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�e computational complexity of one-dimensional time fractional reaction-di	usion equation is�(�2�) compared with�(��)
for classical integer reaction-di	usion equation. Parallel computing is used to overcome this challenge. Domain decomposition
method (DDM) embodies large potential for parallelization of the numerical solution for fractional equations and serves as a basis
for distributed, parallel computations. A domain decomposition algorithm for time fractional reaction-di	usion equation with
implicit 
nite di	erence method is proposed. �e domain decomposition algorithm keeps the same parallelism but needs much
fewer iterations, compared with Jacobi iteration in each time step. Numerical experiments are used to verify the e�ciency of the
obtained algorithm.

1. Introduction

Fractional equations can be used to describe some physi-
cal phenomenon more accurately than the classical integer
order di	erential equation. �e reaction-di	usion equations
play an important role in dynamical systems of mathemat-
ics, physics, chemistry, bioinformatics, 
nance, and other
research areas. �ere has been a wide variety of analytical
and numericalmethods proposed for fractional equations [1–
7], for example, 
nite di	erence method [8], 
nite element
method [9], Adomian decompositionmethod [10], and spec-
tral technique [11]. Interest in fractional reaction-di	usion
equations has increased [12].

Domain decomposition methods (DDM) solve a bound-
ary value problem by splitting it into smaller boundary
value problems on subdomains and iterating it to coordinate
the solution between adjacent subdomains [13]. A coarse
problem with one or few unknowns per subdomain is used
to further coordinate the solution between the subdomains
globally. �e DDM can be divided into two categories: the

overlapping and nonoverlapping [14]. Chan and Mathew
[15] gave a survey on iterative domain decomposition tech-
niques that had been developed for solving several kinds
of partial di	erential equations, including elliptic, parabolic,
and di	erential systems such as the Stokes problem and
mixed formulations of elliptic problems.�e problems on the
subdomains are almost independent, which makes domain
decomposition methods suitable for parallel computing.
Parallel computing is used to solve intensive computation
applications simultaneously [16], such as particle transport
[17, 18] and fast multipole methods [19]. It is time consuming
to numerically solve fractional di	erential equations for long
time tail. Parallel computing [20–22] can be used to overcome
the computational challenge of fractional approximation.
DDM will embody large potential for a parallelization of
the numerical solution for fractional equations. Until today
the power of DDM for approximating fractional derivatives
and solving fractional di	erential equations has not been
recognized.
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�is paper focuses on the Caputo fractional reaction-
di	usion equation:

�
0��� � (�, �) + 	� (�, �)

= 
2� (�, �)
�2 + �� (�, �) , (0 <  < 1) ,
� (�, 0) = � (�) , � ∈ [0, ��] ,� (0, �) = � (��, �) = 0, � ∈ [0, �]

(1)

on a 
nite domain 0 ≤ � ≤ �� and 0 ≤ � ≤ �. �e 	 > 0
and� are constants. If  equals 1, (1) is the classical reaction-
di	usion equation. �e fractional derivative is in the Caputo
form.

2. Background

2.1. Numerical Solution. �e fractional derivative of �(�) in
the Caputo sense is de
ned as [23]

�
0��� � (�) = 1Γ (1 − ) ∫�0 �� (�)(� − �)� ��, (0 <  < 1) . (2)

If ��(�) is continuous bounded derivatives in [0, �] for
every � > �, we can get

0���(�)� = lim
�→0,
�=�

�� 
∑
�=0
(−1)� (�)

= � (0) �−�Γ (1 − ) + 1Γ (1 − ) ∫�0 �� (�)(� − �)� ��.
(3)

De
ne � = �/�, ℎ = ��/(�+1), �
 = !�, and �� = 0+ �ℎ
for 0 ≤ ! ≤ �, 0 ≤ � ≤ � + 1. De
ne �
� , �
� , and �� as the
numerical approximation to �(��, �
),�(��, �
), and �(��). We
can get [12]

