorithm.

There is a difficulty that prevents a direct comparison of our

algorithm to Algorithm III. The difficulty stems from the as-

sumption that the text portions of the image have been preseg-

mented into regions with uniform background and uniform fore-

ground. Without such a segmentation procedure, the scheme

is not directly applicable to images in which text regions have

varying background and/or foreground colors, such as our three

test images. Therefore, in order to compare our algorithm to Al-

gorithm III, we manually select from Image 1 a single text re-

gion which has a uniform foreground color and a uniform back-

ground color—specifically, the entire rectangular region with

red background. We then process the entire Image 1 with Al-

gorithm III: the blocks in the manually selected text region are

processed as text blocks, and the rest of the image is processed

as picture blocks. We show a portion of the selected text region

in Fig. 12(a), and the result of decoding it with Algorithm III

in Fig. 12(f). Since Algorithm III only smoothes out the back-

ground pixels, ringing artifacts are still strong in the foreground

and near the background/foreground transition areas. In addi-

tion, due to the low resolution and low signal-to-noise ratio in

the chrominance components, the computed chrominance back-

ground masks have low accuracy. This leads to color bleeding

in the decoded text. In Fig. 15(f), similar results are obtained

for Image 3 in which we select the region with red text on white

background in the upper right portion of the document as the

only text region to apply Algorithm III.

Fig. 16 compares the decoding results for a region containing

mostly background blocks. In this region, most of the image

blocks corresponding to the blue sky are classified as back-

ground, while most of the remaining blocks corresponding to

the clouds are classified as picture blocks. Fig. 16(b) shows the

region decoded by the conventional JPEG decoder. The decoded

region exhibits obvious contouring as a result of quantization.

Algorithm I, Fig. 16(d), significantly reduces the blocking ar-

tifacts, but contouring in the blue sky is still apparent. Algo-

rithm II uses the conventional JPEG decoded blocks for the

background blocks, so contouring in the blue sky is not im-

proved at all. As Algorithm III applies the sigma filter only

to the block boundary pixels, contouring is only slightly im-

proved in Fig. 16(f). With our scheme, Fig. 16(c), contouring
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Fig. 13. Another text region from Image 1. (a) Original. (b) Conventional JPEG decoding. (c) The proposed algorithm. (d) Algorithm I [11]. (e) Algorithm II [34].

Fig. 14. Text region from Image 2. (a) Original. (b) Conventional JPEG decoding. (c) The proposed algorithm. (d) Algorithm I [11]. (e) Algorithm II [34].
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Fig. 15. Text region from Image 3. (a) Original. (b) Conventional JPEG decoding (c) The proposed algorithm. (d) Algorithm I [11]. (e) Algorithm II [34].
(f) Algorithm III [3]. For (f), only the text in red is decoded by the text decoding scheme of Algorithm III. The portion of the document corresponding to the letter
“W” is decoded as picture by Algorithm III.

and blocking artifacts are largely eliminated. The blue sky in the

decoded image looks smooth and natural. Although our scheme

decodes the picture blocks with the conventional JPEG decoder,

JPEG artifacts in these blocks are less revealing due to the sig-

nificant presence of high-frequency components in these blocks.

We should also point out that the original image in Fig. 16(a),

if examined closely, also exhibits a small amount of blocking

artifacts. This is typical in all the real world test images we col-

lected, and is likely due to the lossy compression commonly

employed by image capture devices. Because we used a high

compression ratio to JPEG encode the original image in our ex-

periment, none of the decoding schemes in Fig. 16 can accu-

rately restore the artifacts.

Fig. 17 shows a region from Image 3 with most blocks clas-

sified as picture blocks. Among the five decoding schemes, Al-

gorithm I in Fig. 17(d) has the best performance as far as re-

ducing blocking artifacts is concerned. However, the smoothing

due to the use of the MRF in Algorithm I also causes loss of de-

tail in the decoded image. The problem is more pronounced in

the highly textured picture blocks like those in the hair, mous-

tache, and shoulder. The region decoded by Algorithm II in

Fig. 17(e) looks very similar to that decoded by the conventional

JPEG decoder in Fig. 17(b). In Fig. 17(f), Algorithm III reduces

the blocking artifacts in the picture blocks without significant

loss of detail. However, the sigma filter employed by Algorithm

III is insufficient to reduce the blocking artifacts in the dark

background. The region decoded by our scheme in Fig. 17(c)

smooths out the blocking artifacts in the dark background blocks

only, while the remaining picture blocks are decoded by the con-

ventional JPEG decoder.

