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Abstract—Developing context-aware homes involves a range of
stakeholders, addressing many dimensions such as service design
and development, infrastructure deployment, and maintenance.
Such a variety of dimensions often translate into heterogeneous,
low-level, silo-based processing of sensor data to extract context
information.

This paper analyzes a range of existing data processing layers
in the domain of aging in place to identify key concepts and
operations specific to context-aware processing. Based on this
analysis, we introduce a context-aware, domain-specific language
and its software architecture, which allow to put in synergy
the stakeholders of a context-aware home by providing them
with a unified approach to designing and developing services.
Our approach offers context aware-specific abstractions and
notations, within a data-centric and data-driven paradigm.

We have validated our approach by applying it to an assisted
living platform for aging in place, deployed in the home of 129
users. In particular, we used our domain-specific language to re-
implement 53 existing services, originating from the stakeholders
of the assisted living platform. These services were deployed
and successfully tested for their effectiveness in performing the
specific tasks of the stakeholders, such as detection of daily
activities, user risk situations, or sensor failures.

Index Terms—context-aware, domain-specific, data-centric,
data-driven, aging in place, programming models

I. INTRODUCTION

The notion of context is fundamental to the field of per-

vasive computing and encompasses a range of dimensions,

including the physical world, an individual, their activities,

and their technologies [1]. A major focus of the research on

context awareness has been the home (e.g., [2], [3]). This

scope involves many context dimensions, including physical

interactions with the environment (i.e., sensors), digital in-

teractions with the user environment (e.g., email, calendar),

status of the many components of the pervasive computing

infrastructure (hardware, software, and network), application-

specific concerns (e.g., activity detection). When it comes to

context-aware homes for the general population, a recurring

challenge is to identify what services users would need [4],

and more generally, to develop methods to gather and analyze

these needs [5].

However, when focusing on older adults, this population is

ready to benefit from context-aware homes to support aging

in place. A pervasive computing environment has the potential

to deliver assistive services 24/7 and address the needs of

older adults, whose nature can be of utmost importance to

ensure independent living (e.g., [6]). These services mainly

consist of 1) detecting and reminding daily activities (e.g.,

meal preparation, self-care, going to bed) to maintain the

user’s functional status [7] and 2) monitoring potentially

hazardous situations (e.g., cooker, entrance door) to make the

user safe [6]. Because it crosscuts various fields, a context-

aware home dedicated to aging in place involves a variety

of stakeholders to design and develop assistive services, as

well as to deploy and maintain the underlying infrastructure.

Stakeholders include older users, caregivers, aging experts,

health professionals, application developers, and maintenance

technicians. This considerable diversity of stakeholders raises

correspondingly diverse context dimensions. Typically, each

stakeholder develops their own, silo-based approach to ex-

tracting their specific context information from sensed data.

This approach prevents any synergy between stakeholders

such as code/experience sharing, and favors the duplication

of solutions for detecting similar event patterns.

We analyzed existing data processing layers of multiple

stakeholders, extracted from an assisted living platform, de-

ployed in 129 single-occupant homes of older adults, aged

82 years old on average [8]. This case study thus consists

of a range of services, whose usefulness has been validated in

practice on a daily basis. Our analysis identifies commonalities

and variabilities of these layers, revealing key concepts and

operations specific to context-aware processing.

Our Approach: Based on this analysis, we introduce

a context-aware, domain-specific language and its software

architecture, which provide a conceptual framework and a tool

to unify the design and the development of home services.

To unify heterogeneous sources of sensed data, ranging from

hardware devices to software components, our approach pro-

motes a processing paradigm, which is data centric and data

driven. Specifically, our approach is data centric to provide a

canonical view of sensed data to a range of services, spanning

maintenance services consuming low-level device status, to

caregiving-specific services using high-level activity measures.

Our approach is data driven in that services are defined in

terms of rules processing events and states.

To unify the way services are developed, our approach in-

troduces abstractions and notations that are specific to context-



aware processing. The resulting domain-specific language

(DSL) covers the needs of the stakeholders and provides an

abstraction layer over underlying, well-established concepts

and technologies, such as Allen’s algebra to express sequences

of interactions [9] and complex-event-processing engines to

efficiently process the rules generated from DSL services

(e.g., [10]). Furthermore, we envision that our language can

serve as a high-level stepping stone to introduce end-user

programming languages for stakeholders with no computer-

programming background.

To validate our approach, we have re-implemented 53

services ranging over all the stakeholders of the assisted living

platform under study. These new services were deployed and

successfully tested for their effectiveness in performing the

specific tasks of the stakeholders: detection of daily activities,

user risks, and sensor failures.

To summarize, this paper makes the following contributions.

Domain analysis. We provide an analysis of context-aware

processing layers in the domain of aging in place. From this

analysis, we identify key concepts and operations specific to

context-aware processing.

