
A Domain-Agnostic Approach for Characterization of

Lifelong Learning Systems

Megan M. Bakera, Alexander Newa, Mario Aguilar-Simonb, Ziad
Al-Halahc, Sébastien M. R. Arnoldd, Ese Ben-Iwhiwhue, Andrew

P. Brnab, Ethan Brooksf, Ryan C. Brownb, Zachary Danielsg,
Anurag Daramh, Fabien Delattrei, Ryan Dellanaj, Eric Eatonk,

Haotian Ful, Kristen Graumanc, Jesse Hostetlerg, Shariq Iqbald,
Cassandra Kentk, Nicholas Ketzm, Soheil Kolourin, George
Konidarisl, Dhireesha Kudithipudih, Erik Learned-Milleri,

Seungwon Leek, Michael L. Littmanl, Sandeep Madireddyo,
Jorge A. Mendezk, Eric Q. Nguyena, Christine Piatkoa, Praveen
K. Pillym, Aswin Raghavang, Abrar Rahmang, Santhosh Kumar

Ramakrishnanc, Neale Ratzlaffm, Andrea Soltoggioe, Peter
Stonec, Indranil Surg, Zhipeng Tangi, Saket Tiwaril, Kyle

Vedderk, Felix Wangj, Zifan Xuc, Angel Yanguas-Gilo, Harel
Yedidsionc, Shangqun Yul, Gautam K. Vallabhaa

aJohns Hopkins University Applied Physics Laboratory, 11100 Johns Hopkins
Rd., Laurel, 20723, MD, USA

bTeledyne Scientific Company - Intelligent Systems Laboratory, 19 T.W. Alexander
Drive, RTP, 27709, NC, USA

cDepartment of Computer Science, University of Texas at Austin, , Austin, , TX, USA
dDepartment of Computer Science, University of Southern California, , Los

Angeles, , CA, USA
eDepartment of Computer Science, Loughborough

University, , Loughborough, , England, UK
fDepartment of Electrical Engineering and Computer Science, University of

Michigan, , Ann Arbor, , MI, USA
gSRI International, 201 Washington Rd, Princeton, , NJ, USA
hUniversity of Texas at San Antonio, , San Antonio, , TX, USA
iDepartment of Computer Science, University of Massachusetts

Amherst, , Amherst, , MA, USA
jSandia National Laboratories, , Albuquerque, , NM, USA

kDepartment of Computer and Information Science, University of
Pennsylvania, , Philadelphia, , PA, USA

lDepartment of Computer Science, Brown University, , Providence, , RI, USA
mInformation and Systems Sciences Laboratory, HRL Laboratories, 3011 Malibu Canyon

Road, Malibu, 90265, CA, USA
nDepartment of Computer Science, Vanderbilt University, , Nashville, , TN, USA

oArgonne National Laboratory, 9700 S Cass Ave, Lemont, , IL, USA

Preprint submitted to Neural Networks January 20, 2023

ar
X

iv
:2

30
1.

07
79

9v
1

 [
cs

.L
G

]
 1

8
Ja

n
20

23

Abstract

Despite the advancement of machine learning techniques in recent years,
state-of-the-art systems lack robustness to “real world” events, where the
input distributions and tasks encountered by the deployed systems will not
be limited to the original training context, and systems will instead need to
adapt to novel distributions and tasks while deployed. This critical gap may
be addressed through the development of “Lifelong Learning” systems that
are capable of 1) Continuous Learning, 2) Transfer and Adaptation, and 3)
Scalability. Unfortunately, efforts to improve these capabilities are typically
treated as distinct areas of research that are assessed independently, without
regard to the impact of each separate capability on other aspects of the sys-
tem. We instead propose a holistic approach, using a suite of metrics and an
evaluation framework to assess Lifelong Learning in a principled way that is
agnostic to specific domains or system techniques. Through five case studies,
we show that this suite of metrics can inform the development of varied and
complex Lifelong Learning systems. We highlight how the proposed suite of
metrics quantifies performance trade-offs present during Lifelong Learning
system development - both the widely discussed Stability-Plasticity dilemma
and the newly proposed relationship between Sample Efficient and Robust
Learning. Further, we make recommendations for the formulation and use
of metrics to guide the continuing development of Lifelong Learning systems
and assess their progress in the future.

Keywords: lifelong learning, reinforcement learning, continual learning,
system evaluation, catastrophic forgetting

1. Introduction

While machine learning (ML) has made dramatic advances in the past
decade, deployment and use of data-driven ML-based systems in the real
world faces a crucial challenge: the input distributions and tasks encoun-
tered by the deployed system will not be limited to the original training con-
text, and systems will need to accommodate novel distributions and tasks

1Distribution Statement “A” (Approved for Public Release, Distribution Unlimited)

2

while deployed. We define the challenge of Lifelong Learning (LL) as en-
abling a system to learn and retain knowledge of multiple tasks over its
operational lifetime. Addressing this challenge requires new approaches to
both algorithm development and assessment. The DARPA Lifelong Learn-
ing Machines (L2M) program was initiated in 2018 to stimulate fundamental
algorithmic advances in LL and to assess these LL capabilities in complex
environments. The program focused on both reinforcement learning (RL)
and classification systems in diverse domains, such as CARLA (Dosovitskiy
et al., 2017) (3D simulator for autonomous driving), StarCraft (Vinyals et al.,
2017) (real-time strategy game), AI Habitat (Savva et al., 2019) (photoreal-
istic 3D simulator for indoor environments), AirSim (Shah et al., 2018) (3D
drone simulator), and L2Explorer (Johnson et al., 2022) (open-world explo-
ration). The diversity of domains was motivated primarily by the research
consideration of exploring LL in a broad array of contexts, and it resulted in
each research team developing LL systems for their respective domains.

Throughout this work, we use the term “LL system” rather than “LL
algorithm”, as the developed systems were composed of many different in-
teracting components (e.g. regularization, experience replay, task change
detection, etc.). The capability to do LL is a property of the overall sys-
tem rather than any one component, and multiple metrics are needed to
characterize LL systems.

The evaluation of these LL systems faced two key questions: (1) what
metrics are most suitable for assessing LL, and (2) how can one apply these
LL Metrics in a consistent way to different LL systems, each operating in
a different domain? In particular, a primary purpose of this evaluation
was to measure progress over the course of the program and to assess the
strengths and weaknesses of different systems in an environment-agnostic
manner, thereby providing deeper insight into LL.

The rest of this paper is organized as follows: In Section 2, we give an
overview on LL systems, as well as different approaches for evaluating them.
In Section 3, we introduce the core components of our approach for evalu-
ating LL–conditions of LL, evaluation scenarios, and evaluation protocols.
In Section 4, we define the metrics we use to evaluate LL systems. In Sec-
tion 5, we describe a set of case studies that demonstrate the application of
these metrics to varied domains. In Section 6, we conclude with insights from
these case studies and give recommendations for assessing and advancing LL
systems. Throughout this work, we introduce and use a number of terms
which are defined in Appendix A.

3

2. Background

The area of machine LL has recently seen a large amount of attention
in the research community (Silver et al., 2013; Chen and Liu, 2018a; Parisi
et al., 2019; Hadsell et al., 2020; De Lange et al., 2021), especially through
its connections to other subfields such as multi-task (Caruana, 1997; Zhang
and Yang, 2021), transfer (Zhuang et al., 2019), incremental batch (Kemker
et al., 2018), and online (Hoi et al., 2018) learning; as well as domain adapta-
tion (Csurka, 2017) and generalization (Zhou et al., 2022). The distinguish-
ing characteristic of LL is that a deployed system encounters a sequence of
tasks over its lifetime, with no prior knowledge of the number, structure,
duration, or re-occurrence probability of those tasks. The two key challenges
are to retain expertise on previously learned tasks, thereby avoiding catas-
trophic forgetting (McCloskey and Cohen, 1989; Ratcliff, 1990; French, 1992,
1999; McClelland et al., 1995; Goodfellow et al., 2013), and to transfer ac-
quired expertise to facilitate learning of new tasks (Pratt et al., 1991; Sharkey
and Sharkey, 1993). Ultimately, an ideal LL system leverages relationships
among tasks to improve performance across all tasks it encounters, even if
the input distributions of those tasks change over a lifetime. Earlier work
considered the challenges of developing algorithms to avoid forgetting and
enhance transfer (Pratt, 1992; Ring, 1997).

As different methods and algorithms for LL have been developed, various
approaches have been taken for evaluating these systems. A key distinction
has been made between evaluation scenarios and metrics: evaluation sce-
narios (as shown in Figure 1) set up the structure of the lifetime of the LL
system–what tasks occur, how they are presented, and how often–whereas
metrics assess how well the system performed over that lifetime. We recom-
mend Mundt et al. (2022) as a concurrently-developed work focusing on the
challenges of categorizing different LL algorithms and evaluations in terms
of transparency, replicability, and contextualization. When constructing a
set of metrics, it is important to decide what they should be assessing. Zhu
et al. (2020) frame metrics for LL as assessing either generalization (how
prior knowledge facilitates initial learning on a new task) or mastery (how
prior knowledge facilitates eventual performance on a new task). The suite
of metrics defined in this paper extends these concepts by defining conditions
of LL in Section 3.1.

4

Figure 1: Depiction of a LL Scenario generated to evaluate a given LL system according
to the approach outlined in this work. The LL Scenario shown here and described in
Section 3 is an environment-agnostic template used to define the number and sequence
of tasks, how they are sequenced in a given “lifetime” (or run) of the LL system, and
how many repeats should be performed to generate statistically reliable results. These
sequences of tasks generate application-specific measures (see Section 4.1) that feed into
the calculation of LL Metrics, shown in red and defined in Section 4. The LL Metrics
track performance within a system’s lifetime, and are best interpreted in the context of
the corresponding LL Scenario. Examples of this analysis and the impact the suite of
LL Metrics provide can be found in Section 5, followed by practical considerations and
insights for assessing and advancing LL systems in Section 6. See Appendix A for further
definitions of the terms used here.

5

2.1. Evaluation Scenarios for Different Learning Paradigms
The difficulty of quantitatively evaluating LL systems has led to a variety

of approaches, both specific to the learning type and more general. Quanti-
tatively assessing the performance of classification LL systems is often more
straightforward than assessing RL systems because there are straightforward
ways of generating tasks from a dataset (e.g., by splitting sets of classes into
tasks, or by inducing domain shifts). However, while evaluating the LL ca-
pability of a classification system is still challenging, the evaluation scenarios
used to do so tend to be specific to the classification context, such as incre-
mental class learning, e.g., Hsu et al. (2018). Despite this, there are broader
insights that are applicable for RL as well, as noted by Farquhar and Gal
(2019). In particular, Hayes et al. (2018b) identify different methods of
setting up the sequence of observations that constitute each lifetime of the
system: sampling from different tasks in an i.i.d. fashion, grouping them
by task or by class labels within a task, or (most challenging) sampling and
grouping them in a non-i.i.d. fashion.

Evaluation of lifelong RL faces additional challenges: (1) RL can be highly
variable within and across training runs, and across rollouts of a fixed pol-
icy (Chan et al., 2020), (2) rewards across different tasks may have different
scales or extrema, or may be unbounded, and (3) it is nontrivial to de-
sign tasks with well-characterized relationships (see, e.g., Carroll and Seppi
(2005)). Nonetheless, work on RL generalization and transfer offers valuable
insight for LL. Kirk et al. (2021) propose a useful formalism of a “contextual
Markov decision process (MDP)” where for each episode encountered by the
system, the state of the MDP encodes an unseen “context” (e.g., random
seeds and parameters used to specify the task). During training and test,
the system encounters episodes sampled from training and test context sets
respectively, with generalization assessed using zero-shot forward transfer
and a “generalization gap” metric (difference in expected rewards between
train and test). One of their key recommendations is to specify tasks using
a combination of procedural content generation (which varies based on pa-
rameters inherent to the environment) and explicitly specified parameters.
In CORA, Powers et al. (2021) present a different approach for RL per-
formance assessment. They handcrafted benchmark tasks for four different
environments (Atari (Bellemare et al., 2013), ProcGen (Cobbe et al., 2020),
MiniHack (Samvelyan et al., 2021) and AI2-Thor (Kolve et al., 2017)), and
proposed a standard evaluation protocol (N tasks presented sequentially,
cycled M times).

6

2.2. Metrics for Different Learning Paradigms

Metrics commonly used to assess the performance of classification LL
systems include average task accuracy (ACC), forward transfer (FT) and
backward transfer (BT) (also denoted FWT and BWT, respectively), as
well as model size, storage and computational efficiency (Rodŕıguez et al.,
2018; Lopez-Paz and Ranzato, 2017). Other metrics specifically developed
for classification LL include Cumulative Gain, which tracks ACC after each
task exposure during the course of the system’s lifetime (Prado et al., 2020),
Ωall, an extension of ACC that compares the accuracy to an offline learner
(Hayes et al., 2018b), and Performance Drop (Balaji et al., 2020), which uses
the baseline of a multi-task model trained jointly on all tasks.

Metrics used for assessing lifelong RL include those introduced by Pow-
ers et al. (2021) for use in CORA: Forgetting (change in performance on
a task before and after learning a new task) and zero-shot FT (change in
performance after learning a new task, relative to a random agent). They
also present baseline algorithms demonstrating the value of the metrics and
tasks. Zhu et al. (2020) also propose metrics for two-task transfer learning,
comparing performance with and without prior task exposure: initial perfor-
mance, asymptotic performance, accumulated reward (measured by an area
under the curve (AUC) calculation), and time to a threshold performance.
They also propose a Transfer Ratio (asymptotic performance measured as a
ratio), and performance sensitivity (variance in performance with different
hyperparameter settings).

In summary, there is currently no clear guidance for defining tasks or sce-
narios to exercise LL, other than the guidance of having multiple tasks with
some kind of structured similarity and presenting tasks to the system with-
out specifying the order beforehand. There are also no universally accepted
metrics for LL, though FT is often used for both classification and RL, and
average (or cumulative) change in performance is used in RL. Overall, there
is no agreed-upon standard for how to assess LL systems across different
environments in a uniform manner.

2.3. DARPA L2M Program Context

The L2M program was initiated to stimulate fundamental advances in life-
long ML systems. Of particular interest were systems operating in complex
and challenging environments and potentially applicable to a broad array
of domains (including autonomous driving, embodied search, and real-time

7

strategy). To this end, research conducted under the program coalesced into
five different domains.

System Group
Designation

Environment Domain

SG-UPenn (5.1)
AI Habitat

(Savva et al., 2019)
Robotics

embodied search

SG-Teledyne (5.2)
AirSim

(Shah et al., 2018)
Autonomous navigation

(drones)

SG-HRL (5.3)
CARLA

(Dosovitskiy et al., 2017)
Autonomous navigation

(cars, motorcycles)

SG-Argonne (5.4)
L2Explorer

(Johnson et al., 2022)
Open-world
exploration

SG-SRI (5.5)
StarCraft 2

(Vinyals et al., 2017)
Game play /

real-time strategy

Table 1: Five LL systems were developed during the L2M Program, and the teams were led
by the organizations listed. The corresponding environment and domain are shown. The
variation in the domains represented in the L2M Program necessitated the development
of domain- and environment-agnostic metrics, as well as LL threshold values at which a
system is said to be exhibiting Lifelong Learning. These domains can include classification
and/or Reinforcement Learning components.

Table 1 provides information on the five LL systems that were developed
as part of the program, along with their associated environments/domains. In
this work, we focused on the evaluation of systems within these five environ-
ments, but the concepts and methods are broadly applicable and could work
well in conjunction with a library like Avalanche (Lomonaco et al., 2021).
We treated each LL system as a black box, intentionally omitting details
of the constituent components. Each system was developed by a different
research team and their algorithmic advances are described in publications
contained in Section 5.

2.4. Evaluation of LL systems

How exactly to assess such a wide variety of LL systems operating in di-
verse environments was a major challenge addressed during the course of the
L2M Program. We emphasize that the goal was not to identify the “best” LL
system, as each environment required different learning strategies. Instead,
the goal was to provide deeper insight into the strengths and weaknesses

8

of LL systems in an environment-agnostic manner. The L2M Program test
and evaluation (T&E) team and research teams collaboratively identified and
defined the following key components of an LL evaluation:

1. The Conditions of LL the system needed to demonstrate, which are
defined in Section 3.1. These conditions specify diverse criteria iden-
tifying different components of the overall phenomena of LL.

2. The Evaluation Scenarios that exercise the LL system for the pur-
pose of computing metrics. This is an environment-agnostic template
that defined the number of tasks and constraints on their relationships,
as well as how they are sequenced in a given “lifetime” (or run) of the
LL system. An example is demonstrated in Figure 1 and details are
provided in Section 3.2.

3. The overall Evaluation Protocol specifies how multiple lifetimes are
set up, and consists of the Evaluation Scenarios as well as details (e.g.
number of lifetimes) for obtaining statistically reliable metrics. Evalu-
ation Protocols are discussed in Section 3.3.

4. The set of LL Metrics (described in Section 4) that assess the con-
ditions of LL. We discovered early on that a single metric would not
be sufficient to cover all the conditions, and multiple metrics would be
needed to characterize the LL systems.

3. Evaluation Approach

We consider three key aspects of evaluating LL systems–the conditions
of LL (Section 3.1), scenarios that systems encounter (Section 3.2), and the
overall protocols that specify an evaluation (Section 3.3).

3.1. Conditions of Lifelong Learning

We assert that an LL system must satisfy three necessary and sufficient
conditions:

1. Continuous Learning: The LL system learns a nonstationary stream
of tasks (both novel and recurring), continually consolidating new in-
formation to improve performance while coping with irrelevance and
noise.

2. Transfer and Adaptation: As learning progresses, the LL system
performs better on average on the next task it experiences, for both
novel and known tasks (forward and backward transfer), maintaining
performance during rapid changes in the ongoing task (adaptation).

9

3. Scalability: The LL system continues learning for an arbitrarily long
lifetime using limited resources (e.g., memory, time) in a scalable way.