�
0��� �(�, �)|���� = 1�Γ (1 − )

× [#0�
� − 
−1∑
=1

(#
−−1 − #
−) �� − #
−1�0� ]
+ ⃝ (�2−�) ,

(4)

where 1 ≤ � ≤ �, ! ≥ 1, and
#� = �1−�1 −  [(2 + 1)1−� − 21−�] , 2 ≥ 0. (5)

By using center di	erence scheme for 
2�(�, �)/
�2, we
can get


2� (�, �)
�2 444444444���� = 1ℎ2 (�
�+1 − 2�
� + �
�−1) + ⃝ (ℎ2) . (6)

�e implicit 
nite di	erence approximation for (1) is1�Γ (1 − ) [#0�
� − 
−1∑=1 (#
−−1 − #
−) �� − #
−1�0� ] + 	�
�
= �
�+1 − 2�
� + �
�−1ℎ2 + ��
� .

(7)

De
ne 6 = 2/ℎ2 + #0�−1/Γ(1 − ) + 	, 7
 =(�
1 , �
2 , . . . , �
�)�, 8
 = (�
1 , �
2 , . . . , �
�)�, and 9� as9� = #� − #�+16 . (8)

Equation (7) evolves as

:7
 = 
−1∑
=1

9
−1−7 + #
−170 + �8
, (9)

where matrix : is a tridiagonal matrix, de
ned by

:�×� = (((((
(

6 − 1ℎ2− 1ℎ2 6 − 1ℎ2⋅ ⋅ ⋅⋅ ⋅ − 1ℎ2− 1ℎ2 6
)))))
)

. (10)

Because 	 > 0, #0 > 0, the elements of matrix : satisfy|6| > | − 1/ℎ2| + | − 1/ℎ2|. �is means that matrix : is strictly
diagonally dominant.

2.2. Computational Challenge. In order to get 7
, the right-
sided computation of (9) should be performed and tridi-
agonal linear system should be solved. �ere are mainly
many constant vectormultiplications andmany vector vector
additions in the right-sided computation.

(1) �e constant vector multiplications are E� = #
−170,E = 9
−1−7, and E�� = �8
.
(2) �e vector vector additions areE = E�+∑
−1=1 E+E��.
(3) A�er solving tridiagonal linear system :7
+1 = E,

we get 7
+1.
�e �omas algorithm for tridiagonal systems needs5� multiplications and 3� additions. �e computational

complexity of :7
 = E is �(�). �e total computation of

(9) is determined by ∑
−1=1 9
−1−7, which means (! − 1)�
multiplications and (! − 2)� additions for each time step;

�∑

=1

(2!� − 3�) = � (�2�) . (11)

�e computational complexity of (1) is �(�2�), while
the computational complexity of classical one-dimensional
reaction-di	usion equation is only �(��). �e computa-
tional cost of (11) varies linearly along the number of grid
points but squares with the number of time steps.
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3. Domain Decomposition Method

3.1. DDM with Two Subdomains. Similar to the classical
alternating Schwarz method [13, 24], the domain Ω =[0, ��] = J0, J1, . . . , J� can be divided into two subdomainsΩ� and Ω�. �ere are � + 1 grid points for Ω. Ω� ={J0, J1, . . . , J�, J�+1} and Ω� = {J�, J�+1, . . . , J�}, where0 < K < �. �e global physical boundary is de
ned in (1).
Ω� (the right boundary of Ω�) and 
Ω� (the le� boundary
ofΩ�) are called arti
cial internal boundary.