Domain-specific language. We introduce a language, specific

to developing context-aware services, providing high-level

abstractions and notations. Underlying this language is a data-

centric and data-driven paradigm that allows services from

a range of stakeholders to uniformly process heterogeneous

sources of sensed data.

Compiler. We have implemented a compiler for our DSL that

maps high-level rules into low-level requests, crunched by an

event-processing engine.

Validation. We applied our approach to re-implement 53

services, ranging over all the stakeholders of an assisted living

platform dedicated to aging in place. The resulting services are

expressed at a high level and are effective in performing the

tasks of the stakeholders.

II. DOMAIN ANALYSIS

Context-aware homes for aging in place are still in their

infancy and the path to adoption is being actively re-

searched [11]. The literature include few articles reporting

on the deployment of assisted living platforms in the wild

(e.g., [12]). Fortunately, we have been able to leverage the

HomeAssist project to conduct a domain analysis of context-

aware homes for aging in place.

A. HomeAssist: A Context-Aware Home for Aging in Place

HomeAssist is an assisted living platform that provides a

catalog of assistive applications, supporting and monitoring

daily activities, safety and social participation1 [8]. Home-

Assist has been deployed in 129 single-occupant homes of

1HomeAsssist applications were designed to be proactive. They aim at
prolonging aging in place by preventing decline (e.g., by ensuring that daily
routines are regularly performed) and detecting early causes of decline (e.g.,
social isolation). Thus, they are complementary to more classical applications
such as fall detection, which aim at detecting the consequences of decline.

community-dwelling older adults, 82 years old on average.

The duration of this field study is 12 months.

HomeAssist is a perfect case study on which to build a

unifying approach to developing context-aware home services

dedicated to aging in place. It matches all the requirements to

pursue our goal: 1) it is deployed in the wild in real homes; 2)

it supports aging in place for frail users with pressing needs; 3)

the field study is long enough that maintenance and evolution

problems must be properly handled; 4) it is deployed at a

large enough scale that administering context-aware homes

need to be supported by services; 5) existing services reflect

a range of needs expressed by stakeholders, spanning older

users, caregivers, occupational therapists, psychologists, hu-

man factors experts, installation and maintenance technicians,

and computer scientists.

Let us further describe this platform to delimit the scope of

the issues raised by the context-aware services. HomeAssist

consists of a client-server architecture, where the server runs

as many virtual machines as they are context-aware homes.

Each virtual machine executes the assistive services selected

by the user and their caregiver. These assistive services are

fed with sensing data sent via Internet by a gateway, deployed

in the context-aware home. This gateway gathers information

from the sensors placed at strategic locations in the older

adult’s home to monitor their daily activities (see Caroux et

al. for more details [7]). As well, the gateway channels actions

from the services to the home’s actuators. In the HomeAssist

field study, a typical home consists of 4 contact sensors

(entrance door, fridge, drawers, cabinets), 6 motion detectors

(entrance area, kitchen, bathroom, etc.), and 2 smart plugs,

which measure the electricity consumption and turn on/off a

connected appliance (microwave, light path, coffeemaker, etc.).

The number and type of devices can vary depending on the

configuration of the home and the activities to be monitored.

Finally, the home is equipped with a stationary tablet, placed

at a central location in the home and always connected to a

power outlet. This tablet is dedicated to interacting with the

user via notifications emitted by assistive applications, which

need to alert the user of a given situation (e.g. unattended

entrance door left open) [13].

B. Scenarios To Support Aging In Place

We now present four scenarios that illustrate the spectrum

of stakeholders and concerns involved in supporting aging in

place with a context-aware home (see Figure 1). The first

scenario addresses the safety concern of the older adult. It

consists of monitoring the entrance door to ensure that it is

not left open for too long without being attended. The second

scenario relates to a caregiver’s need to monitor a user’s

daily activities, and in particular, their eating routines. The

last two scenarios address the home technician’s concerns to

keep the context-aware home in an operational state. The first

maintenance scenario detects inconsistent values produced,

or values omitted, by the motion detector of the kitchen.

This situation is discovered by cross-checking the motion

detector information with that of the contact sensor of the



Stakeholder Domain Name Description

Older adult Safety Door Alert Entrance door is open and is unattended . . .for. . .5 . . . . . . . . .minutes

Caregiver
Daily

Activities

Reheating

A Frozen Meal
Freezer gets used and stove gets turned on . . . . . .within. . .10. . . . . . . . .minutes or Freezer

gets used during stove is on, during lunch time (or dinner time)

Home

Technician
Maintenance

Presence

Dependency
Whenever the cupboard gets opened in the kitchen, a presence in the

kitchen is true

Home

Technician
Maintenance

Communication

Failure
A sensor fails to communicate . . .for. . . .24 . . . . . .hours and its status does not get

updated

Fig. 1. Example scenarios for assistive services

cupboard (or any other sensor located in that room). The

second maintenance scenario detects whether a sensor fails

to communicate; this situation occurs when the sensor has a

drained battery or is malfunctioning.