These three conditions of LL have been used to drive the development of
LL Metrics. They are similar to the notion of ‘generalization’ and ‘mastery’
introduced by Zhu et al. (2020), and two of our metrics can measure these
concepts. The jumpstart formulation of FT (a Transfer and Adaptation
metric) can be considered a measure of ‘generalization,’ and performance
relative to a Single Task Expert (RP) - a Scalability metric - can be considered
a measure of ‘mastery.’ It is important to point out that these conditions are
partially independent; indeed, it is possible for a system to demonstrate LL
in one condition but not in another. Because of this, it is all the more critical
to use multiple measures to assess LL systems. The relationship between the
Metrics, the Conditions of LL, and Scenario requirements associated with
assessing them are discussed further in Section 4.

It is also worth noting the relationship between the above definition and
related terms such as “Continual Learning” (Chen and Liu, 2018b). There
are two aspects here. First, are the learning experiences from different tasks
intermixed as an i.i.d sequence (online or streaming learning (Hayes et al.,
2018a)) or as a non-i.i.d sequence with same-task experiences being batched
together? Second, do new learning experiences expand the domain of already-
learned tasks (incremental class learning), or are they entirely new tasks with
new input and output domains (incremental task learning) (van de Ven and
Tolias, 2018)?

Lifelong Learning, as defined above, is incremental task learning with
same-task experiences batched together and with the additional constraint
that the system leverage prior knowledge to become a more effective and
efficient learner. The term “Continual Learning” has historically been used
to loosely refer to either incremental task or class learning. However, over the
past few years, it has been used more synonomously with Lifelong Learning.
To avoid confusion, we consistently use the term “Lifelong Learning” in this
paper.

3.2. Evaluation Scenarios

An Evaluation Scenario describes the patterns and frequency of task or
task variant repetitions in sequence, and can facilitate evaluating LL sys-
tems with respect to specific metrics as well as provide insight into their

10

strengths and weaknesses. Since certain task sequences are required to rea-
sonably explore LL metrics, specifying a particular Scenario is a critical step
in characterizing the performance of an LL system.

Two of the main scenario types used to accomplish this were Condensed
and Dispersed Scenarios. Both scenario types are illustrated in Figure 2,
with further details in Appendix B. Each involved a sequence of multiple
tasks and variants. Individual runs had different permutation orders.

Figure 2: Illustration of Condensed and Dispersed Scenario Types introduced in Section 3.2
and used in the case studies of Section 5. The structure of these scenarios was chosen
to aid in consistent, thorough evaluation of an LL system and to explore how system
performances vary based on differences in task ordering and frequency of task switching.

In particular, Condensed Scenarios involved concentrating all of the ex-
perience per task in one longer block. Dispersed Scenarios involved the same
amount of experience per task, but with interleaved tasks in shuffled seg-
ments rather than appearing in sequence. These two scenario types were
chosen to explore differences in system performance based on task ordering
and appearance (since an operationalized system will not have prior knowl-
edge of task sequences), and to ensure enough task repetitions for reasonably
evaluating whether a system retained expertise on previously seen tasks. In
Section 5, we see that some LL systems perform differently in various sce-
narios. These differences enable us to identify the characteristics, strengths,
and weaknesses of an LL system.

In developing these scenario structures, we built on existing work in
this area. For example, van de Ven and Tolias (2019a) proposed the class-
incremental learning scenario, which is similar in structure to our condensed
scenario. Concurrently to our work, Cossu et al. (2021) built off this and
suggested the class-incremental with repetition scenario, which is similar to
our dispersed scenario. Similarly, Stojanov et al. (2019) designs a class-
incremental scenario that features parametric variation in its task design.
Our framework differs in two key ways from these. First, it is meant to be

11

more general than these scenarios, as it can accommodate LL systems that
perform classification and/or reinforcement learning. Second, it incorporates
task variants into its structure, which can help evaluate LL systems on envi-
ronments with similar sets of tasks. Ultimately, the existence of these other
scenarios is beneficial for exploring the combinatorial design space of LL sce-
narios, and benchmarks can be shared and extended. See Appendix B for a
full example of what an Evaluation Scenario looks like.

3.3. Evaluation Protocols

In order to evaluate a particular LL system (consisting of a fixed set of
hyperparameters, algorithms, and components), we recommend the use of
an Evaluation Protocol. An Evaluation Protocol is a complete specification
for conducting LL Scenarios to ensure reproducibility and obtain statistically
reliable LL Metrics.

In addition to one or more Evaluation Scenarios, this specification consists
of details about pre-deployment training (e.g., pretraining on a fixed dataset
like ImageNet), and how multiple lifetimes (runs) should be generated for
each scenario. This evaluation approach was used in the L2M program to
foster experimentation on LL Metrics and to help researchers evaluate the
performance and progress of their LL systems.

In addition to the Scenario specification, an Evaluation Protocol contains
details for obtaining statistically reliable LL Metrics. As has been noted in
the literature (Agarwal et al., 2021; Colas et al., 2018, 2019; Henderson et al.,
2018; Dror et al., 2019), the training process for deep RL systems is noisy
and variable, making it challenging to robustly evaluate them.

Our approach to generate statistically reliable LL Metrics is based on
guidance in NIST/SEMATECH (2012), and similar to Colas et al. (2018).
More details on this approach are provided in Appendix D. In contrast to
much of the literature, which considers the problem of comparing two or more
algorithms, here we focus on the challenge of obtaining reliable estimates of
a system’s performance (with respect to the metrics defined in Section 4).
Given such reliable estimates, we are able to determine whether a system is
meeting a particular threshold. We further propose the use of LL thresholds
in Section 4 to determine whether a system is demonstrating LL or not.

12

4. Lifelong Learning Metric Definitions

The Lifelong Learning Metrics are scenario, domain, environment and
task-agnostic measures that characterize one or more Lifelong Learning (LL)
capabilities across the lifetime of the system. This suite of LL Metrics, sum-
marized in Table 2 and visualized in Figure 3, operates on application-specific
performance measures (Section 4.1), making the evaluation methodology as
separate as possible from the implementation details of a particular system.

Metric Name LL Condition Assesses the LL system’s ability to:

Performance
Maintenance (PM)

Continuous
Learning

Avoid catastrophic forgetting despite the
introduction of new parameters or tasks

Forward
Transfer (FT)

Transfer &
Adaptation

Use expertise in a known task to facilitate
learning a new task

Backward
Transfer (BT)

Transfer &
Adaptation

Use expertise in a new task to improve
performance on a known task

Relative
Performance (RP)

Scalability Match or exceed the performance of a
single-task expert

Sample
Efficiency (SE)

Scalability Make better use of learning experiences
than an equivalent single-task expert

Table 2: High-level description of the suite of five LL Metrics used in this work, described
in more detail in Section 4. An in-depth discussion of the specific formulation of the LL
Metrics can be found in (New et al., 2022).

13

Figure 3: Performance output for an LL system in a scenario with two tasks indicated
in blue (B) and red (R), annotated to illustrate the computation of the five LL Metrics
described in this section.
(a) White regions in the graph indicate Learning Blocks, and shaded regions indicate Eval-
uation Blocks. Bi and Ri refer to performance in the ith Evaluation Block for the Blue and
Red tasks, respectively. Horizontal dashed lines indicate relevant evaluation performance
comparison points referred to in the example formulations of Performance Maintenance,
Forward Transfer, and Backward Transfer Metrics.
(b) Single task expert (dashed blue) and LL system (solid blue) curves for the scenario
shown in Fig. A. Vertical lines indicate the boundaries between each of the three Learning
Blocks for the Blue Task stitched from above and overlaid with the Single task expert per-
formance output of the same number of Learning Experiences. Experiences to Saturation
and the Saturation Value for the Blue Task are also indicated on the figure to illustrate
the example formulations of Sample Efficiency and Relative Performance Metrics.

14

The metrics are meant to work in a complementary manner in order to
illustrate and characterize system capability. Thus, there is some overlap in
the conditions they measure, as shown in Table 2, as well as in the means
employed to do so. This approach ensures that no single metric value is
responsible for fully quantifying an LL system’s performance and instead
encourages deeper analysis into specific performance characteristics and the
trade-offs between them.

The relationship between these metrics and the trade-offs illuminated by
the case studies in Section 5 are explored further in Section 6. An in-depth
discussion of the context of these metrics and their use can be found in New
et al. (2022). Detailed formulations from New et al. (2022) are provided
in Appendix C.2, and a publicly-available Python implementation of the
metrics and a logging framework for systems that generate them are available
online (Nguyen, 2022a,b).

4.1. Application-specific measures

As shown in Figure 4, an LL system performing tasks in its environ-
ment as specified by the Evaluation Protocol will generate some number of
application-specific measures. Each learning experience (LX) – the minimum
amount of experience with a task that enables some learning activity on the
part of the system – is assumed to generate one or more scenario, domain,
environment, and application-specific performance measures. A chosen sub-
set of these application-specific measures is tracked and used to compute the
LL Metrics. It is important to note that a task’s application-specific per-
formance measures in a scenario will only be compared to the same task’s
same application-specific performance measures. For example, consider an
LL system that encounters two tasks A and B. Before encountering task B,
the system has a performance value for task A of PA,before; after encountering
task B, the system has a performance value for task A of PA,after. Then, as
defined in Section 4.3.2, we can assess how learning B changes performance
on A with the backward transfer (BT) score:

BTB→A =
PA,after

PA,before

.

There are no comparisons made between the performance values of A and B
to compute these LL Metrics, so there is correspondingly no need to choose
only one application-specific measure to assess an LL system’s performance

15

Figure 4: Environments such as AirSim or StarCraft generate many application-specific
performance measures, such as classification accuracy, number of enemy units defeated,
or total reward. Some subset of the values reported by the Environment is needed to
calculate the Lifelong Learning Metrics (Section 4), but it is not necessary to choose the
same application-specific measure for computing all of the LL Metrics, since these measures
are tracked over the course of the LL system lifetime. For example, the number of enemy
units defeated may be used to compute one metric, and total reward may be used to
compute another. This allows a system to be evaluated in a flexible, environment-agnostic
way. Figure adapted from New et al. (2022).

16

across all tasks. In order to summarize the LL system’s performance for
each Metric in a scenario, we used mean aggregation, but other options are
possible.

In the following section we discuss each LL Condition, including the moti-
vation for assessing it, the metrics associated with doing so, and the question
that the metric attempts to address. At the end of each subsection, we pro-
vide LL threshold values for the metrics associated with that LL Condition.

4.2. Continuous Learning Metrics

A system demonstrating Continuous Learning will consolidate new in-
formation to improve performance while coping with irrelevance, noise, and
distribution shift. The LL system needs to discover and adaptively select
or ignore information that may be relevant or irrelevant. In particular, a
Lifelong Learner must not be plagued by catastrophic forgetting, and perfor-
mance must quickly recover when the agent is re-introduced to tasks whose
performance may have degraded. While we have a metric to address whether
a system has catastrophically forgotten task data, our attempt at formulating
a metric to address whether a system recovers after a drop in performance
was unsuccessful and is discussed more in Section 6.

4.2.1. Performance Maintenance (PM)

A Lifelong Learner should be capable of maintaining performance on each
of its tasks. Performance Maintenance (PM) measures whether an LL system
catastrophically forgets a previously learned task and compares a system’s
performance when it first has the opportunity to learn a task to subsequent
times experiencing the task. An important caveat here is that PM does not
measure absolute performance levels; rather, it measures a change in perfor-
mance over the course of the system’s lifetime. While there is some overlap
between what PM and BT measure (Section 4.3), BT compares a particular
task’s evaluation blocks (EBs) immediately before and after learning a new
task, whereas PM can be computed using any sequence of EBs, independent
of how many other tasks were learned between.

4.2.2. LL threshold value for Performance Maintenance

The LL threshold value for PM is zero - this value indicates that, on
average, there are no differences between initial and subsequent performances
on a task. A positive value would indicate improvement over the course of
a lifetime - a potential indicator of transfer. A negative value indicates

17

forgetting. It is worth noting that this metric may be particularly sensitive
to high variance in the application-specific measure ranges, since the metric
computes a difference rather than use a ratio or a contrast.

Case Interpretation

PM > 0
(Demonstrates LL) that performance on task is getting
better over lifetime; may be an indication of transfer.

PM = 0 No forgetting; no additional learning.
PM < 0 (Does not demonstrate LL) Indicates forgetting.

Table 3: LL Threshold values for Performance Maintenance

4.3. Transfer and Adaptation Metrics

One of the hallmark capabilities of a system capable of LL is the ability to
leverage experience on one task toward improving performance on another.
Without assuming knowledge of the details of how a system may accomplish
this, we can measure progress toward this aim by computing both forward
and backward transfer. At the very least, we expect that an LL system will
not exhibit catastrophic forgetting, where learning a new task interferes with
performance of a previously learned task.

For this particular suite of metrics, forward transfer (FT) was formulated
as a jumpstart measure as introduced by Taylor and Stone (2007), where
performance changes were assessed at the beginning of a learning block, mea-
suring whether the system got a “jumpstart” on a future task. We used this
formulation for FT for two primary reasons. First, the intention of these
metrics was to be as domain-agnostic as possible, and addressing the nu-
ance of how a learning curve changed could require a substantial amount
of computational resources. Second, the preference was for a single value
to express a system’s performance for each of the metrics, where possible.
Transfer has been defined differently by others, but a jumpstart measure en-
ables evaluation of the beginning of a system’s lifetime, which we felt was
most appropriate given that we were assessing widely different systems. An
important implication of this formulation to note is that for interpretability
purposes, a forward transfer value is computed for only the first two tasks in
a sequence.

18

4.3.1. Forward Transfer (FT)

FT involves a system utilizing experience from prior, seen tasks to improve
on a future, unseen task. Importantly, since a primary aim in developing
these metrics is their application without consideration of task specifics, we
compute FT only in the first instance of each task pair as the ratio
of the application-specific measure in an evaluation block before and after
another task is learned. As formulated, this metric measures whether the LL
system leverages data from a previously learned task to learn a new task, and
it requires the presence of Evaluation Blocks before and after each new task’s
first Learning Block in order to be computed. An important note about FT
is that order of the tasks is important. FT may be present from Task A →
B, but not Task B → A.

4.3.2. Backward Transfer (BT)

A system demonstrating BT will use expertise in a new task to improve
performance on a known task. Unlike FT, which is only computed on the
first instance of each task pair, BT can be computed for each task after every
learning block (LB). This metric measures whether an LL system leverages
data from a new task to improve performance on a previously learned task,
and it requires EBs between each LB to measure the performance after new
tasks are learned. BT is computed for each task where scenario structure
allows.

4.3.3. LL Thresholds for Forward and Backward Transfer

Table 4 shows the LL threshold values for both FT and BT. A value of 1
would demonstrate no change in task performance, meaning neither forget-
ting nor transfer, whereas values above or below 1 would indicate transfer
and interference, respectively.

Case Interpretation
BT / FT > 1 (Demonstrates LL) Indicates positive forward transfer.
BT / FT = 1 No transfer or forgetting
BT / FT < 1 (Does not demonstrate LL) Indicates interference.

Table 4: LL Threshold values for Forward and Backward Transfer

19

4.4. Scalability Metrics

A fundamental capability for operationalized or deployable ML systems is
the use of limited resources (e.g., memory, time) to accomplish or learn tasks
in a scalable way. We expect an LL system to be able to sustain learning
activity for arbitrarily long lifetimes including many tasks, though in prac-
tice,“arbitrarily long” and “many tasks” are relative to typical operational
timescales of the application domain. While there are several ways to assess
the use of limited resources, one domain-agnostic methods for doing so (used
by Hayes et al. (2018b)) is to compare the performance of an LL system that
is trying to learn many tasks to a single-task expert (STE) system that is
learning just one task. The Sustainablity metrics assess essential components
of LL because it is useful to see if an LL system is being outperformed by
individual subsystems trained for each task. Scalability Metrics are an im-
portant component of system performance, in addition to being a proxy for
task capacity.

4.4.1. Performance Relative to a Single Task Expert (RP)

An LL system with good performance relative to a Single Task Expert
(RP) will perform well on each of its tasks when directly compared to the
corresponding STE, often leveraging data from other tasks to do so. As
formulated, RP measures how the performance of an LL system compares
to a non LL system with comparable training. RP is related to the Transfer
metrics in that a system that exhibits strong FT or BT should benefit from
these effects. However, RP offers a more complete look at performance that
combines all of the experience on a particular task and compares it to the
performance of a STE with a similar amount of experience.

4.4.2. Sample Efficiency (SE)

Lifelong Learners are expected to sustain learning over long periods of
time. The rate of performance gain of a system is a part of scalability;
a system that learns quickly is efficient with the amount of experience it
is exposed to. As formulated, sample efficiency (SE) describes the rate of
task performance gain with additional experience. This metric measures
the performance gain of the LL system by comparing the absolute level of
performance (the “saturation value”) achieved by the LL system and the
number of learning experiences required to get there with the corresponding
STE values.

20

4.4.3. LL Thresholds for Relative Performance and Sample Efficiency

Determining threshold values for LL is more nuanced for the Scalability
metrics. Ideally, we want the performance of an LL system to match or
exceed that of an STE, as reflected in the determination of the LL thresholds
in Table 5.

Case Interpretation
RP / SE > 1 (Demonstrates LL) Indicates Performance / Performance

Gain above level of STE
RP / SE = 1 Indicates Performance / Performance Gain exactly at

level of STE
RP / SE < 1 (Does not demonstrate LL) Indicates Performance / Per-

formance Gain below level of STE

Table 5: LL threshold values for RP and SE. STE indicates Single Task Expert

5. Case Studies with Lifelong Learning Systems

In this section, we examine five System Group case studies, all of which
exercised the suite of LL Metrics. These metrics were computed on LL
systems developed during the DARPA Lifelong Learning Machines (L2M)
Program using various techniques and in different environments, as shown in
Table 1. Over the course of L2M, we conducted multiple system evaluations,
which are denoted by M12, M15, and M18. Each of the following subsections
contains a brief overview of the corresponding LL system developed by each
SG team, a description of the tasks used in each of the environments (sum-
marized in Table E.18), and a discussion of results and insights provided by
the Metrics. For more details regarding the specific implementation of these
systems and/or the results they generate, please see the referenced published
work.