In order to approximate the time fractional equation
on the two subdomains separately, the following iterative
procedure can be performed. For each time step, the right
hand side of (9) is calculated at 
rst and the 7
Ω� is given as

initial guess 7
−1Ω� , where � = �, #. �e better approximation

of 7
Ωi can be obtained iteratively. During each iteration,

which is inside of a time step, the time fractional equation is
solved in the subdomain Ω�, using the approximation of the
previous iteration fromΩ� on 
Ω� as follows:

�
0��� � (�, �) + 	� (�, �)

= 
2� (�, �)
�2 + �� (�, �) , (0 <  < 1) ,
� (�, 0) = � (�) , � ∈ [0, ��] ,� (�, 0) = �
�,�+1, previous, � on 
Ω�,� (0, �
) = 0,

(12)

where �
�,�+1, previous stands for the previous solution of grid

point J�+1 in subdomain Ω�. �e better approximation7
�, new is obtained.7
�, new is de
ned as {�
�, 1, new, . . . , �
�,�, new}.7
�, previous is de
ned as {�
�, 1, previous, . . . , �
�,�, previous}. �e

de
nitions for 7
�, previous and 7
�, new are similar.

�en, we solve the time fractional equation within the
subdomain of Ω�, using the approximation of the previous
iteration fromΩ� on 
Ω� as follows:
�
0��� � (�, �) + 	� (�, �)

= 
2� (�, �)
�2 + �� (�, �) , (0 <  < 1) ,
� (�, 0) = � (x) , � = ��� (�, 0) = �
�,�, previous, � on 
Ω�� (��, �
) = 0,

(13)

where �
�,�, previous stands for the previous solution of grid

point J� in subdomainΩ�.
�e two local time fractional equations in Ω� and Ω�

are connected by the arti
cial boundary condition. �e
arti
cial boundary condition on the internal boundary 
Ω�
of subdomain Ω� is provided by �
�,�+1, previous from sub-

domain Ω�, and vice versa. �e approximation �
�,�, previous
and �
�,�+1, previous may change until converged to the true

solution. So, in an inner iteration of each time step, the two

time fractional equations need to exchange two sets of data
(send one and receive one) to update the arti
cial boundary
conditions.

3.2. A Domain Decomposition Algorithm. Section 3.1 shows
the procedure of DDM for time fractional equation with
two subdomains. It is not hard to extend the method of
Section 3.1 to more than two subdomains. �e domain Ω
can be decomposed into a set of L subdomains {Ω�}��=1 withΩ = ∪��=1Ω�. For time step !, Ω1 has one global boundary� = 0 and one arti
cial inner boundary 
Ω1,�. Ω� has one
global boundary � = �� and one arti
cial inner boundary
Ω�,�.�eΩ� (1 < J < L) has two arti
cial inner boundaries
Ω�,� and 
Ω�,�. Ω� ∩ Ω�+1 ̸= Φmeans that the neighboring
subdomains have explicit overlap.

�e iterative procedure for the time step ! + 1 is similar
to Section 3.1. �e current iteration of Ω� uses the data of
previous iteration of its neighboring subdomains. Assuming� is divisible with L, the domain decomposition algorithm
is shown in Algorithm 1.

In Algorithm 1, there are some fast algorithms to solve

the tridiagonal matrix :1→�, 3, �E31→�, � = E21→�, �, such
as �omas algorithm. Q is a threshold, such as 10−6. �e
signal 2RS�2T�U9���R! is used to count how many iterations
are needed in each time step. �e data exchange between
neighboring iterations is shown in lines 19–22. From the
view of computer science, lines 2–6, lines 7–30, and lines
31-32 are preprocessing procedure, numerical solver, and
postprocessing procedure.

3.3. Analysis. �e presented DD algorithm updates the arti-

cial boundary condition in a Jacobi fashion, using approx-
imation from all the relevant neighboring subdomains from
the previous iteration for each time step. A subdomain only
exchanges two sets of data for one arti
cial boundary with
its neighbor.�erefore, the subdomain solved in Algorithm 1
can be carried out almost completely independently, thus
making the method inherently as parallel as the Jacobi
iteration. �e DD algorithm keeps the good parallelism of
Jacobi iteration but needs fewer inner iterations in each
time step; see Section 4. Equation (9) can be regarded as
approximation of a special integer order reaction-di	usion
equation. �e stability and convergence analysis of integer
order reaction-di	usion equation can refer toMathew’s book
[25].