These scenarios offer a glimpse at the kind of context-aware

services needed to support aging in place. Some services, such

as “Door Alert”, can fit most older users. Other services may

target daily activities that require a level of personalization for

an effective monitoring. This is illustrated by the meal prepa-

ration activity and the “Reheating a Frozen Meal” scenario.

Similarly, for maintenance scenarios, “Communication Fail-

ure” applies to any context-aware home, whereas “Presence

Dependency” requires to instantiate the consistency rules with

respect to the locations of sensors.

C. Commonality and Variability Analysis

To analyze stakeholder needs, we have examined a range of

services offered by HomeAssist to identify their commonalities

and variabilities. These services were developed in Java using

a tool-based design methodology [14], [15].

We now present the outcomes of this analysis that take the

form of high-level, domain-specific concepts. These concepts

will pave the way to our domain-specific approach presented

in the next section.

Commonalities. All services refer to a notion of environment

from which to perform measures. These measures encompass

interactions in both a physical environment (e.g., a motion

detected) and a digital one (e.g., an event reminder issued by

a calendar). Additionally, we identified two complementary

concepts related to an environment: events and states. On

the one hand, an event defines an environment measure that

changes (e.g., door gets closed/open) – events are underlined

with a dashed line in the scenarios of Figure 1. On the other

hand, a state makes an event persistent across time (e.g., door

is open) – states are underlined with a solid line in Figure 1.

Once these unitary concepts were identified, we found specific

ways in which they can be combined, revealing composition

commonalities. Specifically, the combination of environment

measures can define an order in which interactions must occur

and their duration – these constraints are underlined with a

dotted line in Figure 1.

Let us further study these commonalities by examining their

range of variability.

Variabilities. Environmental measures may be realized by a

variety of entities, including hardware (e.g., sensor), software

(e.g., calendar), local (e.g., door), and remote (e.g., new email

messages). The abstraction level of the environmental mea-

sures varies widely. For example, an event may be produced

by a sensor, as soon as a motion is detected in a room.

Alternatively, a sensor may detect the state of a room being

occupied, excluding room-to-room transfers.

Regarding composition, several order constraints were ob-

served between interactions, including an interaction preceding

another one, an interaction occurring during another one,

and an interaction overlapping another one. Not all of these

constraints are applicable to any kind of interactions (i.e., event

and state). For example, only two states may overlap, whereas

two events cannot. Indeed, in practical scenarios, events are

viewed as occurring sequentially, not simultaneously.

III. A DOMAIN-SPECIFIC APPROACH

We now present the main stages of our domain-specific

approach to developing context-aware services dedicated to

aging in place. This approach is depicted in Figure 2.

Fig. 2. Overall view of our domain-specific approach

1) Service definition: The first step is initiated with the

stakeholders that express scenarios of services, as illustrated

earlier. These scenarios are directly written in our domain-

specific language (see next section) by the stakeholders, if

they have the proper background, or by a service developer.

2) Service compilation: The high-level service is compiled

into low-level rules written in an event processing language.

These rules make explicit the domain-specific concepts, such

as states that are compiled into a combination of events and

related operations.



3) Service execution: When deployed, the rules are added

to a Complex Event-Processing (CEP) engine. Our rule execu-

tion engine is based on Esper, an open source CEP developed

by EsperTech.2 It offers Java and C# interfaces to develop

event-based programs. We chose Esper because it is a popular

CEP engine, used both in industry and research. Esper contains

a declarative domain-specific language for CEP, called EPL

(for Event Processing Language). EPL allows to describe

patterns of events to be recognized in an online stream of

events, using operators for ordering events, time constraints,

alternatives, etc. Esper does not offer a concept of state; it

only handles events and requires extra machinery to manage

a state. In our implementation, we run the Esper engine with

respect to EPL rules, compiled from our DSL rules, and a

stream of events from the context-aware home, formatted in a

canonical form.

Canonical form: The canonical form of sensed data pro-

duced by context-aware homes allows to process them uni-

formly, disregarding their original heterogeneous formats.

In our implementation, the canonical form of data, called

StreamEvent, is introduced as an abstraction layer above the

flow of sensed data events. In this representation, each event

consists in a 4-tuple consisting of the kind of event, its

location, its value, and the timestamp of its occurrence.

IV. A DSL FOR CONTEXT-AWARE SERVICES

In this section, we introduce our DSL for developing

context-aware services, named Maloya. This DSL is dedicated

to describing contexts in terms of states and events, and

operators to combine them. Figure 3 presents the syntax of

Maloya, as well as its informal semantics. Each construct of

the language is presented on the left-hand side; its correspond-

ing graphical representation is displayed on the right-hand

side. This graphical representation visualizes events and states,

and how operators combine them. A state is represented as a

rectangle-shaped signal, lasting between its starting and ending

points. An event is represented as a spike signal, with merged

starting and ending points. Underneath each DSL construct is

its translation into a core DSL, which can be viewed as an

abstract syntax.