5.1. System Group UPenn - AIHabitat

5.1.1. System Overview

This section describes a case study on the development of the LL system
led by SG-UPenn, a modular system that performs both classification and re-
inforcement learning (RL) tasks in realistic service robot settings. The core
of the system, which integrates factorized models (deconvolutional factor-
ized convolutional neural networks (DF-CNNs) for supervised learning (Lee

21

et al., 2019) and lifelong policy gradients for faster training without forget-
ting (LPG-FTW) for RL (Mendez et al., 2020)), is divided into separate
classification and RL pipelines, with the perception-action loop of a mobile
robot. The system includes additional optional modules that can be com-
bined with the core classification and RL pipelines, including a task-agnostic
feature meta-learning module using meta Kronecker factorization optimiza-
tion (Meta-KFO) (Arnold et al., 2021), intrinsic motivation via meta-learned
intrinsic reward functions (Zheng et al., 2020), an alternative core RL algo-
rithm based on the advantage actor critic (A2C) algorithm (Mnih et al.,
2016), a self-supervised exploration module based on active visual mapping
for robot navigation (Ramakrishnan et al., 2020), and a Markov decision
process (MDP)-based curriculum learning module (Narvekar et al., 2020).
These components can be turned on and off depending on the problem do-
main, and characterizing their effects through the set of LL Metrics proposed
in this paper was a focus of the experimentation discussed in this case study.
The task settings and select experimental results for the two pipelines are
described below.

5.1.2. Classification Experimental Context

Classification. Lifelong classification experiments were carried out by
SG-UPenn over data sets collected by simulated agents performing random
walks through household environments in the AI Habitat simulator (Savva
et al., 2019) using the Matterport 3D data set (Chang et al., 2017), resulting
in realistic observations for household service robots derived from real world
sensor data. All experiments were conducted over a fixed curriculum of object
classification tasks, where each task required a mobile agent to classify a set
of objects taken from an object superclass, e.g. classifying {chair, sofa,
cushion, misc seating} from the superclass seating furniture.

5.1.3. Classification Experimental Results

Configuration PM FT BT RP SE
DF-CNN −0.44± 1.12 1.01± 0.09 0.99± 0.02 1.94± 0.26 1.61± 0.12
META-KFO −20.81± 15.22 1.00± 0.00 0.91± 0.07 2.38± 0.40 3.40± 0.46

Table 6: Select SG-UPenn classification experiment results. All metrics show mean ±
standard deviation.

This case study focuses on a specific classification experiment for which
the proposed set of LL Metrics was particularly informative. The goal of

22

this experiment was to determine the differences in performance between
factorized classification models and meta-learned classification models in a
lifelong supervised learning setting. To explore this, SG-UPenn ran the same
set of Lifelong classification experiments over two configurations of the sys-
tem: the (factorized) DF-CNN core classification pipeline and the (meta-
learned) META-KFO module. The results (Table 6) show that, while both
approaches show good LL performance, META-KFO provides faster learn-
ing (higher SE) whereas the DF-CNN provides more stable learning through
better catastrophic forgetting mitigation (higher PM and BT, with lower
standard deviations). As such, SG-UPenn prioritized future development of
the DF-CNN pipeline due to the stability afforded by the factorized method.

5.1.4. Reinforcement Learning Experimental Context

Reinforcement Learning. Lifelong RL experiments were carried out in
the AI Habitat simulator using the Matterport 3D data set. All experiments
were conducted over a fixed curriculum of object search tasks in the form of
“find a given object (e.g. a chair, a cabinet, a sink, or a plant) in a given
household environment (e.g. an apartment or a town house).” The agents
observed RGB images from a head-mounted camera, and their actions were
direct control commands.

5.1.5. Reinforcement Learning Experimental Results

Configuration PM FT BT RP SE
M12 −60.1± 21.5 0.89±−0.80 1.2± 1.56 0.75± 0.07 0.66± 0.27
M15 −14.0± 20.5 1.95± 0.97 1.19± 0.16 0.75± 0.06 1.88± 1.96
M18 4.4± 11.3 3.11± 2.36 1.11± 0.07 0.88± 0.03 0.83±0.03

Table 7: Select UPenn System Group reinforcement learning experiment results. All
metrics show mean ± standard deviation.

The first RL experiment (M12) hypothesized that intrinsic motivation
would improve FT, RP, and SE in LL settings, making it an effective mech-
anism for knowledge reuse in lifelong RL. To test this hypothesis, SG-UPenn
used the intrinsic motivation module combined with the core A2C RL al-
gorithm. The results did not support this hypothesis, instead showing that
intrinsic motivation is not an effective mechanism for lifelong learning, as
shown in the M12 column of Table 7. The main issue identified was that the
system was highly susceptible to catastrophic forgetting, as evidenced by the

23

particularly low PM score. To overcome this problem, SG-UPenn focused
system development on factorized methods instead, which are specifically
designed to mitigate catastrophic forgetting.

The next set of RL experiments (M15) focused on evaluating the effective-
ness of the factorized LPG-FTW algorithm in the realistic Habitat/Matterport
environment. This system configuration used the core LPG-FTW algorithm
with no additional modules. The results show significant improvement com-
pared to the intrinsic motivation pipeline across all of the Lifelong Learning
Metrics, with the exception of comparable RP. SG-UPenn notes that while
the PM score was still negative, it is significantly higher than the intrinsic
motivation pipeline, which shows increased mitigation of catastrophic for-
getting. SG-UPenn continued to develop the LPG-FTW-based system with
additional network architecture search and hyperparameter tuning that tar-
geted the PM metric. Shown in the M18 column of Table 7, this resulted in
significant improvements to both PM and FT. Contrary to the experimental
results in the original LPG-FTW paper (Mendez et al., 2020), there is still
relatively low performance with respect to single task experts (i.e. in the RP
and SE metrics). SG-UPenn hypothesizes that this performance drop is due
to the increased challenge of learning in high fidelity environments, and the
higher task complexity that such environments entail.

5.2. System Group Teledyne - AirSim

5.2.1. System Overview

This section describes a case study on the development of the LL system
led by SG-Teledyne. It consists of six key components, the core of which is
the Uncertainty-Modulated Learning (UML) (Brna et al., 2019) algorithm.
UML enables adaptation and learning in response to multiple types of un-
certainty. Inspired by mechanisms of neuromodulation, UML compares its
internal hypotheses against expectations and adapts its behavior based on
the level of mismatch. Under high uncertainty, it re-configures itself and re-
evaluates its inputs, allowing robust operation in noisy environments or in the
presence of new conditions. Under low uncertainty, the algorithm can more
confidently engage in long-term adaptation to learn new tasks or tune its
knowledge base. Because uncertainty serves to gate learning and the type of
adaptation in the system, it can prevent catastrophic forgetting and promote
behaviorally-relevant adaptation. Furthermore, under very high uncertainty
conditions, UML protects existing knowledge to allow one-shot learning of

24

novel information. Finally, the algorithm can use its internal measures of un-
certainty to actively seek new information to optimize learning and resource
utilization (Brown et al., 2022). A limitation of UML is that it requires a
robust representation of its inputs. Nonetheless, it has proven to work well
when using the output layer of deep neural networks trained on datasets
such as ImageNet (Deng et al., 2009) or COCO (Lin et al., 2014). Another
limitation is that it learns to recognize tasks by the difference in the context
of each task. Therefore, there is a requirement that each task possesses a
sufficiently different context.

5.2.2. Experimental Context

The UML algorithm has been evaluated in multiple machine learning
(ML) domains, including classification (Basu et al., 2017)), embodied agents (Brna
et al., 2019), (Brown et al., 2022), and reinforcement learning. Under DARPA
L2M, UML was evaluated using an embodied agent. Data was generated us-
ing AirSim (Shah et al., 2018) in a custom Unreal Engine 4 environment. The
classification tasks were split into two “Asset Groups” loosely corresponding
to notional municipal interest groups: EMA (Emergency Management) ve-
hicles and DOT (Department of Transportation) traffic control assets (e.g.,
stop signs, traffic lights, etc.). Each asset group contained 2-3 individual
classes of objects. The classification problems associated with each asset
group formed tasks, and variants of those tasks were generated using differ-
ent environmental conditions (e.g., time of day).

Experiments were conducted on permutations in ordering of these task
variants, with a full evaluation across tasks being conducted after each ex-
posure to a task.

5.2.3. Experimental Results

Table 8 shows aggregate results across all such runs generated using the
SG-Teledyne system, which matched or exceeded the LL threshold value in
all 5 metrics across the collected runs. These metrics enabled us to evaluate
the performance of individual components in the system and their impact
on LL capabilities. In an ablation experiment, Teledyne (TDY) showed that
the memory consolidation technique in one of the system components (C5)
was responsible for a significant gain in FT, but at the expense of PM,
while other metrics remained relatively constant. These metrics enabled a
deeper analysis and more complete understanding of the the impact of this
component as it relates to the LL characteristics.

25

Configuration PM FT BT RP SE
TDY UML Agent 0.56± 0.98 11.69± 0.47 1.00± 0.01 1.03± 0.04 2.74± 1.70
TDY C5 Ablation 1.68± 0.36 10.47± 0.23 1.02± 0.02 1.01± 0.03 2.33± 0.74

Table 8: Selected SG-Teledyne experiment results. All metrics show mean ± standard
deviation. The baseline agent is shown in the TDY UML Agent row, and a selected
ablation experiment is shown in the TDY C5 Ablation row. The metrics enabled us to
understand the effects of the ablation study on specific LL characteristics.

5.3. System Group HRL - CARLA

5.3.1. System Overview

This section describes a case study on the Super Turing Evolving Life-
long Learning ARchitecture (STELLAR), the LL system developed by SG-
HRL. STELLAR is a general-purpose, scalable autonomous system capable
of continual online RL that is applicable to a wide range of autonomous sys-
tem applications, including autonomous ground vehicles (both on-road and
off-road), autonomous undersea vehicles, and autonomous aircraft, among
others. It consists of a deep convolutional encoder that feeds into an actor-
critic network and is trained using Proximal Policy Optimization (Schulman
et al., 2017). Importantly, STELLAR integrated 11 innovative components
that solve different challenges and requirements for LL. It employed Sliced
Cramer Preservation (SCP) (Kolouri et al., 2020), or the sketched version of
it (SCP++) (Li et al., 2021), and Complex Synapse Optimizer (Benna and
Fusi, 2016) to overcome catastrophic forgetting of old tasks; Self-Preserving
World Model (Ketz et al., 2019) and Context-Skill Model (Tutum et al., 2021)
for backward transfer to old tasks as well as forward transfer to their variants;
Neuromodulated Attention (Zou et al., 2020) for rapid performance recovery
when an old task repeats; Modulated Hebbian Network (Ladosz et al., 2022)
and Plastic Neuromodulated Network (Ben-Iwhiwhu et al., 2021) for rapid
adaptation to new tasks; Reflexive Adaptation (Maguire et al., 2021) and
Meta-Learned Instinct Network (Grbic and Risi, 2021) to safely adapt to
new tasks; and Probabilistic Program Neurogenesis (Martin and Pilly, 2019)
to scale up the learning of new tasks during fielded operation. More details
on the precise effect of each of these components are beyond the scope of this
paper; however, this case study outlines how the integrated system dynamics
demonstrated LL using the proposed metrics, and how these metrics shaped
the advancement of the SG-HRL system.

26

5.3.2. Experimental Context

STELLAR was evaluated within the CARLA driving simulator (Doso-
vitskiy et al., 2017) in both the Condensed and Dispersed LL Scenarios
(described in Section 3.2), which were each based on three tasks with two
variants per task. The agent was required to drive safely from one point to
another within a designated lane (either correct or opposite) in traffic. It was
given positive rewards in each time step (every 50 ms) for distance traveled
towards the destination and increasing speed within the designated lane. It
was given negative rewards for distance traveled away from the destination
and decreasing speed within the designated lane, as well as any collision. A
given episode was terminated when the destination was reached, a maximum
number of time steps had elapsed, or there was any collision. SG-HRL em-
ployed two vehicle models (Audi TT [car], Kawasaki Ninja [motorcycle]) with
built-in differences in physical parameters such as for the body (e.g., mass,
drag coefficient) and wheels (e.g., friction, damping rate, maximum steering
angle, radius). The vehicle models also differed in camera orientation (0◦

yaw for car vs. 45◦ yaw for motorcycle).
The same architecture as the STELLAR systems was used to train the

STEs to saturation, thereby characterizing the ability of the STEs to learn
each task. SG-HRL collected 10 STE runs per task, which were all initialized
with the same “ready-to-deploy” state as the STELLAR system.

5.3.3. Experimental Results

Given that the STELLAR system integrates the 11 components listed
above with the specific intent to achieve various LL capabilities, SG-HRL
expected the metrics to reveal such properties of the system. Indeed in
both Condensed and Dispersed scenarios, the STELLAR system exceeded
the threshold for LL for 4 of the 5 metrics, with only a non-catastrophic
degradation in PM of old tasks through the lifetimes (Table 9).

Configuration PM FT BT RP SE
Condensed (n=33) −0.24± 5.73 10.02± 4.92 1.19± 0.26 2.49± 1.31 10.02± 13.88
Dispersed (n=30) −2.21± 3.16 10.71± 2.78 1.10± 0.15 1.85± 0.71 6.25± 3.12

Table 9: LL performance of the STELLAR system in the Condensed and Dispersed sce-
narios within the CARLA driving simulator. Mean ± standard deviation values for each
metric are shown across n=33 and n=30 lifetimes, respectively, comprising random per-
mutations of tasks and variants.

Further, as shown in Table 9, SG-HRL found that the performance was

27

not significantly different between the Condensed and Dispersed scenarios.
However, all the LL Metrics were numerically lower for the Dispersed sce-
nario, with the decrements being significant at α = 0.1 for two metrics;
namely, FT (p = 0.089, Mann-Whitney U Test) and RP (p = 0.038, Mann-
Whitney U Test). Potential explanations for the across-the-board numerical
decrements in the metrics include: the increased cost of switching among
tasks in the Dispersed scenario, greater interference from other tasks in the
intervals between learning blocks for a given task, or the lack of any de-
pendence of the strength of the consolidation mechanisms (SCP++, Self-
Preserving World Model) on the performance levels acquired in the preced-
ing learning blocks. In the Dispersed scenario, task performances in earlier
learning blocks are not expected to be high due to shorter durations. In this
case, strong preservation of sub-optimal task representations would interfere
with subsequent learning blocks. Thus, the hyperparameters that control the
degree of preservation should be reduced to improve all the LL Metrics.

Configuration PM FT BT RP SE
Dispersed −2.73± 2.71 9.96± 2.16 1.15± 0.18 1.57± 0.49 7.07± 3.44
Reduced SCP++ stiffness 0.26± 3.84 9.52± 2.97 1.27± 0.29 2.07± 0.44 3.23± 1.42

Table 10: Summary of the effects of reducing SCP++ stiffness on the Dispersed scenario
for the STELLAR system. Dispersed results (n=15) represent a subset of data shown in 9.
SCP++ stiffness reduction (n=15) results from matched lifetimes. All results show mean
± standard deviation.

The STELLAR system requires considerable analysis to assess how each
component contributes to various LL capabilities. This case study repre-
sents one such analysis to illustrate the impact on the metrics. SG-HRL
hypothesized that stronger consolidation mechanisms would reduce LL in
the Dispersed scenario which, unlike the Condensed scenario, has task repe-
titions. SG-HRL also predicted that strong consolidation of sub-optimal task
representations after each task would negatively impact subsequent learning
blocks. Data was collected for the Dispersed scenario with the SCP++ stiff-
ness coefficient reduced to 10% of the nominal value (Table 10). As expected,
SCP++ stiffness reduction resulted in improvements in 3 of the 5 metrics;
namely, PM (from -2.73 to 0.26), BT by about 10%, and RP by about 30%.
But the manipulation also caused decrements in the other 2 metrics; namely,
FT by about 4% and SE by about 50%. Of these effects, the improvement
in RP (p = 0.022, Wilcoxon Signed Rank Test) and the decrement in SE
(p=0.0026, Wilcoxon Signed Rank Test) were statistically significant, and

28

the improvement in PM (p=0.055, Wilcoxon Signed Rank Test) was signifi-
cant at α = 0.1. More work will be needed to understand the dynamics of LL
for task repetitions in the context of the multi-component STELLAR system.
It may be the case that the degree of consolidation (structural regularization,
interleaving of explicit/generative replays) should be further contingent on
task learning, and SG-HRL anticipates testing this in the future.

5.4. System Group Argonne - L2Explorer

5.4.1. System Overview

This section describes a case study on the development of the LL system
led by SG-Argonne. The system’s design was inspired by the brains of insects
and other small animals with the motivation of developing systems capable
of LL that can operate effectively at the edge (Yanguas-Gil et al., 2019).

In particular, it focuses on the use of: 1) modulatory learning and process-
ing, which control how information is processed, as well as when and where
learning takes place (Daram et al., 2020); 2) metaplasticity models, which
modulate synaptic plasticity rules that keep either a memory or an internal
state in order to preserve useful information (van de Ven and Tolias, 2019b);
3) broadly trained representations, which apply transfer learning to minimize
what the system needs to learn during deployment, and 4) structural sparsity,
which minimizes the impact of forgetting by curtailing gradient propagation
in stochastic gradient descent methods (Madireddy et al., 2020).

In the context of RL, Argonne adapted these principles to propose two
types of algorithms. First, they proposed a lifelong deep Q learning al-
gorithm (Mnih et al., 2013) aimed at solving problems where a consistent
policy is learned across a series of independent tasks without specific task la-
bels. Second, they proposed a lifelong cross entropy algorithm, which applies
to situations involving short, potentially contradictory tasks, where no prior
information is available that would lead to accurate and consistent compu-
tations of the value of each state. For the case of deep Q learning, Argonne’s
system realizes short term and long term memory buffers by implementing
periodic shuffling. The size of the buffers is kept within the length of a single
task.