4. Numerical Example

�e following Caputo fractional reaction-di	usion equation
[12] was considered, as shown in (14):

�
0��� � (�, �) + 	� (�, �)

= 
2� (�, �)
�2 + �� (�, �) , (0 <  < 1) ,
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(1) [ℎ!] input:�,L, ��, �, 	, �, Q et al.
Output:7

(2) T ← �/L
(3) Allocate memory space 7��,�, :�,3,�, 8��,�, E3�,� et al.
(4) Init matrices 7,:, 8, #, 9 et al.
(5) Declare local variables W�, W
(6) E1→31→�,1→� ← 0
(7) Get 701→�,1→� with initial boundary.
(8) �R��2T�U9���R! ← 0
(9) for ! = 0 to � − 1 step by 1 do
(10) forJ = 1 to L step by 1 do
(11) 7
+11→�,� ← #
701→�,� + �8
+11→�,�
(12) for X = 1 to ! step by 1 do
(13) 7
+11→�,� ← 7
1→�,� + 71→�,�9
−
(14) W ← 1.0
(15) 2RS�2T�U9���R! ← 0
(16) while W > Q do
(17) forJ = 1 to L step by 1 do
(18) E21→�,� ← 7
+11→�,�
(19) if J > 1 then
(20) E21,� ← E21,� + E1�,�−1/ℎ2
(21) if J < L then

(22) E2�,� ← E2�,� + E1�,�+1/ℎ2
(23) forJ = 1 to L step by 1 do
(24) solve :1→�,3,�E31→�,� = E21→�,�
(25) W� = max {44444E1�,� − E3�,�44444��=1}
(26) W = max {W, W�}
(27) 2RS�2T�U9���R! ← 2RS�2T�U9���R! + 1
(28) �R��2T�U9���R! ← �R��2T�U9���R! + SR�!�
(29) forJ = 1 toL step by 1 do
(30) 7
+11→�,� ← E31→�,�
(31) Output the information
(32) Free memory space

Algorithm 1: Domain decomposition algorithm for time fractional reaction-di	usion equation.

� (�, 0) = 0, � ∈ (0, 2) ,� (0, �) = � (2, �) = 0
(14)

with 	 = 1, � = 1, and
� (�, �) = 2Γ (2.3)� (2 − �) �1.3 + � (2 − �) �2 + 2�2. (15)

�e exact solution of (14) is� (�, �) = � (2 − �) �2. (16)

With Q = 10−6, � = 1.0, �� = 2.0, and L = 3,
the comparison between exact solution and the presented
DD algorithm is shown in Table 1. We can 
nd that the DD
algorithm compares well with the exact solution.

We can replace the DDM (lines 16–27 of Algorithm 1)
with Jacobi method. �e Jacobi method for a time step has
the same parallelism with the DD algorithm. But the Jacobi

method needs more iterations. With Q = 10−6 and L = 3,

Table 1: Comparing exact solution and DD algorithm.ℎ � Δ
2/10 1/10 8.36 × 10−3
2/10 1/20 3.44 × 10−3
2/61 1/61 7.84 × 10−4
2/61 1/100 4.02 × 10−4
2/100 1/300 6.10 × 10−5

Table 2: Comparing Jacobi method and DDM.ℎ � Jacobi method DDM

2/10 1/10 741 250

2/10 1/20 1147 378

2/61 1/61 52423 3155

2/61 1/100 67164 4138

2/100 1/300 276243 11373

the comparison between Jacobi method and the presented
DD algorithm is shown in Table 2. �e sum of “count” (total
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iterations) for all time steps is recorded. We can see that the
DDM needs much less iterations than Jacobi method.

As a part of the future work, we would like to implement
an e�cient DDM for time fractional equations on parallel
computer systems, for example, Tianhe-1A supercomputer
[26].
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