A. Events and States

In our DSL, testing an event or a state is expressed as

follows: for an event, p becomes v ; for a state, p is

v. Where, in both cases, p is a sensor name (hardware or

software) and v is a value in the range of the sensor. The event

p becomes v occurs when the sensor p signals a value v,

if its previous value was different. The state p is v starts

precisely when the event p becomes v occurs; it ends when

the event p becomes v’ occurs, where v’ 6= v. We view

the period during which a state holds as the time interval of

a state. This notion is generalized for events by viewing them

as defining a zero-length time interval. The notion of time

interval is used to define operators and their semantics.

2http://www.espertech.com/esper/

A rule in our DSL consists of an operator applied to states

and/or events. All operators return events. More precisely, an

operator yields a success event when the context described by

the application of the operator is detected. Because operators

return events, operators taking an event as a given argument

can call a nested operator instead. On the other hand, operators

taking a state as a given argument cannot call a nested operator

instead. Thus, the nesting of operators is not arbitrary; it

follows the results of our domain analysis. Operators are

further discussed next.

B. Operators

Our operators, listed in Figure 3, are based on the op-

erators in Allen’s time interval algebra [9], viewing states

and events as time intervals, as explained earlier. Specifically,

Allen’s operators model all possible relations between two

time intervals, such as preceding, during, or overlapping.

However, in our domain, since a context-aware home produces

in principles an infinite stream of events, it may contain several

occurrences of the same event. For example, an event such

as lunch activity may occur many times in the stream of

events produced by a home; typically, every day. Thus, a rule

checking whether the lunch activity is performed during lunch

time is tested repeatedly: for each occurrence of the lunch

time slot. To account for this situation, we generalized Allen’s

operators between two intervals to account for their multiple

occurrences. Allen’s operators take non-empty time intervals;

we generalized them to accept events, when appropriate.

Let us now review in detail the operators used in the

examples of this paper. In the rule e1 precedes e2, the

operator yields success every time the occurrence of event e1

immediately precedes the occurrence of event e2. This means

that there must be no other occurrence of either e1 or e2

in between. To cover existing scenarios, we need to expand

the expressiveness of this operator (and others) with optional

time constraints. More precisely, we introduce two variants

of precedes: e1 precedes e2 within/by t. The time con-

straint is defined by the parameter t. These variants specify

an upper/lower bound on the time between the occurrences of

its event operands.

The rule e during s succeeds every time event e occurs

during state s. There are no time-constrained versions of this

operator.

The rule s1 overlapping s2 succeeds every time state s1

overlaps with state s2. This means that state s1 starts before

the beginning of state s2, and ends during s2, as shown in the

Figure 3. The time-constrained versions define an upper/lower

bound on the overlapping time of the occurrence of these

states.

The rule e occurs while s is similar to the rule e during

s, but succeeds only for the first occurrence of event e during

state s. A variant of the previous rule is s1 occurs while s2.

In this case, the rule succeeds the first time state s1 superposes

at least partially with s2. The time-constrained versions put

an upper/lower time bound on the superposition of the states.



Event:
p becomes v

p ⇒ v e

v

v
′

p

State:
p is v
p = v s

e1

e2

Every time e1 immediately precedes e2

e1 precedes e2 ⇔ Precedes(e1, e2)

Variants: e1 precedes within t e2 ⇔ Precedes_less(t)(e1, e2)
e1 precedes by t e2 ⇔ Precedes_greater(t)(e1, e2)

e

s
Every time e occurs during state s

e during s ⇔ During(e, s)

s1

s2

Every time state s1 overlaps with state s2

s1 overlapping s2 ⇔ Overlapping(s1, s2)

Variants: s1 overlapping s2 within t ⇔ Overlapping_less(t)(s1, s2)
s1 overlapping s2 for t ⇔ Overlapping_greater(t)(s1, s2)

e

s
The first occurrence of event e during state s

e occurs while s ⇔ Occurs(e, s)

s1

s2The first occurrence of state s1

(partially) superposed with state s2

s1 occurs while s2 ⇔ Occurs(s1,s2)

Variants: s1 occurs within t while s2 ⇔ Occurs_less(t)(s1, s1)
s1 occurs for t while s2 ⇔ Occurs_greater(t)(s1, s1)

e1

en

Trigger whenever any of the events happens

{e1 or . . . or en} ⇔ Or(e1, . . . , en)

Trigger as soon as every event happens

{e1 and . . . and en} ⇔ And(e1, . . . , en)

Fig. 3. DSL syntax and informal semantics

Even though Allen’s operators express a range of situations,

they do not cover all the needs revealed by our domain analy-

sis; more operators are required. In particular, a disjunction of

events is needed to enable alternative contexts to be expressed.