5.4.2. Experimental Context

Over the course of the project, SG-Argonne worked in two different envi-
ronments. The first and more complex environment was L2Explorer (John-
son et al., 2022), a first-person point of view environment built on top of the

29

Unity engine (Juliani et al., 2018) that allows the creation of tasks involv-
ing open-world exploration. Argonne designed a series of tasks emphasizing
different aspects of a complex policy involving target identification and se-
lection, navigation through obstacles, navigation towards landmarks, and
foraging objects while avoiding hazards. The same tasks were implemented
in Roundworld, a lightweight, first-person point of view environment devel-
oped by Argonne that comprises a simpler set of objects and visual inputs,
allowing us to evaluate the algorithm across two different environments.

5.4.3. Experimental Results

Table 11 shows the performance of the deep Q learning algorithms in the
two different environments. In both cases there is a consistent evidence of
both forward and backward transfer across tasks in the proposed scenario.
One of the characteristic aspects of these environments is their task variabil-
ity, both by design and driven by the open world nature of the environments.
In the context of RL, this leads to large fluctuations in the values of PM and
BT for both environments, with standard deviations more than one order of
magnitude higher than those typically observed in image classification sce-
narios. On the other hand, both scenarios show values of FT, RP, and SE
that are consistent with the presence of LL behaviors.

Environment Scenario Agent PM FT BT RP SE
L2Explorer Condensed M18 −4 ±11 4.6 ±1.5 2.3 ±1.6 1.2 ±0.6 1.2 ±0.6
Roundworld Condensed M18 15 ±10 4.2 ±1.6 2.7 ±2.1 5 ±3.4 5.8 ±1

Table 11: Evaluation of the lifelong deep-Q learning algorithm in two different environ-
ments with varying complexity levels.

Having access to different metrics allows for deeper insight into variations
in the system’s performance. Overall, the results obtained point to a com-
plex picture in which the same Lifelong Learning system can exhibit different
behavior depending on how well it can transfer information during its life-
time. However, further studies are needed in order to fully explore how the
behavior of the agent depends on task sequence and its ability to effectively
transfer relevant policies across tasks.

5.5. System Group SRI - StarCraft II

5.5.1. System Overview

This section describes a case study on the development of the LL system
led by SG-SRI. The system is targeted at real-time strategy games where task

30

change occurs naturally and throughout game play. For example, a compe-
tent Starcraft-2 (SC2) player is able to adapt their tactics to different enemy
units. This section applies lifelong RL techniques to micromanagement tasks
in SC2. This case study shows that the proposed metrics (a) validate that
the negative effects of task drift are mitigated, (b) drive algorithm develop-
ment to improve metrics, and (c) provide insights into software integration
of multiple continual learners.

Components of the SG-SRI system (Sur et al., 2022; Daniels et al., 2022)
include: (i) WATCH (Faber et al., 2021, 2022), a Wasserstein-based sta-
tistical changepoint detection that detects changes in the environment; (ii)
Self-Taught Associative Memory (STAM) (Smith et al., 2021), to generate
feature maps from RGB images in a continually updated manner; (iii) Dan-
ger detection, using the continual learner deep streaming linear discriminant
analysis (DeepSLDA) (Hayes and Kanan, 2020); (iv) Compression, using
the REMIND algorithm (Hayes et al., 2020) that uses Product Quantiza-
tion (PQ); and (v) Sleep phase, implemented using the Eigentask framework
(Raghavan et al., 2020).

5.5.2. Experimental Context

The tasks are defined using different SC2 maps called “minigames“ (Vinyals
et al., 2017). The system is evaluated on the minigames of DefeatRoaches,
DefeatZerglingsAndBanelings and CollectMineralShards. To each task, SG-
SRI added a variant of the task that spawns two groups of enemies on each
side of the map, creating a total of 3 tasks and 2 variants each. In the
case of Collect, the variant has fog enabled (partial observability). SG-SRI
notes that combat related tasks (Defeat) are most similar to each other (due
to their reward structure) and represent 4 out of 6 tasks, so high forward
transfer (jumpstart) is expected even for the single task learner.

5.5.3. Experimental Results

Table 12 shows evolution of the Eigentask algorithm driven by the pro-
posed LL Metrics, with the current version of the system (denoted M18)
achieving the criteria of lifelong learning in all but one metric (PM) in the
condensed scenario and achieving the criteria of LL in several metrics for
the alternating scenario. These versions, denoted as M12, M15, M18, cor-
respond to the evaluations performed under L2M. These versions primarily
differ in the generative replay architecture. The M12 model connects the
autoencoders and policies one after another, whereas M15 uses a two-headed

31

architecture using a common latent space and M18 uses hidden replay. In
both scenarios, the metrics show that the M18 version that uses hidden replay
is a significant improvement. Of note, the reported metrics have significantly
lower variance with the M18 model compared to the M15 and M12 versions
for the condensed scenario.

Scenario Agent PM FT BT RP SE
M12 −3.70 ±2.5 1.15 ±0.06 1.00 ±0.13 0.91 ±0.13 12.22 ±4.97

Condensed M15 −5.68 ±5.04 1.42 ±0.25 1.14 ±0.28 1.18 ±0.19 19.37 ±5.76
M18 −3.05 ±1.76 1.42 ±0.11 1.0 ±0.03 1.17 ±0.11 16.18 ±5.19
M12 −7.44 ±6.19 1.18 ±0.67 0.88 ±0.14 0.80 ±0.14 4.74 ±2.27

Alternating M15 −8.82 ±7.95 1.13 ±0.57 0.80 ±0.19 0.90 ±0.11 7.11 ±3.52
M18 −6.13 ±7.31 1.85 ±1.38 0.87 ±0.27 0.91 ±0.13 5.89 ±3.19

Table 12: Evolution of the SRI-led LL system guided by the proposed metrics. Pairwise
scenarios are averaged over 12 lifetimes.

To study the effect that change detection and compression had on the
overall performance of the LL system, SG-SRI performed an ablation ex-
periment against the baseline Eigentask component in two different scenario
types. PM and BT values are compared in Table 13, showing that trigger-
ing the sleep phase by statistical changepoint detection results in significantly
higher PM compared to triggering it by a hand-coded schedule. This demon-
strates the importance of task detection in LL systems in the task-agnostic
setting and also shows that the compression of wake phase observations re-
sults in significantly higher PM. This ablation experiment demonstrates how
the metrics shed insight on the impact of various system components during
the development of the SG-SRI LL system.

Agent Performance Maintenance Backward Transfer
Condensed Pairwise Condensed Pairwise

Single Task Learner (STL) −3.41 (±1.7) −8.2 (±6.54) 1.17 (±0.29) 0.85 (±0.21)
Eigentask (M15) −5.68 (±2.13) −5.40 (±4.9) 1.14 (±0.12) 0.84 (±0.12)

Eigentask + Change detection −0.53 (±4.49) −1.93 (±5.46) 1.02 (±0.33) 1.08 (±0.28)
Eigentask + Compression −3.67 (±3.92) −2.23 (±2.33) 1.13 (±0.42) 0.93 (±0.22)

Table 13: Ablations comparing system components on Performance Maintenance and
Backward Transfer. The standard error is mentioned in parenthesis (±). Other metrics
are omitted for brevity.

32

SG Config PM FT BT RP SE
UPenn DF-CNN 1.20 · 10−2 2.67 · 10−1 1.58 · 10−2 <10−6 <10−6

META-KFO <10−6 1.00 <10−6 <10−6 <10−6

RL M12 5.65 · 10−3 4.01 · 10−1 4.07 · 10−1 2.83 · 10−3 4.31 · 10−2

RL M15 1.86 · 10−2 3.02 · 10−3 8.65 · 10−4 <10−6 7.35 · 10−2

RL M18 1.71 · 10−1 7.02 · 10−3 1.98 · 10−4 <10−6 <10−6

Teledyne C5 Ablated 3.68 · 10−2 <10−6 2.42 · 10−1 1.01 · 10−2 2.29 · 10−3

UML 8.35 · 10−3 <10−6 4.59 · 10−3 4.96 · 10−2 4.76 · 10−3

HRL Condensed 5.90 · 10−1 <10−6 1.74 · 10−4 <10−6 4.32 · 10−4

Dispersed 1.00 <10−6 1.53 · 10−4 <10−6 <10−6

SCP Ablation 4.00 · 10−1 <10−6 2.00 · 10−3 <10−6 2.03 · 10−5

Argonne L2Explorer 1.07 · 10−1 <10−6 6.31 · 10−3 1.26 · 10−1 1.26 · 10−1

Roundworld 1.48 · 10−4 1.20 · 10−5 8.57 · 10−3 9.17 · 10−4 <10−6

SRI M12 Condensed 1.00 2.28 · 10−6 5.46 · 10−1 9.81 · 10−1 4.09 · 10−5

M15 Condensed 1.00 <10−6 1.10 · 10−2 6.88 · 10−5 <10−6

M18 Condensed 1.00 <10−6 2.73 · 10−1 2.66 · 10−5 <10−6

M12 Alternating 1.00 1.55 · 10−1 9.98 · 10−1 1.00 1.25 · 10−5

M15 Alternating 1.00 1.32 · 10−1 1.00 1.00 <10−6

M18 Alternating 9.93 · 10−1 2.82 · 10−2 9.80 · 10−1 9.86 · 10−1 1.76 · 10−4

Table 14: P value results of a one-tailed t-test to determine whether the value is sig-
nificantly greater than the LL Threshold value for that metric; t values are provided in
Table F.19 of Appendix F. The LL threshold values were met or exceeded for 45 out of 85
metrics. Note that the UPenn META-KFO system was designed to speed up the rate of
adapting to a new task, but this does not happen until data for that task is seen, leading
to unchanged task values and a standard deviation of zero for a jumpstart formulation of
FT.

5.6. Summary of Case Studies of Systems Demonstrating LL

In this section we have reviewed five System Group case studies, all of
which operated in different environments and employed different algorithms.
Each of them used the suite of LL Metrics to inform their system develop-
ment and evaluate whether their systems demonstrated the Conditions of
Lifelong Learning in various experiments. In Table 14 we see that across all
of the System Groups, the Lifelong Learning thresholds were met or exceeded
for 52 out of 90 metrics, with Performance Maintenance only meeting the LL
Threshold values in 3 of the 18 configurations compared to 13 configurations
for Forward Transfer. This is unsurprising given that Performance Main-
tenance and Forward Transfer represent different aspects of the well-known
performance trade-off between stability and plasticity, which we discuss fur-
ther in Section 6.

33

6. Discussion

In this work, we have proposed and investigated a suite of domain- and
technique- agnostic metrics to enable a systems-level development approach
for evaluating Lifelong Learning systems. Such an approach is critical to
supporting the multi-objective nature of Lifelong Learning (LL) system de-
velopment, especially because increasingly complex solutions are required to
advance the state of the art towards LL. A strength of our approach is that
it simultaneously considers and quantifies varied capabilities of LL systems,
rather than focusing on any single aspect of performance. By using the full
suite of metrics to evaluate the System Group case studies, we were able
to identify and study the performance trade-offs inherent to LL. Next, we
discuss known performance trade-offs seen with these metrics, propose a new
trade-off, and make recommendations for creating additional metrics for fu-
ture investigations based on the accomplishments of the DARPA Lifelong
Learning Machines (L2M) program.

6.1. LL Performance Trade-offs

We have argued that LL is complex and cannot be characterized by a
single scalar value. This has motivated our development of a suite of metrics.

Designing an LL system must consider the following trade-offs:

1. Stability vs. Plasticity: Should a system stably maintain all informa-
tion it has encountered up to some point, even if that results in less
flexibility to adapt to changes?

2. Optimal Performance vs. Computational Cost: Should a system be
optimized for maximum performance, even if that comes at a high
computational cost?

3. Sample Efficient vs. Robust Learning: Should a system prioritize a
fast performance gain, even if it is less robust to noise or changes in
the environment?

The most widely discussed trade-off in LL literature is the relationship
between Stability, where a system has reliable or low-variance performance,
and Plasticity, where a system is flexible and adaptable to changes (see,
e.g., discussion in Mermillod et al. (2013); Grossberg (1988)). Performance
Maintenance (PM) is a measure of stability, since it assesses how well a
system retains task knowledge gained over the course of its lifetime; forward
transfer (FT) is a measure of plasticity, as it assesses how well a system can

34

apply knowledge from one task to another. In some cases, like the stiffness
parameter experiment examined in SG-HRL’s case study (see Table 10), there
is an explicit parameter that can be tuned, depending on the needs of the
particular application, to prioritize reliability or flexibility. This results in
somewhat expected behavior changes. In other cases, the trade-off is seen
as a byproduct of targeting improvements in transfer, like in SG-Teledyne’s
addition of a memory consolidation component (see Table 8), which manages
the system’s stored knowledge. This addition caused marked improvement in
FT – a measure of Plasticity – but at the cost of PM, a measure of Stability.

It is understood that LL systems operating in diverse environments will
have varied design considerations; the availability or restriction of computa-
tional resources is one such factor. This can result in an intentional decision
to choose system components that are less performant but cheaper compu-
tationally. While this discussion surfaces in the literature, particularly with
regard to deployment considerations, we chose not to measure the computa-
tional resource expenditure for these evaluations. Instead, we allowed system
groups to make their own assessments of progress in their domain. Even if an
LL system is initially very computationally intensive, it may be possible to
develop a more efficient system in the future. In non-LL, existing techniques
for managing model complexity include: model distillation (Hinton et al.,
2015; Gou et al., 2021), intelligently-designed model scaling strategies (Tan
and Le, 2019), and investigations of broad scaling phenomena (Kaplan et al.,
2020). These approaches could potentially be extended to LL; in Hayes et al.
(2020), SG-SRI built on a technique called progress & compress (Schwarz
et al., 2018). We see the addition of a metric to standardize the measure-
ment of resource utilization as an excellent extension of this suite, and we
summarize some initial efforts in this area in Appendix G. We collect our
comments, observations and recommendations for the design and use of such
a metric in Section 6.2.

We hypothesize that, as more progress is made to develop LL systems,
more of these system design/performance trade-offs will be discovered. One
trade-off that we observed in the SG-UPenn case study (Section 5.1) was be-
tween sample-efficient and robust learning. The system’s robustness to task
or parameter changes was measured using the PM metric, and efficiency was
measured via the sample efficiency (SE) metric. We can imagine a situation
where a system may have an extremely robust representation of a wide range
of tasks – along the lines of a subject matter expert for a particular problem
space – but perhaps amassing that knowledge required significant training

35

data and time. Conversely, a system may demonstrate aptitude for rapid
mastery, but lack the broader experience to capably handle the details or
nuance of edge cases.

The trade-off, then, may be that in some circumstances, optimizing for
robustness comes at the cost of learning efficiency and vice versa. This goal
is particularly relevant in data-poor contexts or where the cost of training is
high; both of these apply in many robotic applications (like the SG-UPenn
service robot setting). The LL system the SG-UPenn team built to address
these challenges includes modularized components and factorized models, an
approach that is well-suited to these conditions. Correspondingly, we see
that when modifications were made between M15 and M18 systems to target
gains in PM (Table 7), the resulting M18 results improved in PM, but at
the cost of a lower Sample Efficiency. This demonstrates a consequence of
the opposing aims of Robust and Sample Efficient learning. We imagine that
this trade-off may not be applicable to problems with low-cost or abundant
training data. However, it is apparent in this particular example, because
SG-UPenn’s system design is intended for eventual transfer to service robot
settings.

6.2. General Considerations for Formulation and Use of Metrics
One of the challenges of measuring LL performance is evaluating over

the space of possible task sequences. Because these tasks may require or-
thogonal skills, it is an immense challenge to quantify a priori what ideal or
even ‘good’ performance looks like for such a sequence. The standard we
chose for determining thresholds for LL, which can certainly over-penalize
an LL system, was perfection – perfect transfer between tasks and perfect
memory of a task over the entire duration of a scenario. Over the course of
the agent’s lifetime, any interference, forgetting, or performance not equal
to or better than an STE was considered to be below the threshold for LL.
Meeting this threshold for all lifelong learning conditions is likely to be dif-
ficult in real-world conditions. Determining an appropriate upper bound for
performance on a sequence of tasks is a fundamental challenge – one that
requires leveraging information like task difficulty and task similarity (and
thus task transferability) – and was out of scope for this work. Below we
outline some specific recommendations for metric design, some of which pose
particularly unique challenges in the LL domain.

1. Do not design metrics that rely on idealized performance
curves

36

Despite knowing that we lack the ability to quantify what good perfor-
mance is for a given sequence of tasks, there were some unanticipated
difficulties in using the metrics related to some key assumptions about
the nature and behavior of LL systems:

• Assumption 1: Learning a particular sequence of tasks is possible.
When we develop metrics to evaluate any machine learning sys-
tem, we are often doing so based on an implicit assumption that
a task is learnable by the system or, at least, that the system is
capable of demonstrating some performance gain over

the course of its learning experiences (LXs). In the absence of
baseline approaches on the same sequence of tasks to compare to,
we may not even be able to say whether a sequence of tasks is
learnable at all without running a cost-prohibitive number of ex-
periments. In fact, the idea of learnability in the Lifelong Learn-
ing context has only recently been investigated in works such as
Geisa et al. (2021), who explores the relationship between weak
and strong learnability for both in-distribution (i.e. non-LL) and
out of distribution problems. As the theory of learnability for
Lifelong Learning is still developing, we must design our metrics
acknowledging the potential for systems to demonstrate no learn-
ing on some tasks and, importantly, address whether or not those
runs should be considered in computing the LL metrics. The re-
sults shown in Section 5 included all runs, independent of whether
tasks demonstrated learning.