We now discuss the robustness of our algorithm with respect

to various model assumptions and parameters. First, for some

text blocks, the bi-level assumption of our text model may be

violated, as in Fig. 18(a) and (b). In this case, the forward model

[formulated in (2) and implemented through (25)–(27)] ensures

that the decoded block is consistent with the encoded DCT co-

efficients. Because of this, we avoid decoding such an image

block as a two-color block. This is demonstrated in Fig. 18(b).

Additionally, our algorithm is robust to segmentation errors.

First, misclassification of image blocks to the background class

does not cause significant artifacts. This is because processing

of background blocks is unlikely to introduce artifacts since

only the DC coefficient of background blocks is adjusted. More-

over, Figs. 18(c) and 18(d) show that even the misclassification

of picture blocks to the text class does not typically result in

significant artifacts. This is because such misclassified picture

blocks typically contain image details with sharp edge transi-

tions, so the decoded image still accurately represents the orig-

inal image.

We also verify the robustness of the proposed algorithm to

the variation of the parameters. In this experiment, we use a

subset of four images from the 60 test images. Each image is

JPEG encoded at four different bit rates, resulting in a total of

16 encoded images. In each test, we vary one of the parame-
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Fig. 16. Smooth region from Image 1. The image blocks corresponding to the blue sky are mostly labeled as background blocks by our segmentation algorithm, and
the remaining blocks are labeled as picture blocks. (a) Original. (b) Conventional JPEG decoder. (c) The proposed algorithm. (d) Algorithm I [11]. (e) Algorithm
II [34]. (f) Algorithm III [3].

Fig. 17. Region from Image 3 containing mostly picture blocks. The image blocks corresponding to the face and shoulder are mostly labeled as picture
blocks, and the remaining blocks are labeled as background blocks. (a) Original. (b) Conventional JPEG decoder. (c) The proposed algorithm. (d) Algorithm
I [11]. (e) Algorithm II [34]. (f) Algorithm III [3].

ters in Table I (except ) over a interval and compute

the average PSNR for the 16 decoded images. The maximum

variation in the average PSNR, tabulated in Table II, shows that

the algorithm is not sensitive to the choices of parameter values.

Additionally, we have found no visually noticeable differences

in the decoded images.
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Fig. 18. Robustness of the proposed algorithm. (a), (b) Image patch where text blocks contain nonuniform background: (a) conventional JPEG decoder; (b) the
proposed algorithm. (c), (d) Image patch where our segmentation algorithm misclassifies some of the picture blocks as text blocks: (c) conventional JPEG decoder;
(d) the proposed algorithm.

Fig. 19. Average PSNR versus average bit rate computed for 30 digital images
in (a), and another 30 scanned images in (b).

Fig. 19 shows the rate-distortion curves for our algorithm and

compares them to the Algorithms I and II and the conventional

JPEG. For a range of different compression ratios, the figure

shows average peak signal-to-noise ratio (PSNR) versus the av-

erage bit rates computed for our test set of 30 digital images in

(a), and for the test set of 30 scanned images in (b). For the dig-

ital images, the proposed algorithm has a much better rate-dis-

tortion performance than the other three algorithms. Based on

the segmentation results of the images encoded at the highest bit

rate, 69%, 16%, and 15% of the image blocks are respectively

TABLE II
MAXIMUM VARIATION IN PSNR WHEN EACH PARAMETER IS VARIED OVER A

���� INTERVAL

labeled as background, text, and picture. For the set of scanned

images, the rate-distortion performance of the proposed scheme

is still better than that of the other three algorithms; however, the

differences are less significant. In these images, the text regions

contain scanning noise and other distortions. The removal of

the scanning image noise by the proposed scheme can actually

increase the mean squared error, despite of the improved visual

quality. In the set of scanned images, 53%, 23%, and 24% of the

blocks are respectively labeled as background, text, and picture.

VIII. CONCLUSION

We focused on the class of document images, and proposed

a JPEG decoding scheme based on image segmentation. A

major contribution of our research is on the use of a novel

text model to improve the decoding quality of the text regions.

From the results presented in Section VII, images decoded

by our scheme are significantly improved, both visually and

quantitatively, over the baseline JPEG decoding as well as

three other approaches. In particular, the text regions decoded

by our scheme are essentially free from ringing artifacts even

when images are compressed with relatively low bit rate. The

adaptive nature of the text model allows the foreground color

and the background color to be estimated accurately without

obvious color shift. Blocking artifacts in smooth regions are

also largely eliminated.
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