A disjunctive rule is of the form {e1 or ... or en};

it succeeds whenever any ei occurs. Dually, we introduced a

conjunction rule of the form {e1 and ... and en}. This

rule succeeds when every ei occurred.

Let us now illustrate the use of our DSL operators by writing

the rule for the “Lunch Reheat” activity, described earlier

(Section II-B).

{ ( Freezer becomes open precedes

within 10 minutes Stove becomes on )

or

( Freezer becomes open occurs while Stove is on )

} occurs while LunchTime

Note how this specification concisely encodes two scenario

variants: (1) taking a meal from the freezer, and then turning

on the stove; (2) taking a meal from the freezer to put it in

the stove, which is already running.

C. Compilation

Compilation is done in three main steps. The first step

translates the text of DSL rules into the core DSL; this

translation is defined as a one-to-one correspondence. For

instance, the core DSL form of the operator e during s is

During(e, s). The translation of our running example into

core DSL is as follows.

Occurs(Or(

Precedes less(10min)(freezer => open, stove => on),

Occurs(freezer => open, stove = on)),

lunchT ime)

Here “=>” denotes an event that occurs and “=” denotes a

state that holds.

The next compilation step consists of generating EPL

pseudo-code. This pseudo-code uses only valid EPL operators,

but does not yet instantiate the attributes of each event; this is

done subsequently. This step involves several transformations.

Firstly, as EPL does not support the notion of state, each state

in a rule is translated into the sequence of corresponding events

that mark the beginning and the end of the state, ordered by

standard EPL operators. For instance, the state of the stove

being on is translated in an EPL sequence of the stove being

turned on, followed by any event of interest but not the stove

being turned off. Hence, the operator “Occurs(. . . , stove =

on)” is translated in EPL as

stove ⇒ on → . . . and not (stove ⇒ off)

using the EPL operators “and”, “or” and “→”, which means

followed by. Also in this compilation phase, time constraints

in the rules are translated by explicit uses of the “timer:within”

construct in EPL for enforcing upper time bounds, and explicit

uses of “timer:interval” EPL construct for enforcing lower

time bounds. The result of this phase is the following EPL

pseudo-code:



lunchT ime ⇒ begin →

((freezer ⇒ open → stove ⇒ on and

not (freezer ⇒ open) where timer : within(10min))

or

(stove ⇒ on → (freezer ⇒ open) and not (stove ⇒ off)))

and not (lunchT ime ⇒ end)

The final step is to obtain the EPL Esper form from

the EPL pseudo-code, by completely instantiating the event

attributes as necessary in the stream of canonical events (i.e.,

in StreamEvent form). To do so, we use a static table giving

the attributes of each sensor in a given home:

"freezer":{

"location": "Kitchen",

"kind": "Freezer",

"values": ["open", "close"]

}

Moreover, this step binds all events in an EPL formula

as originating from the same home (as can be seen in the

EPL constraint “user=X.user” below). Also, this step

introduces “every” and “every-distinct” EPL constructs to deal

with multiple occurrences of an event. As a result of these

transformations, we obtain the final EPL Esper rule that is

executed by the Esper engine:

select Cal_L_b,Fre_K_o,Sto_K_o from pattern [

every Cal_L_b=StreamEvent(role.location=’Lunch’,

role.type=’Calendar’,

status!=’end’) ->

((every-distinct(timestamp)

Fre_K_o=StreamEvent(role.location=’Kitchen’,

role.type=’Freezer’,

status=’open’,

user=Cal_L_b.user) ->

Sto_K_o=StreamEvent(role.location=’Kitchen’,

role.type=’Stove’,

status=’on’,

user=Cal_L_b.user)

where timer:within(10min)

and not (StreamEvent(role.location=’Kitchen’,

role.type=’Freezer’,

status=’open’,

user=Cal_L_b.user)))

or(every-distinct(timestamp)

Sto_K_o=StreamEvent(role.location=’Kitchen’,

role.type=’Stove’,

status=’on’,

user=Cal_L_b.user) ->

(Fre_K_o=StreamEvent(role.location=’Kitchen’,

role.type=’Freezer’,

status=’open’,

user=Cal_L_b.user))

and not (StreamEvent(role.location=’Kitchen’,

role.type=’Stove’,

status=’off’,

user=Cal_L_b.user)))

) and not (StreamEvent(role.location=’Lunch’,

role.type=’Calendar’,

status=’end’,

user=Cal_L_b.user)) ]

Note that, even though these transformation steps may seem

straightforward, there are several subtleties involved, such as

the complex operator compositions, which require introducing

new stream variables (“named windows” in EPL). The details

of our compiler scheme are outside the scope of this paper,

and will be described elsewhere.

V. VALIDATION

This section presents the validation of our approach on

the HomeAssist platform. The expressiveness of our DSL is

validated by re-defining existing services in it. The correctness

of our compiler is validated by comparing the results of

executing the compiled rules with the results of existing

services deployed in the platform. Finally, the efficiency of

our DSL is validated by measuring some performance figures

of our running implementation.