• Assumption 2: In learning a sequence of tasks, performance on
a previously learned task may drop, but it can and will “bounce
back” when the task is shown later.
This assumption drove the design of the Performance Recovery
metric, which in theory was designed to measure whether an LL
system’s performance recovers after a change is introduced to its
environment. To compute Performance Recovery, we first calcu-
lated the number of learning experiences the system required in
order to get back to the previously attained value after a drop
(recovery time), and computed the change in this number of ex-
periences over the course of the system’s lifetime (i.e., fitted a
line to the recovery times and computed the slope of the line).
The idea was that a system demonstrating LL would adapt more

37

quickly to changes as it amassed more experience.

Of note, Performance Recovery could only be assessed for scenar-
ios with many task repetitions. The use of this metric proved to
be problematic, in particular because some systems would fail to
“bounce back” sufficiently. This dependency of final system per-
formance on initial LXs has been observed in the broader deep
reinforcement learning (RL) space (Nikishin et al., 2022), where
it was aligned with the concept of “primacy bias” from human
cognition studies (Marshall and Werder, 1972). Beyond this bi-
nary challenge of a system returning to previous performance or
not; given the variability in the application-specific measures, it
also remained difficult to discern when performance has actually
“bounced back” and to what should the new performance be com-
pared, and how should we handle noise in these measurements?
Dror et al. (2019) recommends the use of the Almost Stochastic
Dominance test to mitigate the variability issue we faced, but we
were unable to implement this due to the computational expense
associated with this analysis.

• Assumption 3: We can identify when a task has been “learned,”
or at least, when the system performance has saturated.
Computing whether a system’s performance has saturated (and to
what value) is not straightforward, in part due to the heteroskedas-
tic nature of the learning curves. There is unpredictability to sys-
tem learning, and coupling this with noisy learning makes this
computation even more of a challenge. In addition, the notion
of “saturation” may be ill-defined, particularly when the distribu-
tion of an environment within a learning block is nonstationary.
In the case of this suite of metrics, Sample Efficiency explicitly
relies on the computation of a saturation value, and Performance
Maintenance compares an average of the most recent training per-
formance to future evaluation performances – with the implicit
assumption that a system has reached a stable, if not maximal,
performance value at the end of a learning block.

In light of these challenges, we recommend designing an assessment –
even a simple performance threshold specific to an environment – to
determine whether a system has learned and to lend insight into com-
puted metric values.

38

2. Do not avoid metrics that measure overlapping concepts.

Due to some similarities in their formulation, we expected some of the
metrics (e.g. PM and BT, SE and RP) to be strongly correlated. In
practice, we found only weak positive correlations between those two
metric pairs, as shown in Table 15. We also found that SE and PM
were weakly negatively correlated, which supports our discovery of a
performance trade-off between these two metrics. The strongest corre-
lation across the metrics was between Forward Transfer and Relative
Performance at ρ = 0.45. This correlation makes sense in retrospect
- a system which excels at Forward Transfer is likely to require fewer
learning experiences for a task (and thus have a higher RP score) if
it can benefit from another task’s learning experiences as well. Even
in the case of the most correlated metrics, it was critical to have both
measures since they offer an assessment of a different LL condition and
add an additional perspective on assessing the whole system’s perfor-
mance.

3. Design metrics with clear interpretations based on the LL
thresholds.
In light of the difficulty of determining an upper bound for an agent’s
performance on a sequence of tasks, we made two intentional choices
when formulating and interpreting the metrics. In their formulation,
the LL thresholds for the metrics are clearly delineated, giving a straight-
forward interpretation - values above the threshold demonstrate the
corresponding condition of LL, and values below do not. This was ex-
tremely useful for interpreting values and determining whether a sys-
tem demonstrated lifelong learning. Though we formulated the metrics
such that larger scores are better, this binary interpretation of each of
the metrics allowed for a systems level analysis of performance rather
than a specific focus on any one measure.

4. Compare performance to an STE when possible
Overall, our most robust measure of LL was the metric that baselined
performance to a single task expert - Relative Performance. Relative
Performance offered insight into the question of whether a system is
demonstrating an improvement over previous attempts to do lifelong

39

learning versus simply assessing whether a system demonstrates lifelong
learning. This comparison to a benchmark can also be used to indicate
progress over previous approaches – similar to an ablation experiment
– but functions primarily as a proxy for establishing an upper bound
of performance on any given task.

5. Be cautious in estimating properties of data from noisy re-
ward function distributions
As discussed in Section 3.3, Reinforcement Learning systems can be
especially noisy. To remediate some issues that arise from computing
values on noisy data, we preprocessed the data by smoothing it and
shifting the range to exclude zero to avoid the vanishing denominator
issue. In light of the noise intrinsic to these environments described
by (Agarwal et al., 2021), we recommend keeping metric formulations
simple. We also recommend being especially wary of second order met-
rics, like Performance Recovery, where noise can be compounded to the
point of ineffectiveness. We hope to reformulate Performance Recovery
in the future.

6. Be cautious about application specific metric ranges and their
potential effect on ratios In initial formulations of Forward and
Backward Transfer, we compared the performance before and after rel-
evant task learning as a standard ratio under the assumption that it
was unlikely for a system to achieve zero (or very small values) as an
application specific measure of performance. This assumption, unfortu-
nately, did not hold to be true. To address robustness issues that arose
in those circumstances from an infinitesimal denominator, we added
an alternative formulation of both forward and backward transfer us-
ing the contrast function:

Contrast(a, b) =
a− b
a+ b

where a and b represent a particular task performance either before
or after learning a new task. While qualitatively similar to the ra-
tio function, Ratio(a, b) = a

b
, contrasts differ in that they are defined

when b = 0. This ensures they are well-defined in situations where
application-specific measures are or approach zero; while the stability

40

Metric 1 Metric 2 Spearman Corr. p-value

Perf. Maintenance Forward Transfer 0.06 0.60
Backward Transfer 0.33 0.003

Relative Perf. -0.20 0.07
Sample Efficiency -0.25 0.03

Forward Transfer Backward Transfer -0.09 0.44
Relative Perf. 0.45 0.00003

Sample Efficiency 0.01 0.93
Backward Transfer Relative Perf. -0.15 0.19

Sample Efficiency -0.16 0.14
Relative Perf. Sample Efficiency 0.36 0.001

Table 15: Correlation analysis of values of different metrics. Despite expecting strong
correlations between PM and BT as well as SE and RP, these metric pairs were only
weakly correlated. We found that SE and PM were weakly negatively correlated, which
supports our discovery of a performance trade-off between these two metrics.

is a benefit, it can be less intuitive and therefore more complicated to
interpret. Due to this difficulty in interpretation, we reported the ratio
values in Section 5.

7. Conclusion

In this work, we argued that evaluating advances in Lifelong Learning is a
complex challenge that requires a systems approach to assessing performance
and quantifying trade-offs, especially since there are currently no universally
accepted metrics for Lifelong Learning. We presented the Conditions that an
LL system should demonstrate as a Lifelong Learner, and developed a suite
of metrics to assess those Conditions. We outlined a method for calculating
the metrics in a scenario, domain, environment, and task-agnostic fashion
to characterize capabilities of LL systems. We demonstrated the use of the
suite of metrics via five case studies that used varied environments, illus-
trating the strengths and weaknesses of each system using the metrics. We
discussed the quantification of three key performance trade-offs present in
the development of many LL systems, and made recommendations for future
metric development for LL systems.

Though the field of LL is nascent, methods and metrics for comprehen-
sive evaluation are a critical piece in realizing a future with operationalized

41

machine learning (ML) systems. As these LL systems increase in complexity
to address current limitations, the challenge of evaluating performance and
identifying strengths and weaknesses will become both more difficult and
more crucial, especially in domains such as military operations or health-
care. Using a consistent suite of metrics for evaluation of complex systems in
a domain- and technique-agnostic way enables a complete tracking of progress
across the entire field of LL.

Many challenges remain in evaluating LL systems, including extending
the computation of metrics across all lifetimes of a system, adding additional
metrics to consistently quantify the computational cost trade-off, and for-
mulating metrics that measure or account for relationships or properties of
various tasks. Our suite of metrics provides a basis for extensions that can
address these and other newly-discovered gaps.

8. Acknowledgements

Primary development of this work was funded by the DARPA Lifelong
Learning Machines (L2M) Program. The authors would like to thank the
performers in this program, particularly the members of the Definitions
and Metrics Working Groups, who helped to develop and refine these LL
conditions and metrics. Thanks also goes to the DARPA SETAs for this
program–Conrad Bell, Robert McFarland, Rebecca McFarland, and Ben Ep-
stein. Useful feedback on improving the manuscript was provided by Alice
Jackson, Kiran Karra, Jared Markowitz, and Christopher Ratto.

9. Disclaimer

The views, opinions, and/or findings expressed are those of the author(s)
and should not be interpreted as representing the official views or policies of
the Department of Defense or the U.S. Government.

Appendix A. Terminology

42

Term Definition
Task Some non-trivial capability that the agent must learn, and

on which performance is directly measured. A task should
have parameters for stochastic and structured variation (suf-
ficient to pose a challenging learning problem), and should
have some notion of generalization. For example, in the do-
main of sports, “Tennis” and “Badminton” would be tasks.

Task Variants Variants of a task are substantially different versions of a task
- different enough to pose a significant learning challenge, and
outside of the range of stochastic variation. For example,
“Tennis on grass court during day” and “Tennis on clay court
at night” may be considered variants.

Task Instance A specific occurrence of a task that an agent encounters. In
the sports domain, “Tennis” is a task, and an instance of
Tennis would be a single game of tennis, on a specific kind
of court, at a specific time of day and weather, with specific
initial conditions, and so on.

Learning expe-
rience (LX)

A minimum amount of experience with a task that enables
some learning activity on the part of the agent. A task in-
stance can be a single LX, or it might consist of multiple
LXs.

Evaluation ex-
perience (EX)

A minimum amount of experience with a task that enables
some demonstration of learned activity on the part of the
agent. During an EX, the LL system is being evaluated at a
“frozen” state and no weight updates are allowed.

Block A sequence of Experiences for a single task/variant. May be
a learning block (LB) or an evaluation block (EB)

Lifetime A sequence of LBs and EBs encountered by the agent once it
is deployed. A lifetime starts with the agent in a “Ready-to-
deploy” state.

Lifelong Learn-
ing Scenario

A scenario characterizes a single lifetime for an agent. It con-
sists of a set of tasks (or task variants), any related param-
eterization, and optionally, specifications on how the tasks
should be sequenced in the lifetime.

Evaluation
Protocol

An evaluation protocol is a complete specification for getting
statistically reliable Lifelong Learning (LL) metrics. It con-
sists of a specification of pre-deployment training, one or more
scenarios, and how multiple lifetimes (runs) are generated for
each scenario.

43

Appendix B. Supplementary Information about Scenarios

Appendix B.1. Condensed and Dispersed Scenarios

Figure B.5: Illustration of Condensed and Dispersed Scenario Types introduced in Sec-
tion 3.2

We consider two key types of evaluation scenarios. Both consist of an
interleaving sequence of learning blocks (LBs) and evaluation blocks (EBs).
In the former, the Lifelong Learning (LL) system encounters learning expe-
riences (LXs) from a specific task and improves itself. In the latter, the LL
system encounters evaluation experiences (EXs) and is tested on how well it
has mastered tasks. Beyond the two types here, many other variations are
also devisable.

The condensed scenario assesses how well a system can retain performance
on a wide variety of tasks. In it, LBs for a given task variant occur only once
in the scenario, and LBs are chosen to be sufficiently long for the system to
attain mastery on that block’s task.

In contrast, the dispersed scenario evaluates how well a system performs
when the tasks it is exposed to change frequently. In this scenario, there are
three “superblocks” (defined as a single permutation of task variants with
shorter learning blocks, typically 1/3 the length of an LB in a condensed
scenario). A given task variant occurs exactly once during each superblock
and each superblock uses a different random permutation of task variants.

Appendix B.2. Example evaluation scenario

In Table B.16, we show how tasks and task variants can be defined for
two environments–SplitMNIST (Zenke et al., 2017; Shin et al., 2017; Nguyen
et al., 2018), and CARLA (Dosovitskiy et al., 2017) environments, and in Ta-
ble B.17, we define the application-specific measures that assess LL system
performance on these tasks. Our framework of LBs and EBs is sufficiently
general that we can represent two diverse scenario structures (condensed and

44

dispersed scenarios), as well as two types of learning problems–classification
for SplitMNIST and reinforcement learning for CARLA. Task variants can
be defined by random (e.g., random brightness perturbations for Variant-2
of SplitMNIST’s Task-1) or deterministic (e.g., fixed rotations for Variant-
2 or SplitMNIST’s Task-2) transformations. In addition, experiences can
be subsampled from a finite dataset (SplitMNIST) or from a more complex
generator (CARLA). If desired, similar tasks can use different application-
specific measures (e.g., SplitMNIST’s tasks using both average task accuracy
(ACC) (Lopez-Paz and Ranzato, 2017) and Ωall (Hayes et al., 2018b)).

45

SplitMNIST CARLA

Task-1 Classify images as being either 0

or 1

• One LX is a minibatch of six-
teen images sampled from a
training set

• One EX is a minibatch of six-
teen images sampled from a
test set

• Variant-1: Images are left
unaltered

• Variant-2: Images have
their brightness randomly
perturbed

• Variant-3: Images have
their contrasts randomly
perturbed

Task-1: Navigate from one point
to another

• One LX or EX is one end-to-
end navigation sequence

• Variant-1: There is little
traffic

• Variant-2: There is heavy
traffic

• Variant-3: Navigation se-
quences take place at night-
time

Task-2 Classify images as being either 1

or 2

• One LX is a minibatch of six-
teen images sampled from a
training set

• One EX is a minibatch of six-
teen images sampled from a
test set

• Variant-1: Images are left
unaltered

• Variant-2: Images are ro-
tated 90◦

• Variant-3: Images are ro-
tated 270◦

Follow a sedan for a specified pe-
riod of time

• One LX or EX is one end-to-
end navigation sequence

• Variant-1: It is raining dur-
ing navigation sequences

• Variant-2: The vehicle to be
followed drives very quickly

• Variant-3: The vehicle to be
followed is a semi-truck

Table B.16: An example of how to construct two tasks and associated variants from the
SplitMNIST and CARLA environments.

46

SplitMNIST CARLA

Application-
specific mea-
sures

• Task-1:
ACC (Lopez-Paz
and Ranzato, 2017)

• Task-2: Ωall (Hayes
et al., 2018b)

• Task-1: Total travel time,
penalized by unsafe driving

• Task-2: Average distance
to target vehicle during the
navigation sequence, penal-
ized by unsafe driving

Table B.17: An example of how to construct application-specific measures for tasks from
the SplitMNIST and CARLA environments.

Appendix C. Additional details on metrics

Appendix C.1. Notation for describing metrics and blocks

We introduce a compact set of notations to describe LL agent lifetimes
and the quantities they output, illustrated in Figure C.6.a. In general, a
lifetime consists of N Learning Blocks. During each learning block n, the
agent is exposed to experiences from a single task t(n) drawn from some
larger set of possible tasks T . Tasks may reoccur within a lifetime, or they
may appear only once or not at all. After each Learning Block, an Evaluation
Block occurs in which the agent is tested on all tasks in T .

A Block consists of a sequence of (Learning or Evaluation) Experiences,
and each Experience generates a single task-specific metric (e.g., a classifi-
cation accuracy, reward function value, or binary outcome). These values
must be preprocessed prior to calculation of LL metrics – we recommend
following the procedure described in Appendix A of New et al. (2022), which
is available in Nguyen (2022b).

Ultimately, each Task t’s performance in Learning Block n is summa-
rized by a sequence of values PL(n, t) = (PL(n, t, 1), ..., PL(n, t, `(n))), and
each Task t’s performance in the Evaluation Block after Learning Block n
is summarized by a scalar PE(n, t). Lifetimes are assumed to start with an
Evaluation Block, yielding initial performance scores PE(0, t) for all t ∈ T .

Baseline performance on a Task may be assessed by training a Single-Task
Expert and an LL agent exposed to only one task. Relative Performance and
Sample Efficiency metrics compare Learning Block performance of LL agents
to STEs. We use PSTE(n, t) = (PSTE(n, t, 1), ..., PSTE(n, t, `(n))) to denote

47

the performance in LX ` of the nth Learning Block of an STE trained on
task t.

Appendix C.2. Metric Formulations

In this section, we present pseudo-code implementations of each of the
metrics described in Section 4. Our transfer metrics (Algorithm 1 and Al-
gorithm 2) use Ratios, but Contrasts may also be used in their place (see
discussion in Section 4.3 and Section 6.2).

Our algorithms for metrics that consider data from single-task experts –
Relative Performance (Algorithm 3) and Sample Efficiency (Algorithm 4) –
consider a simplified setting. Specifically, we assume that (1) for a given task,
we have data from only a single STE, and (2) for a given task, the learning
block lengths are the same across LL agents and STEs. The l2metrics pack-
age (Nguyen, 2022b) offers options for handling data when these assumptions
are violated.

Algorithm 1 Calculation of Forward Transfer

Require: Task set T
Require: Evaluation Block Performances {PE(n, t)} for n = 0, ..., N , t ∈ T
Ensure: ForwardTransfer

FTs = LearnedTasks = LearnedTaskPairs = ∅
for Learning Blocks n = 1, ..., N do

if t(n) 6∈ LearnedTasks then
LearnedTasks← LearnedTasks ∪ {t(n)}
for Tasks t ∈ T \ LearnedTasks do

if (t(n), t) 6∈ LearnedTaskPairs then
(t(n), t)← LearnedTaskPairs ∪ {(t(n), t)}
Pn, Pt = PE(n, t), PE(n− 1, t)
FTs← FTs ∪ {Contrast(Pn, Pt)}

end if
end for

end if
end for
ForwardTransfer ← mean{FTs}

48

Figure C.6: A notional lifetime containing two tasks, blue (B) and green (G). (a) The
tasks alternate, and both are tested during evaluation blocks. The y-axis shows the agent’s
performance on tasks at each point during its lifetime. The x-axis counts the experiences of
the lifetime. White shading corresponds to Learning Blocks, and grey shading corresponds
to Evaluation Blocks.
(b) Comparing the LL agent to single-task experts for the blue and green tasks (orange).
Learning Blocks from the full lifetime are grouped by task and stitched together to form
a task-specific learning curve.
Figure adapted from New et al. (2022).