A. Expressiveness

To validate the expressiveness of our DSL, we re-

implemented 53 services already deployed in HomeAssist.

These services are variations of 13 families of rules, which are

listed in Figure 4. Variations within each family were required

to cover all the sensors in the home and their combinations. For

example, variations of the rule “Long inactivity” are required

for key rooms other than the bedroom, such as the living room

or toilets. Similarly, the rule “Presence dependency” requires

a presence in the kitchen to be detected when any appliance

is used, such as the fridge, coffeemaker, or stove.

Rewriting an extended range of services allowed us to

validate that our DSL and its underlying concepts (event, state,

Allen’s operators) are expressive enough to cover realistic

services in the domain of aging in place.

B. Correctness

We did not attempt to prove the correctness of our DSL

compiler with respect to a formal semantics of its operators,

although this work would be of interest. Instead, we empiri-

cally validated the correctness of the compiled services by a

combination of visual code inspection and extensive testing.

We performed manual inspection of all the intermediate forms

described earlier (core DSL, EPL pseudo-code, Esper EPL)

to ensure that they remain consistent with their original

counterparts.

Then, we validated the compiler output (i.e., resulting EPL

rules) in two phases. First, we tested the rules by executing

them on log files from the HomeAssist project. These logs

contain the timestamped events produced by all the sensors in

the infrastructure, whether hardware or software. The results

were checked automatically for correctness using Perl scripts,

implementing the same service specifications. Note that these

scripts are much simpler to write than the real applications, as

they execute on log histories of sensed data, so they do not

have to compute results online, and must not deal with the

sensor infrastructure.

We repeatedly compared the results produced by the com-

piled DSL services and the scripted specifications on extended

log histories. This iterative process allowed us to refine our

compilation schemas until it produced the same results as the

scripted specifications.



Name Description / DSL

Metrics

StakeholdersDSL EPL

# events # states # events # not

Presence Detect if cupboard status changes while no presence in kitchen
1 1 2 1

Sensor

dependency Cupboard becomes open occurs while Presence(Kitchen) is false installer

Departure Detect if entrance door is opened at least for 5 minutes during calendar night time

1 1 2 2

Occupational

alert Door is open for 5 minutes occurs while Night time therapist

Caregiver

Door alert
Detect if entrance door is opened at least for 5 minutes during their is no presence in entrance

0 2 4 6

User

Door is open occurs for 5 min while Presence(Entrance) is false Caregiver

Long Detect if no movement in Bedroom since 24 hours

0 1 1 1

Occupational

inactivity Presence(Bedroom) is false for 24 hours therapist

Caregiver

Fridge Detect if fridge remains open at least 5 minutes
0 1 1 1

User

opened Fridge is open for 5 minutes Caregiver

Breakfast
Detect cupboard and coffeemaker opening (any order) during breakfast period

2 1 3 1

User

{Cupboard becomes open and CoffeeMaker becomes on}
occurs while BreakfastTime

Caregiver

Lunch Detect freezer opening and stove use in the 10 minutes following or freezer opening during stove use

3 2 5 3

Caregiver

reheat all during lunch period User

{ ( Freezer becomes open precedes within 10 minutes

Stove becomes on )

or

( Freezer becomes open occurs while

Stove is on ) }
occurs while Lunch Time

Dinner
Detect fridge opening and microwave use (any order) during dinner period

2 1 2 1

User

{Fridge becomes open and Microwave becomes on}
occurs while Dinner Time

Caregiver

Go Detect end of presence in bathroom and begin of presence in bedroom in the 10 minutes following

2 1 3 2

Caregiver

to bed during go-to-bed period User

( Presence(Bathroom) becomes false precedes within 10 minutes

Presence(Bedroom) becomes true )

occurs while Go-to-bed Time

Wake-up
Detect end of presence in bedroom and begin of presence in kitchen in the 10 minutes following

2 1 3 2

Caregiver

during go-to-bed period User

( Presence(Bedroom) becomes false precedes within 10 minutes

Presence(Kitchen) becomes true )

occurs while Wake-up Time

Commfailure Detect any sensor that fails to communicate
1 0 1 0

Platform

warning Commfailure( Any ) becomes true maintainer

Commfailure Detect any sensor that has failed to communicate since 24 hours

0 1 1 1

Platform

alert Commfailure( Any ) is true for 24 hours maintainer

Sensor

installer

Battery Detect battery level of any senser that become less than 5%
1 0 1 0

Sensor

alert BatteryLevel( Any ) becomes less than 5 installer

Fig. 4. Services examples

In a second phase, we connected the compiled DSL services

to the online stream of events in the production platform for 9

users during 1 month, in parallel with the existing services

written in Java. No difference was observed between the

results of both systems (Java and DSL).