49

Algorithm 2 Calculation of Backward Transfer

Require: Task set T
Require: Evaluation Block Performances {PE(n, t)} for n = 1, ..., N , t ∈ T
Ensure: BackwardTransfer

BTs = LearnedTasks = LearnedTaskPairs = ∅
for Learning Blocks n = 2, ..., N do

if t(n) 6∈ LearnedTasks then
LearnedTasks← LearnedTasks ∪ {t(n)}

end if
for Tasks t ∈ T \ {t} do

if {t(n), t} 6∈ LearnedTaskPairs and t ∈ LearnedTasks then
LearnedTaskPairs← LearnedTaskPairs ∪ {{t(n), t}}
Pn−1, Pn = PE(n− 1, t), PE(n, t)
BTs← BTs ∪ {Contrast(Pn, Pn−1)}

end if
end for

end for
BackwardTransfer ← mean{BTs}

Algorithm 3 Calculation of Performance Relative to a Single Task Expert

Require: Task set T
Require: Learning Block Performances {PL(n, t, `)} for ` = 1, ..., `(n), n =

0, ..., N , t ∈ T
Require: STE Performances {PSTE(n, t, `)} for ` = 1, ..., `(n), n = 0, ..., N ,
t ∈ T

Ensure: RelativePerformance

RPs = ∅ . Relative performances for each task
for Tasks t ∈ T do

RPt ←
∑N

n=1

∑`(n)
`=1 PL(n, t, `)∑N

n=1

∑`(n)
`=1 PSTE(n, t, `)

RPs← RPs ∪ {RPt}
end for
RelativePerformance← mean{RPs}

50

Algorithm 4 Calculation of Sample Efficiency

Require: Task set T
Require: Learning Block Performances {PL(n, t, `)} for ` = 1, ..., `(n), n =

0, ..., N , t ∈ T
Require: STE Performances {PSTE(n, t, `)} for ` = 1, ..., `(n), n = 0, ..., N ,
t ∈ T

Require: Smoothing function Smooth, Window length w
Ensure: SampleEfficiency

SEs = ∅ . Sample efficiency scores for each task
for Task t ∈ T do

. Concatenate all learning blocks for the current task t

PL,cat,t = concat(PL(n, t) : t(n) = t)

PSTE,cat,t = concat(PSTE(n, t) : t(n) = t)

P̃L,cat,t, P̃STE,cat,t = Smooth(PL,cat,t), Smooth(PSTE,cat,t)
. Find saturation performance values and experience locations

SatV al(L, t), SatExp(L, t) = max P̃L,cat,t, arg max P̃L,cat,t

SatV al(STE, t), SatExp(STE, t) = max P̃STE,cat,t, arg max P̃STE,cat,t

SEs← SEs ∪
{

SatV al(L, t)

SatV al(STE, t)

SatExp(STE, t)

SatExp(P, t)

}
end for
SampleEfficiency ← mean{SEs}

51

Algorithm 5 Calculation of Performance Maintenance

Require: Task set T
Require: Evaluation Block Performances {PE(n, t, `)} for ` = 1, ..., `(n),
n = 0, ..., N , t ∈ T

Ensure: PerformanceMaintenance

MV s(t) = ∅ for all t ∈ T . Maintenance Values
PMs = ∅ . Performance Maintenance scores
MRB(t) = −∞ for all t ∈ T . Most recent LB index for each task
for Learning Block n = 1, . . . , N do

MRB(t(n)) = n
for Task t ∈ T do

if MRB(t) > 0 and t 6= t(n) then
MV s(t)←MV s(t) ∪ {PE(n, t)− PE(MRB(t), t)}

end if
end for

end for
for Task t ∈ T do

PMs← PMs ∪ {mean{MV (t)}}
end for
PerformanceMaintenance← mean{PMs}

52

Appendix D. Statistical Reliability

Statistical analyses can fail to recognize when two algorithms evaluated
on the same benchmark are the same algorithm (Colas et al., 2018). Varying
approaches have been recommended to mitigate this, including the use of the
almost stochastic dominance test (Dror et al., 2019) and performance profiles
during training (Agarwal et al., 2021).

In Figure 1, we present a nominal LL scenario. An agent is sent through
a sequence of tasks; at the end of each lifetime, it generates a set of LL
metrics. This design suggests two questions: (1) How should K (the number
of repetitions) be chosen ahead of time? and (2) How should metrics be
aggregated across lifetimes after the fact?

Reliably assessing the variability in the responses of the agent, assuming
the inherent variability of its inputs, requires assessing performance of the
agent over multiple lifetimes. We outline a procedure based on guidance in
NIST/SEMATECH (2012) and similar to Colas et al. (2018) to determine
the number of lifetimes that need to be run, for a given Evaluation Protocol,
to assess an agent’s performance.

For a given evaluation protocol, let Y be the random variable of values
a metric can take, assumed to follow a normal distribution with population
mean and standard deviation µ and σ. We seek to characterize a system’s
performance by estimating µ. For an estimator Ȳ of Y (typically, the sample
mean of a set of values of the metric taken from multiple independent runs),
we evaluate the null hypothesis that the error in estimating |Ȳ −µ| is no more
than some error threshold δ. Our hypothesis of normality is strong, but it is
meant to enable easy and efficient estimation of distribution properties, as
well as assumptions that can be checked in practice.

One option is to choose a threshold δ based on the specific Protocol.
However, the space of potential protocols is vast, even for a relatively small
number of scenario tasks and agent configurations, and there is no guaran-
tee that the same threshold will be informative across protocols. We follow
common practice and choose the error threshold to be defined as a multi-
ple of the standard deviation: δ = kσ. Thus, a procedure for determining
required sample size prior to training any agents is specified by the choice
of the multiple k, the type I error rate α, and the type II error rate β. We
recommend, as a default, setting k = 1, α = 0.05, and β = 0.1. This yields
a suggested required sample size of at least 11 runs. Evidence from works
such as Agarwal et al. (2021) suggests this is likely an underestimate and so,

53

if computational resources and time allow, more data will be of value.
With respect to the second question, we recommend two procedures for

comparing the distribution of an agent’s metric values to some threshold. The
student t-test can be used to compare raw distributions of metrics values.
However, this approach can be unreliable in the case that the values of a
metric are highly non-normal (from, e.g., outliers or skewness). In that case,
a more robust alternative is to binarize values by checking if they surpass
that threshold and performing a statistical test on that set of binary values.

Appendix E. Summary of Tasks used in SG Case Studies

System Group Environment Task Descriptions
UPenn (Section 5.1) AI Habitat Classify/Find Seating Furniture

Classify/Find Plumbing Furniture
Classify/Find Large Furniture

Teledyne (Section 5.2) AirSim Classify Emergency Management Assets, low altitude
Drone Classify Emergency Management Assets, high altitude

Classify Dept. of Transportation Assets, low altitude
HRL (Section 5.3) CARLA Car navigation

Motorcycle navigation
Motorcycle navigation, opposite lane

ANL (Section 5.4) L2Explorer Identify targets
Navigation despite distractors

Forage specific resources
SRI (Section 5.5) StarCraft II Collect Resources

Defeat Large Enemies
Defeat Small Enemies

Table E.18: High level task descriptions used in the five case studies discussed in Section 5.
Note that since the UPenn group performed both classification and reinforcement learning
(RL) experiments, their tasks involved either classifying or finding, respectively.

Appendix F. T-Test Values for SG Case Study Data

54

SG Config PM FT BT RP SE
Argonne L2Explorer -1.31 8.65 2.93 1.20 1.20

Roundworld 5.20 6.93 2.80 4.08 16.63
HRL Condensed -0.23 12.67 4.00 6.42 3.67

Disp -3.77 18.78 4.10 6.49 9.06
SCP Ablation 0.25 10.75 3.45 9.10 5.87

SRI M12 Condensed -5.13 8.31 -0.12 -2.36 6.77
M15 Condensed -5.52 8.31 2.46 4.57 15.31
M18 Condensed -6.73 15.31 0.62 5.72 10.95
M12 Alternating -4.66 1.05 -3.53 -5.57 6.15
M15 Alternating -5.44 1.15 -5.09 -4.84 8.51
M18 Alternating -2.91 2.13 -2.31 -2.52 5.09

Teledyne C5 Ablated 1.98 79.33 0.72 2.71 3.55
UML 2.82 72.01 3.15 1.80 3.13

UPenn DF-CNN -2.36 0.63 -2.24 22.00 29.41
META-KFO -8.20 NaN -7.99 20.83 31.47
RL M12 -5.59 -0.28 0.26 -7.14 -2.52
RL M15 -2.37 3.39 4.11 -14.43 1.56
RL M18 0.99 2.97 5.21 -13.27 -18.79

Table F.19: t values from a one-tailed t-test to determine whether the value is significantly
greater than the LL Threshold value for that metric. Note that the UPenn META-KFO
system is designed to speed up the rate of adapting to a new task, but this does not
happen until data for that task is seen, leading to unchanged task values and a standard
deviation of zero for a jumpstart formulation of FT.

55

Appendix G. Computational Costs of Lifelong Learning

Different LL algorithms can potentially have different computational costs.
For example, an algorithm with experience replay might be more computa-
tionally expensive during deployment than one that grew the network as
needed. Unfortunately, it is challenging to compare these costs across agents
given differences in learning frameworks, distributed training, and environ-
ments. Instead, we attempted to get insight into CostOverhead, the relative
cost imposed by an LL system as it tries to preserve and transfer learning
across multiple tasks, compared to the same algorithm being applied to just
a single task (see Table G.20). For instance, CostOverhead = 1.5 indicates
that it takes 1.5x more computational effort to process a single learning ex-
perience (LX) during deployment (when learning multiple tasks) compared
to a single-task setting.

It should be noted that CostOverhead is a crude measure, with several
limitations: it does not distinguish between learning and evaluation experi-
ences, does not take overall performance into account, and does not sepa-
rately consider agent and environment computation (for example, a complex
3D environment like AirSim may take more computational resources to ren-
der than StarCraft). Even so, CostOverhead can provide useful insight.
When applied to preliminary versions of the LL algorithms developed by the
SGs, the CostOverheads ranged from 1.27 to 2.53, indicating that some LL
algorithms potentially had twice the multi-task overhead of others. Notably,
the CostOverheads are contained within a small band of values, which is re-
markable given the diversity of environments, tasks and learning algorithms.

RawCostmultitask Elapsed time for a single lifetime
with multiple tasks, averaged across
the submitted runs.

RawCostsingletask Elapsed time for the single task ex-
pert, trained to saturation.

CostPerLXmultitask = RawCostmultitask

Total Number of LXsmultitask Time Cost per LX, for the multi-task
lifelong learner

CostPerLXsingletask = RawCostsingletask

Total Number of LXssingletask Time Cost per LX for the single-task
expert

CostOverhead = CostPerLXmultitask

CostPerLXsingletask Cost overhead of lifelong learning

Table G.20: Definition of CostOverhead. Note that RawCost and CostPerLX (both
single and multitask) are measured in seconds

56

References

Agarwal, R., Schwarzer, M., Castro, P.S., Courville, A., Bellemare, M.G.,
2021. Deep reinforcement learning at the edge of the statistical precipice,
in: Thirty-Fifth Conference on Neural Information Processing Systems.

Arnold, S., Iqbal, S., Sha, F., 2021. When MAML can adapt fast and how to
assist when it cannot, in: International Conference on Artificial Intelligence
and Statistics, PMLR. pp. 244–252.

Balaji, Y., Farajtabar, M., Yin, D., Mott, A., Li, A., 2020. The effective-
ness of memory replay in large scale continual learning. arXiv preprint
arXiv:2010.02418 .

Basu, S., Karki, M., Ganguly, S., DiBiano, R., Mukhopadhyay, S., Gayaka,
S., Kannan, R., Nemani, R., 2017. Learning sparse feature representa-
tions using probabilistic quadtrees and deep belief nets. Neural Processing
Letters 45, 855–867.

Bellemare, M.G., Naddaf, Y., Veness, J., Bowling, M., 2013. The Arcade
learning environment: An evaluation platform for general agents. Journal
of Artificial Intelligence Research 47, 253–279.

Ben-Iwhiwhu, Dick, Ketz, Pilly, Soltoggio, 2021. Context meta-reinforcement
learning via neuromodulation. CoRR abs/2111.00134. URL: http:

//arxiv.org/abs/2111.00134, arXiv:2111.00134.

Benna, Fusi, 2016. Computational principles of synaptic memory consolida-
tion. Nature Neuroscience 19, 1697–1706. URL: https://github.com/
GMvandeVen/complex-synapses.

Brna, A.P., Brown, R.C., Connolly, P.M., Simons, S.B., Shimizu, R.E.,
Aguilar-Simon, M., 2019. Uncertainty-based modulation for lifelong learn-
ing. Neural Networks 120, 129–142. URL: https://www.sciencedirect.
com/science/article/pii/S0893608019302722, doi:https://doi.org/
10.1016/j.neunet.2019.09.011. special Issue in Honor of the 80th Birth-
day of Stephen Grossberg.

Brown, R., Brna, A., Cook, J., Park, S., Aguilar-Simon, M., 2022.
Uncertainty-driven control for a self-supervised lifelong learning drone, in:

57

http://arxiv.org/abs/2111.00134
http://arxiv.org/abs/2111.00134
http://arxiv.org/abs/2111.00134
https://github.com/GMvandeVen/complex-synapses
https://github.com/GMvandeVen/complex-synapses
https://www.sciencedirect.com/science/article/pii/S0893608019302722
https://www.sciencedirect.com/science/article/pii/S0893608019302722
http://dx.doi.org/https://doi.org/10.1016/j.neunet.2019.09.011
http://dx.doi.org/https://doi.org/10.1016/j.neunet.2019.09.011

International Geoscience and Remote Sensing Symposium, IEEE, Kuala
Lumpur, Malaysia.

Carroll, J., Seppi, K., 2005. Task similarity measures for transfer in re-
inforcement learning task libraries, in: Proceedings. 2005 IEEE Interna-
tional Joint Conference on Neural Networks, 2005., pp. 803–808 vol. 2.
doi:10.1109/IJCNN.2005.1555955.

Caruana, R., 1997. Multitask learning. Machine Learning 28, 41–
75. URL: https://doi.org/10.1023/A:1007379606734, doi:10.1023/A:
1007379606734.

Chan, S.C., Fishman, S., Korattikara, A., Canny, J., Guadarrama, S.,
2020. Measuring the reliability of reinforcement learning algorithms,
in: International Conference on Learning Representations. URL: https:
//openreview.net/forum?id=SJlpYJBKvH.

Chang, A., Dai, A., Funkhouser, T., Halber, M., Niessner, M., Savva, M.,
Song, S., Zeng, A., Zhang, Y., 2017. Matterport3D: Learning from RGB-
D data in indoor environments. International Conference on 3D Vision
(3DV) .

Chen, Z., Liu, B., 2018a. Lifelong machine learning. Morgan & Claypool
Publishers.

Chen, Z., Liu, B., 2018b. Lifelong Machine Learning, Second Edition.
volume 12. URL: https://www.morganclaypool.com/doi/10.2200/

S00832ED1V01Y201802AIM037.

Cobbe, K., Hesse, C., Hilton, J., Schulman, J., 2020. Leveraging pro-
cedural generation to benchmark reinforcement learning, in: III, H.D.,
Singh, A. (Eds.), Proceedings of the 37th International Conference on Ma-
chine Learning, PMLR. pp. 2048–2056. URL: https://proceedings.mlr.
press/v119/cobbe20a.html.

Colas, C., Sigaud, O., Oudeyer, P., 2018. How many random seeds?
Statistical power analysis in deep reinforcement learning experiments.
CoRR abs/1806.08295. URL: http://arxiv.org/abs/1806.08295,
arXiv:1806.08295.

58

http://dx.doi.org/10.1109/IJCNN.2005.1555955
https://doi.org/10.1023/A:1007379606734
http://dx.doi.org/10.1023/A:1007379606734
http://dx.doi.org/10.1023/A:1007379606734
https://openreview.net/forum?id=SJlpYJBKvH
https://openreview.net/forum?id=SJlpYJBKvH
https://www.morganclaypool.com/doi/10.2200/S00832ED1V01Y201802AIM037
https://www.morganclaypool.com/doi/10.2200/S00832ED1V01Y201802AIM037
https://proceedings.mlr.press/v119/cobbe20a.html
https://proceedings.mlr.press/v119/cobbe20a.html
http://arxiv.org/abs/1806.08295
http://arxiv.org/abs/1806.08295

Colas, C., Sigaud, O., Oudeyer, P.Y., 2019. A hitchhiker’s guide to statistical
comparisons of reinforcement learning algorithms. arXiv:1904.06979.

Cossu, A., Graffieti, G., Pellegrini, L., Maltoni, D., Bacciu, D., Carta, A.,
Lomonaco, V., 2021. Is class-incremental enough for continual learning?
URL: https://arxiv.org/abs/2112.02925, doi:10.48550/ARXIV.2112.
02925.

Csurka, G., 2017. Domain Adaptation in Computer Vision Applications. 1st
ed., Springer Publishing Company, Incorporated.

Daniels, Z., Raghavan, A., Hostetler, J., Rahman, A., Sur, I., Piacentino, M.,
Divakaran, A., 2022. Model-free generative replay for lifelong reinforcement
learning: Application to starcraft-2, in: Conference on Lifelong Learning
Agents, Proceedings of Machine Learning Research.

Daram, A., Yanguas-Gil, A., Kudithipudi, D., 2020. Exploring neuromodu-
lation for dynamic learning. Frontiers in Neuroscience 14. URL: https:
//www.frontiersin.org/article/10.3389/fnins.2020.00928, doi:10.
3389/fnins.2020.00928.

De Lange, M., Aljundi, R., Masana, M., Parisot, S., Jia, X., Leonardis, A.,
Slabaugh, G., Tuytelaars, T., 2021. A continual learning survey: Defying
forgetting in classification tasks. IEEE Transactions on Pattern Analysis
and Machine Intelligence .

Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L., 2009. ImageNet:
A large-scale hierarchical image database, in: 2009 IEEE Conference on
Computer Vision and Pattern Recognition, pp. 248–255. doi:10.1109/
CVPR.2009.5206848.

Dosovitskiy, A., Ros, G., Codevilla, F., Lopez, A., Koltun, V., 2017. CARLA:
An open urban driving simulator, in: Proceedings of the 1st Annual Con-
ference on Robot Learning, pp. 1–16.

Dror, R., Shlomov, S., Reichart, R., 2019. Deep dominance - how to
properly compare deep neural models, in: Proceedings of the 57th An-
nual Meeting of the Association for Computational Linguistics, Associa-
tion for Computational Linguistics, Florence, Italy. pp. 2773–2785. URL:
https://aclanthology.org/P19-1266, doi:10.18653/v1/P19-1266.

59

http://arxiv.org/abs/1904.06979
https://arxiv.org/abs/2112.02925
http://dx.doi.org/10.48550/ARXIV.2112.02925
http://dx.doi.org/10.48550/ARXIV.2112.02925
https://www.frontiersin.org/article/10.3389/fnins.2020.00928
https://www.frontiersin.org/article/10.3389/fnins.2020.00928
http://dx.doi.org/10.3389/fnins.2020.00928
http://dx.doi.org/10.3389/fnins.2020.00928
http://dx.doi.org/10.1109/CVPR.2009.5206848
http://dx.doi.org/10.1109/CVPR.2009.5206848
https://aclanthology.org/P19-1266
http://dx.doi.org/10.18653/v1/P19-1266

Faber, K., Corizzo, R., Sniezynski, B., Baron, M., Japkowicz, N., 2021.
Watch: Wasserstein change point detection for high-dimensional time se-
ries data, in: 2021 IEEE International Conference on Big Data (Big Data),
IEEE. pp. 4450–4459.

Faber, K., Corizzo, R., Sniezynski, B., Baron, M., Japkowicz, N., 2022. Life-
watch: Lifelong wasserstein change point detection, in: 2022 International
Joint Conference on Neural Networks (IJCNN), IEEE.

Farquhar, S., Gal, Y., 2019. Towards robust evaluations of continual learning.
arXiv:1805.09733.

French, R.M., 1992. Semi-distributed representations and
catastrophic forgetting in connectionist networks. Con-
nection Science 4, 365–377. URL: https://doi.org/10.

1080/09540099208946624, doi:10.1080/09540099208946624,
arXiv:https://doi.org/10.1080/09540099208946624.

French, R.M., 1999. Catastrophic forgetting in connectionist net-
works. Trends in Cognitive Sciences 3, 128–135. URL: https://

www.sciencedirect.com/science/article/pii/S1364661399012942,
doi:https://doi.org/10.1016/S1364-6613(99)01294-2.

Geisa, A., Mehta, R., Helm, H.S., Dey, J., Eaton, E., Dick, J., Priebe, C.E.,
Vogelstein, J.T., 2021. Towards a theory of out-of-distribution learning.
URL: https://arxiv.org/abs/2109.14501, doi:10.48550/ARXIV.2109.
14501.

Goodfellow, I.J., Mirza, M., Xiao, D., Courville, A., Bengio, Y., 2013. An
empirical investigation of catastrophic forgetting in gradient-based neu-
ral networks. URL: https://arxiv.org/abs/1312.6211, doi:10.48550/
ARXIV.1312.6211.

Gou, J., Yu, B., Maybank, S.J., Tao, D., 2021. Knowledge distilla-
tion: A survey. International Journal of Computer Vision 129, 1789–
1819. URL: https://doi.org/10.1007%2Fs11263-021-01453-z, doi:10.
1007/s11263-021-01453-z.

Grbic, Risi, 2021. Safer reinforcement learning through transferable instinct
networks. Proceedings of the 2021 Conference on Artificial Life .

60

http://arxiv.org/abs/1805.09733
https://doi.org/10.1080/09540099208946624
https://doi.org/10.1080/09540099208946624
http://dx.doi.org/10.1080/09540099208946624
http://arxiv.org/abs/https://doi.org/10.1080/09540099208946624
https://www.sciencedirect.com/science/article/pii/S1364661399012942
https://www.sciencedirect.com/science/article/pii/S1364661399012942
http://dx.doi.org/https://doi.org/10.1016/S1364-6613(99)01294-2
https://arxiv.org/abs/2109.14501
http://dx.doi.org/10.48550/ARXIV.2109.14501
http://dx.doi.org/10.48550/ARXIV.2109.14501
https://arxiv.org/abs/1312.6211
http://dx.doi.org/10.48550/ARXIV.1312.6211
http://dx.doi.org/10.48550/ARXIV.1312.6211
https://doi.org/10.1007%2Fs11263-021-01453-z
http://dx.doi.org/10.1007/s11263-021-01453-z
http://dx.doi.org/10.1007/s11263-021-01453-z

Grossberg, S., 1988. How Does the Brain Build a Cognitive Code?. MIT
Press, Cambridge, MA, USA. p. 347–399.

Hadsell, R., Rao, D., Rusu, A.A., Pascanu, R., 2020. Embracing change:
Continual learning in deep neural networks. Trends in Cognitive Sciences
24, 1028–1040. URL: https://doi.org/10.1016/j.tics.2020.09.004,
doi:10.1016/j.tics.2020.09.004.

Hayes, T.L., Cahill, N.D., Kanan, C., 2018a. Memory efficient experience
replay for streaming learning. arXiv:1809.05922 [cs, stat] URL: http:

//arxiv.org/abs/1809.05922. arXiv: 1809.05922.

Hayes, T.L., Kafle, K., Shrestha, R., Acharya, M., Kanan, C., 2020. Remind
your neural network to prevent catastrophic forgetting, in: European Con-
ference on Computer Vision, Springer. pp. 466–483.

Hayes, T.L., Kanan, C., 2020. Lifelong machine learning with deep streaming
linear discriminant analysis, in: Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition Workshops, pp. 220–221.

Hayes, T.L., Kemker, R., Cahill, N.D., Kanan, C., 2018b. New metrics
and experimental paradigms for continual learning, in: 2018 IEEE/CVF
Conference on Computer Vision and Pattern Recognition Workshops
(CVPRW), pp. 2112–21123. doi:10.1109/CVPRW.2018.00273.

Henderson, P., Islam, R., Bachman, P., Pineau, J., Precup, D., Meger,
D., 2018. Deep reinforcement learning that matters, in: Proceedings of
the Thirty-Second AAAI Conference on Artificial Intelligence and Thir-
tieth Innovative Applications of Artificial Intelligence Conference and
Eighth AAAI Symposium on Educational Advances in Artificial Intelli-
gence, AAAI Press.

Hinton, G., Vinyals, O., Dean, J., 2015. Distilling the knowledge in a neu-
ral network. URL: https://arxiv.org/abs/1503.02531, doi:10.48550/
ARXIV.1503.02531.

Hoi, S.C.H., Sahoo, D., Lu, J., Zhao, P., 2018. Online learning: A compre-
hensive survey. CoRR abs/1802.02871. URL: http://arxiv.org/abs/
1802.02871, arXiv:1802.02871.

61

https://doi.org/10.1016/j.tics.2020.09.004
http://dx.doi.org/10.1016/j.tics.2020.09.004
http://arxiv.org/abs/1809.05922
http://arxiv.org/abs/1809.05922
http://dx.doi.org/10.1109/CVPRW.2018.00273
https://arxiv.org/abs/1503.02531
http://dx.doi.org/10.48550/ARXIV.1503.02531
http://dx.doi.org/10.48550/ARXIV.1503.02531
http://arxiv.org/abs/1802.02871
http://arxiv.org/abs/1802.02871
http://arxiv.org/abs/1802.02871

Hsu, Y., Liu, Y., Kira, Z., 2018. Re-evaluating continual learning scenarios:
A categorization and case for strong baselines. CoRR abs/1810.12488.
URL: http://arxiv.org/abs/1810.12488, arXiv:1810.12488.

Johnson, E.C., Nguyen, E.Q., Schreurs, B., Ewulum, C.S., Ashcraft, C.,
Fendley, N.M., Baker, M.M., New, A., Vallabha, G.K., 2022. L2Explorer:
A lifelong reinforcement learning assessment environment. URL: https:
//arxiv.org/abs/2203.07454, doi:10.48550/ARXIV.2203.07454.

Juliani, A., Berges, V.P., Teng, E., Cohen, A., Harper, J., Elion, C., Goy, C.,
Gao, Y., Henry, H., Mattar, M., Lange, D., 2018. Unity: A general plat-
form for intelligent agents. URL: https://arxiv.org/abs/1809.02627,
doi:10.48550/ARXIV.1809.02627.

Kaplan, J., McCandlish, S., Henighan, T., Brown, T.B., Chess, B., Child, R.,
Gray, S., Radford, A., Wu, J., Amodei, D., 2020. Scaling laws for neural
language models. URL: https://arxiv.org/abs/2001.08361, doi:10.
48550/ARXIV.2001.08361.

Kemker, R., McClure, M., Abitino, A., Hayes, T.L., Kanan, C., 2018. Mea-
suring catastrophic forgetting in neural networks, in: Proceedings of the
Thirty-Second AAAI Conference on Artificial Intelligence and Thirtieth
Innovative Applications of Artificial Intelligence Conference and Eighth
AAAI Symposium on Educational Advances in Artificial Intelligence,
AAAI Press.

Ketz, N., Kolouri, S., Pilly, P.K., 2019. Continual learning using world models
for pseudo-rehearsal. CoRR abs/1903.02647. URL: http://arxiv.org/
abs/1903.02647, arXiv:1903.02647.

Kirk, R., Zhang, A., Grefenstette, E., Rocktäschel, T., 2021. A survey of gen-
eralisation in deep reinforcement learning. CoRR abs/2111.09794. URL:
https://arxiv.org/abs/2111.09794, arXiv:2111.09794.

Kolouri, S., Ketz, N.A., Soltoggio, A., Pilly, P.K., 2020. Sliced Cramer
synaptic consolidation for preserving deeply learned representations, in:
International Conference on Learning Representations.

Kolve, E., Mottaghi, R., Han, W., VanderBilt, E., Weihs, L., Herrasti, A.,
Gordon, D., Zhu, Y., Gupta, A., Farhadi, A., 2017. AI2-THOR: An in-

62

http://arxiv.org/abs/1810.12488
http://arxiv.org/abs/1810.12488
https://arxiv.org/abs/2203.07454
https://arxiv.org/abs/2203.07454
http://dx.doi.org/10.48550/ARXIV.2203.07454
https://arxiv.org/abs/1809.02627
http://dx.doi.org/10.48550/ARXIV.1809.02627
https://arxiv.org/abs/2001.08361
http://dx.doi.org/10.48550/ARXIV.2001.08361
http://dx.doi.org/10.48550/ARXIV.2001.08361
http://arxiv.org/abs/1903.02647
http://arxiv.org/abs/1903.02647
http://arxiv.org/abs/1903.02647
https://arxiv.org/abs/2111.09794
http://arxiv.org/abs/2111.09794

teractive 3D environment for visual AI. URL: https://arxiv.org/abs/
1712.05474, doi:10.48550/ARXIV.1712.05474.

Ladosz, P., Ben-Iwhiwhu, E., Dick, J., Ketz, N., Kolouri, S., Krichmar, J.L.,
Pilly, P.K., Soltoggio, A., 2022. Deep reinforcement learning with modu-
lated Hebbian plus Q-network architecture. IEEE Transactions on Neural
Networks and Learning Systems 33, 2045–2056. doi:10.1109/TNNLS.2021.
3110281.

Lee, S., Stokes, J., Eaton, E., 2019. Learning shared knowledge for deep
lifelong learning using deconvolutional networks., in: IJCAI, pp. 2837–
2844.

Li, Krishnan, Wu, Kolouri, Pilly, Braverman, 2021. Lifelong learning with
sketched structural regularization. Proceedings of the 2021 Asian Confer-
ence on Machine Learning .

Lin, T.Y., Maire, M., Belongie, S., Bourdev, L., Girshick, R., Hays, J.,
Perona, P., Ramanan, D., Zitnick, C.L., Dollár, P., 2014. Microsoft COCO:
Common objects in context. URL: https://arxiv.org/abs/1405.0312,
doi:10.48550/ARXIV.1405.0312.

Lomonaco, V., Pellegrini, L., Cossu, A., Carta, A., Graffieti, G., Hayes,
T.L., Lange, M.D., Masana, M., Pomponi, J., van de Ven, G.M., Mundt,
M., She, Q., Cooper, K., Forest, J., Belouadah, E., Calderara, S., Parisi,
G.I., Cuzzolin, F., Tolias, A.S., Scardapane, S., Antiga, L., Amhad, S.,
Popescu, A., Kanan, C., van de Weijer, J., Tuytelaars, T., Bacciu, D.,
Maltoni, D., 2021. Avalanche: an end-to-end library for continual learn-
ing. CoRR abs/2104.00405. URL: https://arxiv.org/abs/2104.00405,
arXiv:2104.00405.

Lopez-Paz, D., Ranzato, M., 2017. Gradient episodic memory for continual
learning. Advances in neural information processing systems 30.

Madireddy, S., Yanguas-Gil, A., Balaprakash, P., 2020. Neuromodulated
neural architectures with local error signals for memory-constrained online
continual learning. URL: https://arxiv.org/abs/2007.08159, doi:10.
48550/ARXIV.2007.08159.

Maguire, Ketz, Pilly, Mouret, 2021. An online data-driven emergency-
reponse method for autonomous agents in unforeseen situations.

63

https://arxiv.org/abs/1712.05474
https://arxiv.org/abs/1712.05474
http://dx.doi.org/10.48550/ARXIV.1712.05474
http://dx.doi.org/10.1109/TNNLS.2021.3110281
http://dx.doi.org/10.1109/TNNLS.2021.3110281
https://arxiv.org/abs/1405.0312
http://dx.doi.org/10.48550/ARXIV.1405.0312
https://arxiv.org/abs/2104.00405
http://arxiv.org/abs/2104.00405
https://arxiv.org/abs/2007.08159
http://dx.doi.org/10.48550/ARXIV.2007.08159
http://dx.doi.org/10.48550/ARXIV.2007.08159

CoRR abs/2112.09670. URL: http://arxiv.org/abs/2112.09670,
arXiv:2112.09670.

Marshall, P.H., Werder, P.R., 1972. The effects of the elimination of
rehearsal on primacy and recency. Journal of Verbal Learning and
Verbal Behavior 11, 649–653. URL: https://www.sciencedirect.

com/science/article/pii/S0022537172800495, doi:https://doi.org/
10.1016/S0022-5371(72)80049-5.

Martin, Pilly, 2019. Probabilistic program neurogenesis. Proceedings of the
2019 Conference on Artificial Life .

McClelland, J.L., McNaughton, B.L., O’Reilly, R.C., 1995. Why there are
complementary learning systems in the hippocampus and neocortex: in-
sights from the successes and failures of connectionist models of learning
and memory. Psychological review 102, 419.

McCloskey, M., Cohen, N.J., 1989. Catastrophic interference in
connectionist networks: The sequential learning problem, Aca-
demic Press. volume 24 of Psychology of Learning and Moti-
vation, pp. 109–165. URL: https://www.sciencedirect.com/

science/article/pii/S0079742108605368, doi:https://doi.org/10.
1016/S0079-7421(08)60536-8.

Mendez, J.A., Wang, B., Eaton, E., 2020. Lifelong policy gradi-
ent learning of factored policies for faster training without forgetting.
CoRR abs/2007.07011. URL: https://arxiv.org/abs/2007.07011,
arXiv:2007.07011.

Mermillod, M., Bugaiska, A., Bonin, P., 2013. The stability-plasticity
dilemma: investigating the continuum from catastrophic forgetting to
age-limited learning effects. Frontiers in Psychology 4. URL: https:

//www.frontiersin.org/article/10.3389/fpsyg.2013.00504, doi:10.
3389/fpsyg.2013.00504.

Mnih, V., Badia, A.P., Mirza, M., Graves, A., Lillicrap, T., Harley, T., Silver,
D., Kavukcuoglu, K., 2016. Asynchronous methods for deep reinforcement
learning, in: International conference on machine learning, PMLR. pp.
1928–1937.

64

http://arxiv.org/abs/2112.09670
http://arxiv.org/abs/2112.09670
https://www.sciencedirect.com/science/article/pii/S0022537172800495
https://www.sciencedirect.com/science/article/pii/S0022537172800495
http://dx.doi.org/https://doi.org/10.1016/S0022-5371(72)80049-5
http://dx.doi.org/https://doi.org/10.1016/S0022-5371(72)80049-5
https://www.sciencedirect.com/science/article/pii/S0079742108605368
https://www.sciencedirect.com/science/article/pii/S0079742108605368
http://dx.doi.org/https://doi.org/10.1016/S0079-7421(08)60536-8
http://dx.doi.org/https://doi.org/10.1016/S0079-7421(08)60536-8
https://arxiv.org/abs/2007.07011
http://arxiv.org/abs/2007.07011
https://www.frontiersin.org/article/10.3389/fpsyg.2013.00504
https://www.frontiersin.org/article/10.3389/fpsyg.2013.00504
http://dx.doi.org/10.3389/fpsyg.2013.00504
http://dx.doi.org/10.3389/fpsyg.2013.00504

Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra,
D., Riedmiller, M., 2013. Playing atari with deep reinforcement learn-
ing. URL: https://arxiv.org/abs/1312.5602, doi:10.48550/ARXIV.
1312.5602.

Mundt, M., Lang, S., Delfosse, Q., Kersting, K., 2022. CLEVA-compass:
A continual learning evaluation assessment compass to promote re-
search transparency and comparability, in: International Conference on
Learning Representations. URL: https://openreview.net/forum?id=

rHMaBYbkkRJ.