C. Performance

To validate the applicability of our DSL approach in

practice, we measured the performance of the EPL rules

produced by our DSL compiler with respect to three indicators:

response time to online events, processing time, and memory

consumption. The rules were executed on a PC equipped with

an Intel Core i5-3320MHz and 8Go of RAM, running the

Linux kernel 4.15, and Esper 5.5. For easier generalization of

the results, all the measurements were performed by forcing

execution on a single core.

The response time of a rule indicates the time between the

last event that should trigger a rule, and its effective triggering.

A low response time means that the rule is sufficiently reactive

for practical use. We measured this latency by executing the

53 rules on a log of 1 year of one home, respectively 10 homes

multiplexed together. Time was accelerated by two different

factors to simulate higher traffic, i.e., the recorded events in

the log were submitted N times more quickly. As can be seen

from the results in Table I, the maximum response time of

all our rules were always less than a second. This order of

magnitude is perfectly compatible with the kind of rules that

are implemented in this platform for aging in place. Moreover,

the average latency is between 3 and 12 milliseconds.

To ensure that our implementation can scale up to hundreds

of users and to tens of implemented services, we measured

CPU and memory consumption in batch mode for various logs

of 1 year from homes of various sizes (H1 to H5), ranging

from small apartments to houses with several floors. That is, all

events in the logs were submitted sequentially with no delay,

and the rules were slightly modified to replace timers with
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computations on event timestamps.

We first studied the variation of the batch processing time

according to the number of rules. For that purpose, we created

subsets of the full set of 53 rules containing 13, 26, and 39

rules. As can be seen from Figure 5, the total processing time

for executing all the rules on 1 year spans from 5 to 20

minutes, depending on the home. Processing time increases

with the number of rules according to a mostly linear pattern,

except for one home (H5), where some rules (belonging to r2,

r3, r4) require more processing than others (belonging to r1).

As processing 1 year takes less than 20 minutes, a single CPU

core could process hundreds of homes simultaneously.

We then measured the memory consumption of our imple-

mentation in the same batch conditions. The results in Figure

6 show that memory consumption for various single homes is

at most half a GB. Moreover, memory consumption increases

much less than linearly with the number of homes, because 10

homes (including H1 to H5 and 5 other homes) are processed

simultaneously with less then 0.7 GB. These figures show that

a single server with 10GB memory could process more than

100 homes simultaneously.

Home(s) Acceleration factor Max latency (ms) Avg latency (ms)

H4 100,000 909 3.5
1,000,000 900 3.8

10 homes 100,000 941 11.9
(H1. . . H10) 1,000,000 942 11.9

TABLE I
LATENCY FOR RULE TRIGGERING

VI. RELATED WORK

There are many works aiming to simplify and sup-

port the development of context-aware applications in smart

homes. Let us classify them with respect to how they ap-

proach service development: user-oriented domain-specific

languages, automata-oriented event processing approaches,

and middleware-oriented approaches.

a) User-oriented, domain-specific approaches: These ap-

proaches start from the needs of end users of smart homes, and

provide a domain-specific language for developing context-

aware applications, usually complemented with a dedicated

development environment. This end-user programming ap-

proach has resulted in both textual and visual languages.

Scratch [16] offers visual programming notations, covering

most of a general-purpose programming language. In prin-

ciple, this language would allow users to write a wide range

of programs in the domain of smart homes, but would not

support such development with domain-specific abstractions.

IFTTT (If This Then That)3 offers much more specialized

graphic notations for automating simple processes involving

web services, sensors, and actuators. This approach lowers

the end-user conceptual effort at the expense of drastically

reducing the expressiveness of the language. For example,

conditionals only consists of one sensor or service, and cannot

be composed. Furthermore, no distinction is done between

events and states, which has been shown to confuse users when

defining services [17].

Improving on IFTTT, AppsGate [18] introduces a textual

DSL, which makes a clear distinction between states and

events, and allows some limited compositions of tests in rules.

AppsGate provides an end-user development environment ded-

icated to smart homes and it has been shown to cover simple

rules for comfort-oriented automation. While this extension

of IFTTT is very promising, it still falls short of addressing

the scope of real AAL applications. For example, the authors

mention that “expressing compound conditions [involving sev-

eral events or states] was difficult” [18, p.13]. Moreover, even

simple temporal composition such as “A immediately precedes

B” cannot be expressed in their language, due to the absence

of boolean connectors in conditions (e.g., once A is found,

wait for B but no A). Because our DSL approach is based

on a domain analysis, we identified the common scenarios to

be addressed and provide abstractions expressive enough to

capture them.

Conceptually, an interesting case of top-down approach to

context awareness is the identification of 6 top-level context

3https://ifttt.com



dimensions having the widest used in pervasive computing

[1]: the physical world, the cyber-world, the user, his/her

activities, the social context, and their dynamics. These context

dimensions result from a commonality analysis performed on

13 context meta-models formalized in the literature, and about

300 research papers on pervasive computing applications.