Narvekar, S., Peng, B., Leonetti, M., Sinapov, J., Taylor, M.E., Stone, P.,
2020. Curriculum learning for reinforcement learning domains: A frame-
work and survey. Journal of Machine Learning Research 21, 1–50.

New, A., Baker, M., Nguyen, E., Vallabha, G., 2022. Lifelong learning met-
rics. URL: https://arxiv.org/abs/2201.08278, doi:10.48550/ARXIV.
2201.08278.

Nguyen, C.V., Li, Y., Bui, T.D., Turner, R.E., 2018. Variational continual
learning, in: International Conference on Learning Representations. URL:
https://openreview.net/forum?id=BkQqq0gRb.

Nguyen, E., 2022a. lifelong-learning-systems/l2logger: l2logger v1.8.2-
zenodo. URL: https://doi.org/10.5281/zenodo.6582400, doi:10.
5281/zenodo.6582400.

Nguyen, E., 2022b. lifelong-learning-systems/l2metrics: l2metrics v3.1.0-
zenodo. URL: https://doi.org/10.5281/zenodo.6582396, doi:10.
5281/zenodo.6582396.

Nikishin, E., Schwarzer, M., D’Oro, P., Bacon, P.L., Courville, A., 2022. The
primacy bias in deep reinforcement learning, in: Chaudhuri, K., Jegelka, S.,
Song, L., Szepesvari, C., Niu, G., Sabato, S. (Eds.), Proceedings of the 39th
International Conference on Machine Learning, PMLR. pp. 16828–16847.
URL: https://proceedings.mlr.press/v162/nikishin22a.html.

NIST/SEMATECH, 2012. e-Handbook of Statistical Methods. URL: https:
//doi.org/10.18434/M32189.

65

https://arxiv.org/abs/1312.5602
http://dx.doi.org/10.48550/ARXIV.1312.5602
http://dx.doi.org/10.48550/ARXIV.1312.5602
https://openreview.net/forum?id=rHMaBYbkkRJ
https://openreview.net/forum?id=rHMaBYbkkRJ
https://arxiv.org/abs/2201.08278
http://dx.doi.org/10.48550/ARXIV.2201.08278
http://dx.doi.org/10.48550/ARXIV.2201.08278
https://openreview.net/forum?id=BkQqq0gRb
https://doi.org/10.5281/zenodo.6582400
http://dx.doi.org/10.5281/zenodo.6582400
http://dx.doi.org/10.5281/zenodo.6582400
https://doi.org/10.5281/zenodo.6582396
http://dx.doi.org/10.5281/zenodo.6582396
http://dx.doi.org/10.5281/zenodo.6582396
https://proceedings.mlr.press/v162/nikishin22a.html
https://doi.org/10.18434/M32189
https://doi.org/10.18434/M32189

Parisi, G.I., Kemker, R., Part, J.L., Kanan, C., Wermter, S., 2019.
Continual lifelong learning with neural networks: A review. Neu-
ral Networks 113, 54–71. URL: https://www.sciencedirect.com/

science/article/pii/S0893608019300231, doi:https://doi.org/10.
1016/j.neunet.2019.01.012.

Powers, S., Xing, E., Kolve, E., Mottaghi, R., Gupta, A., 2021. Cora: Bench-
marks, baselines, and metrics as a platform for continual reinforcement
learning agents. arXiv:2110.10067.

Prado, D.B., Koh, Y.S., Riddle, P., 2020. Towards knowledgeable supervised
lifelong learning systems. J. Artif. Intell. Res. 68, 159–224. URL: https:
//doi.org/10.1613/jair.1.11432, doi:10.1613/jair.1.11432.

Pratt, L.Y., 1992. Discriminability-based transfer between neural networks,
in: Proceedings of the 5th International Conference on Neural Information
Processing Systems, Morgan Kaufmann Publishers Inc., San Francisco,
CA, USA. p. 204–211.

Pratt, L.Y., Mostow, J., Kamm, C.A., 1991. Direct transfer of learned in-
formation among neural networks, in: Proceedings of the Ninth National
Conference on Artificial Intelligence - Volume 2, AAAI Press. p. 584–589.

Raghavan, A., Hostetler, J., Sur, I., Rahman, A., Divakaran, A., 2020. Life-
long Learning using Eigentasks:Task Separation, Skill Acquisition, and
Selective Transfer, in: 4th Lifelong Machine Learning Workshop, Proceed-
ings of the 37th International Conference on Machine Learning (ICML),
PMLR.

Ramakrishnan, S.K., Al-Halah, Z., Grauman, K., 2020. Occupancy anticipa-
tion for efficient exploration and navigation, in: European Conference on
Computer Vision, Springer. pp. 400–418.

Ratcliff, R., 1990. Connectionist models of recognition memory: constraints
imposed by learning and forgetting functions. Psychol Rev 97, 285–308.

Ring, M.B., 1997. Child: A first step towards continual learning.
Machine Learning 28, 77–104. URL: https://doi.org/10.1023/A:

1007331723572, doi:10.1023/A:1007331723572.

66

https://www.sciencedirect.com/science/article/pii/S0893608019300231
https://www.sciencedirect.com/science/article/pii/S0893608019300231
http://dx.doi.org/https://doi.org/10.1016/j.neunet.2019.01.012
http://dx.doi.org/https://doi.org/10.1016/j.neunet.2019.01.012
http://arxiv.org/abs/2110.10067
https://doi.org/10.1613/jair.1.11432
https://doi.org/10.1613/jair.1.11432
http://dx.doi.org/10.1613/jair.1.11432
https://doi.org/10.1023/A:1007331723572
https://doi.org/10.1023/A:1007331723572
http://dx.doi.org/10.1023/A:1007331723572

Rodŕıguez, N.D., Lomonaco, V., Filliat, D., Maltoni, D., 2018. Don’t
forget, there is more than forgetting: new metrics for continual learn-
ing. CoRR abs/1810.13166. URL: http://arxiv.org/abs/1810.13166,
arXiv:1810.13166.

Samvelyan, M., Kirk, R., Kurin, V., Parker-Holder, J., Jiang, M., Ham-
bro, E., Petroni, F., Kuttler, H., Grefenstette, E., Rocktäschel, T., 2021.
Minihack the planet: A sandbox for open-ended reinforcement learn-
ing research, in: Thirty-fifth Conference on Neural Information Process-
ing Systems Datasets and Benchmarks Track (Round 1). URL: https:
//openreview.net/forum?id=skFwlyefkWJ.

Savva, M., Abhishek, K., Maksymets, O., Zhao, Y., Wijmans, E., Jain, B.,
Straub, J., Liu, J., Koltun, V., Malik, J., Parikh, D., Batra, D., 2019.
Habitat: A Platform for Embodied AI Research, in: Proceedings of the
IEEE/CVF International Conference on Computer Vision (ICCV).

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., Klimov, O., 2017.
Proximal policy optimization algorithms. CoRR abs/1707.06347. URL:
http://arxiv.org/abs/1707.06347, arXiv:1707.06347.

Schwarz, J., Luketina, J., Czarnecki, W.M., Grabska-Barwinska, A., Teh,
Y.W., Pascanu, R., Hadsell, R., 2018. Progress & compress: A scalable
framework for continual learning. URL: https://arxiv.org/abs/1805.
06370, doi:10.48550/ARXIV.1805.06370.

Shah, S., Dey, D., Lovett, C., Kapoor, A., 2018. Airsim: High-fidelity visual
and physical simulation for autonomous vehicles, in: Field and service
robotics, Springer.

Sharkey, N.E., Sharkey, A.J.C., 1993. Adaptive generalisation. Artifi-
cial Intelligence Review 7, 313–328. URL: https://doi.org/10.1007/
BF00849058, doi:10.1007/BF00849058.

Shin, H., Lee, J.K., Kim, J., Kim, J., 2017. Continual learning with deep
generative replay, in: Proceedings of the 31st International Conference
on Neural Information Processing Systems, Curran Associates Inc., Red
Hook, NY, USA. p. 2994–3003.

67

http://arxiv.org/abs/1810.13166
http://arxiv.org/abs/1810.13166
https://openreview.net/forum?id=skFwlyefkWJ
https://openreview.net/forum?id=skFwlyefkWJ
http://arxiv.org/abs/1707.06347
http://arxiv.org/abs/1707.06347
https://arxiv.org/abs/1805.06370
https://arxiv.org/abs/1805.06370
http://dx.doi.org/10.48550/ARXIV.1805.06370
https://doi.org/10.1007/BF00849058
https://doi.org/10.1007/BF00849058
http://dx.doi.org/10.1007/BF00849058

Silver, D., Yang, Q., Li, L., 2013. Lifelong machine learning systems: Beyond
learning algorithms URL: https://www.aaai.org/ocs/index.php/SSS/
SSS13/paper/view/5802.

Smith, J., Taylor, C., Baer, S., Dovrolis, C., 2021. Unsupervised progres-
sive learning and the stam architecture, in: Proceedings of the Thirtieth
International Joint Conference on Artificial Intelligence, IJCAI-21.

Stojanov, S., Mishra, S., Thai, N.A., Dhanda, N., Humayun, A., Yu, C.,
Smith, L.B., Rehg, J.M., 2019. Incremental object learning from con-
tiguous views, in: 2019 IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), pp. 8769–8778. doi:10.1109/CVPR.2019.
00898.

Sur, I., Daniels, Z., Rahman, A., Faber, K., Gallardo, J., Hayes, T., Taylor,
C., Gurbuz, M.B., Smith, J., Joshi, S., Japkowicz, N., Baron, M., Kira,
Z., Kanan, C., Corizzo, R., Divakaran, A., Piacentino, M., Hostetler, J.,
Raghavan, A., 2022. System design for an integrated lifelong reinforce-
ment learning agent for real-time strategy games, in: 2022 International
Conference on AI-ML Systems (AIMLSystems), ACM.

Tan, M., Le, Q., 2019. EfficientNet: Rethinking model scaling for convo-
lutional neural networks, in: Chaudhuri, K., Salakhutdinov, R. (Eds.),
Proceedings of the 36th International Conference on Machine Learning,
PMLR. pp. 6105–6114. URL: https://proceedings.mlr.press/v97/

tan19a.html.

Taylor, M.E., Stone, P., 2007. Cross-domain transfer for reinforcement
learning, in: Proceedings of the 24th International Conference on Ma-
chine Learning, Association for Computing Machinery, New York, NY,
USA. p. 879–886. URL: https://doi.org/10.1145/1273496.1273607,
doi:10.1145/1273496.1273607.

Tutum, Abdulquddos, Miikkulainen, 2021. Generalization of agent behavior
through explicit representation of context. Proceedings of the Third IEEE
Conference on Games .

van de Ven, G.M., Tolias, A.S., 2018. Generative replay with feedback con-
nections as a general strategy for continual learning. arXiv:1809.10635 [cs,
stat] URL: http://arxiv.org/abs/1809.10635. arXiv: 1809.10635.

68

https://www.aaai.org/ocs/index.php/SSS/SSS13/paper/view/5802
https://www.aaai.org/ocs/index.php/SSS/SSS13/paper/view/5802
http://dx.doi.org/10.1109/CVPR.2019.00898
http://dx.doi.org/10.1109/CVPR.2019.00898
https://proceedings.mlr.press/v97/tan19a.html
https://proceedings.mlr.press/v97/tan19a.html
https://doi.org/10.1145/1273496.1273607
http://dx.doi.org/10.1145/1273496.1273607
http://arxiv.org/abs/1809.10635

van de Ven, G.M., Tolias, A.S., 2019a. Three scenarios for continual learn-
ing. CoRR abs/1904.07734. URL: http://arxiv.org/abs/1904.07734,
arXiv:1904.07734.

van de Ven, G.M., Tolias, A.S., 2019b. Three scenarios for continual learning.
URL: https://arxiv.org/abs/1904.07734, doi:10.48550/ARXIV.1904.
07734.

Vinyals, O., Ewalds, T., Bartunov, S., Georgiev, P., Vezhnevets, A.S., Yeo,
M., Makhzani, A., Küttler, H., Agapiou, J.P., Schrittwieser, J., Quan, J.,
Gaffney, S., Petersen, S., Simonyan, K., Schaul, T., van Hasselt, H., Silver,
D., Lillicrap, T.P., Calderone, K., Keet, P., Brunasso, A., Lawrence, D.,
Ekermo, A., Repp, J., Tsing, R., 2017. Starcraft II: A new challenge for
reinforcement learning. CoRR abs/1708.04782. URL: http://arxiv.org/
abs/1708.04782, arXiv:1708.04782.

Yanguas-Gil, A., Mane, A., Elam, J.W., Wang, F., Severa, W., Daram,
A.R., Kudithipudi, D., 2019. The insect brain as a model system for low
power electronics and edge processing applications, in: 2019 IEEE Space
Computing Conference (SCC), pp. 60–66. doi:10.1109/SpaceComp.2019.
00012.

Zenke, F., Poole, B., Ganguli, S., 2017. Continual learning through synap-
tic intelligence, in: Proceedings of the 34th International Conference on
Machine Learning - Volume 70, JMLR.org. p. 3987–3995.

Zhang, Y., Yang, Q., 2021. A survey on multi-task learning. IEEE Transac-
tions on Knowledge and Data Engineering , 1–1doi:10.1109/TKDE.2021.
3070203.

Zheng, Z., Oh, J., Hessel, M., Xu, Z., Kroiss, M., Van Hasselt, H., Silver,
D., Singh, S., 2020. What can learned intrinsic rewards capture?, in:
International Conference on Machine Learning, PMLR. pp. 11436–11446.

Zhou, K., Liu, Z., Qiao, Y., Xiang, T., Loy, C.C., 2022. Domain general-
ization: A survey. IEEE Transactions on Pattern Analysis and Machine
Intelligence , 1–20doi:10.1109/TPAMI.2022.3195549.

Zhu, Z., Lin, K., Zhou, J., 2020. Transfer learning in deep reinforcement
learning: A survey. CoRR abs/2009.07888. URL: https://arxiv.org/
abs/2009.07888, arXiv:2009.07888.

69

http://arxiv.org/abs/1904.07734
http://arxiv.org/abs/1904.07734
https://arxiv.org/abs/1904.07734
http://dx.doi.org/10.48550/ARXIV.1904.07734
http://dx.doi.org/10.48550/ARXIV.1904.07734
http://arxiv.org/abs/1708.04782
http://arxiv.org/abs/1708.04782
http://arxiv.org/abs/1708.04782
http://dx.doi.org/10.1109/SpaceComp.2019.00012
http://dx.doi.org/10.1109/SpaceComp.2019.00012
http://dx.doi.org/10.1109/TKDE.2021.3070203
http://dx.doi.org/10.1109/TKDE.2021.3070203
http://dx.doi.org/10.1109/TPAMI.2022.3195549
https://arxiv.org/abs/2009.07888
https://arxiv.org/abs/2009.07888
http://arxiv.org/abs/2009.07888

Zhuang, F., Qi, Z., Duan, K., Xi, D., Zhu, Y., Zhu, H., Xiong, H., He, Q.,
2019. A comprehensive survey on transfer learning. CoRR abs/1911.02685.
URL: http://arxiv.org/abs/1911.02685, arXiv:1911.02685.

Zou, Kolouri, Pilly, Krichmar, 2020. Neuromodulated attention and goal-
driven perception in uncertain domains. Neural Networks 125, 56–69.

70

http://arxiv.org/abs/1911.02685
http://arxiv.org/abs/1911.02685

	1 Introduction
	2 Background
	2.1 Evaluation Scenarios for Different Learning Paradigms
	2.2 Metrics for Different Learning Paradigms
	2.3 DARPA L2M Program Context
	2.4 Evaluation of LL systems

	3 Evaluation Approach
	3.1 Conditions of Lifelong Learning
	3.2 Evaluation Scenarios
	3.3 Evaluation Protocols

	4 Lifelong Learning Metric Definitions
	4.1 Application-specific measures
	4.2 Continuous Learning Metrics
	4.2.1 Performance Maintenance (PM)
	4.2.2 LL threshold value for Performance Maintenance

	4.3 Transfer and Adaptation Metrics
	4.3.1 Forward Transfer (FT)
	4.3.2 Backward Transfer (BT)
	4.3.3 LL Thresholds for Forward and Backward Transfer

	4.4 Scalability Metrics
	4.4.1 Performance Relative to a Single Task Expert (RP)
	4.4.2 Sample Efficiency (SE)
	4.4.3 LL Thresholds for Relative Performance and Sample Efficiency

	5 Case Studies with Lifelong Learning Systems
	5.1 System Group UPenn - AIHabitat
	5.1.1 System Overview
	5.1.2 Classification Experimental Context
	5.1.3 Classification Experimental Results
	5.1.4 Reinforcement Learning Experimental Context
	5.1.5 Reinforcement Learning Experimental Results

	5.2 System Group Teledyne - AirSim
	5.2.1 System Overview
	5.2.2 Experimental Context
	5.2.3 Experimental Results

	5.3 System Group HRL - CARLA
	5.3.1 System Overview
	5.3.2 Experimental Context
	5.3.3 Experimental Results

	5.4 System Group Argonne - L2Explorer
	5.4.1 System Overview
	5.4.2 Experimental Context
	5.4.3 Experimental Results

	5.5 System Group SRI - StarCraft II
	5.5.1 System Overview
	5.5.2 Experimental Context
	5.5.3 Experimental Results

	5.6 Summary of Case Studies of Systems Demonstrating LL

	6 Discussion
	6.1 LL Performance Trade-offs
	6.2 General Considerations for Formulation and Use of Metrics

	7 Conclusion
	8 Acknowledgements
	9 Disclaimer
	Appendix A Terminology
	Appendix B Supplementary Information about Scenarios
	Appendix B.1 Condensed and Dispersed Scenarios
	Appendix B.2 Example evaluation scenario

	Appendix C Additional details on metrics
	Appendix C.1 Notation for describing metrics and blocks
	Appendix C.2 Metric Formulations

	Appendix D Statistical Reliability
	Appendix E Summary of Tasks used in SG Case Studies
	Appendix F T-Test Values for SG Case Study Data
	Appendix G Computational Costs of Lifelong Learning