Our approach also involved a commonality analysis but in a

specific area: smart home services for aging in place. Thanks

to this domain instantiation, not only were we able to elicit

common concepts, but we also designed a language and tool

support that revolve around these concepts.

b) Automata-oriented, event processing approaches:

Some approaches leverage existing models of automata and

associated tools. Indeed, contexts may be modeled as partic-

ular sequences of events in the environment, constrained in

their order and time delays. For instance, the situation of the

unattended door may be recognized by an automaton accepting

a door opening event and a door closing event, separated by a

time delay greater than a given value. Such executable models

of context recognition may be expressed in a DSL for automata

modeling, which can be visual (StateCharts, SyncCharts) or

textual (synchronous languages) [19]. Time delays must be

handled explicitly in these models by using external timers

to generate timeout events. Timed automata [20] add a native

expression of time delays in the model. These automata-based

models are usually accompanied by formal tools for proving

useful temporal properties about the model, such as state

reachability. They are expressive enough for handling all cases

needed by smart home services, but require users to implement

common patterns such as sequencing events, recognizing a set

of events during a state, etc. When implementing these base

patterns as timed automata, users may introduce subtle bugs or

slight variations in behavior. This issue is of course amplified

when the models are written by stakeholders with different

levels of expertise.

Complex event processing languages [10] introduce event

composition operators that implement some very common

event patterns, such as ordered sequence of events within a

time delay, and event alternatives. Some CEPs use interval-

based semantics for complex events, and sometimes even

define the Allen temporal relations between interval-based

events [21]–[24]. However, there is no native notion of state

in these CEPs. For instance, the state of a door being open

has to be coded, as a complex event starting with a door

opening and ending with a door closing, with no door action

in between. This kind of encoding is error-prone and tends to

yield intricate CEP formulas (as can be seen in our examples).

This encoding is exactly what our DSL compiler automatically

generates, in a uniform and predictable way, thereby providing

a complete set of reliable common state/event operators. In

fact, this compilation approach sets apart our work from most

works in CEP, typically introducing a new CEP language with

its standalone implementation, rather than translating in an

existing, standard CEP language.

c) Middleware-oriented approaches: Some approaches

to developing context-aware applications rely on a middleware

(or a framework) to provide programmers, in a general pro-

gramming language, with dedicated abstractions for operating

and managing devices (e.g., sensor discovery) and context-

aware services; examples include FedNet [25], HomeOS [26],

Gaia [27], Olympus [28], and Plan B [29].

Raising further the abstraction level, other approaches in-

troduce a disciplined, declaration-based development process,

dedicated to context-aware services. These approaches go as

far as automating part of the programming task by generating

a programming framework. Examples of tool-based develop-

ment approaches are DiaSuite [14], [15] and IoTSuite [30].

All these approaches aim to abstract over sensor infrastruc-

ture details, but do not simplify the programming of context

detection logic. The core of context processing revolves around

recognizing specific patterns of events and states. Without

specific support, this programming is low level, tedious and

error-prone, even for seasoned programmers. Our approach

provides the programmer with this specific support.

VII. DISCUSSION

Our DSL bridges the gap between high-level domain con-

cepts and low-level mechanisms of event handling. As a

consequence, it contributes to making rules more concise and

to simplify their development, by encapsulating details of

event handling in a compiler. Indeed, the original Java appli-

cations implementing HomeAssist services contain manually

implemented timed automata, which recognize the sequences

of events corresponding to each DSL rule. Timing constraints

are explicitly handled by using a timer service, producing

timeout events that are inserted in the stream of events,

produced by the sensor infrastructure. In our DSL rules, these

low-level details of state and time handling are included in

the semantics of operators. For instance, the role of explicit

timers corresponds to our time-constrained operator variants.

This lowers the efforts to write rules and to make them more

predictable.

Limitations: Our approach is a first step towards sim-

plifying the development of context-aware applications in the

domain of aging in place, and presents a number of limitations.

First of all, our DSL only is dedicated to recognizing

contexts. It provides no constructs for performing actions

on the environment. These must be currently programmed

in a generic programming language. It would be useful to

extend our domain analysis to also cover the control part of

typical applications, and to derive domain-specific concepts

and notations to perform actions.

As far as applications are concerned, we have designed and

tested our DSL only on services in the domain of aging in

place, which involves a specific set of composition operators.

However, our DSL can express rich, arbitrarily nested combi-

nations. It would be interesting to apply it to other domains

of context-aware applications in the future.

Finally, our rules always return boolean values. However,

context-aware information may sometimes be more general

than strictly binary. For instance, a daily activity such as meal

preparation might be detected in a more nuanced way as a



probability between 0 and 1, to cope with some amount of

deviations from the user’s routine. Currently, in our DSL the

different routine variations must be coded as different rules,

which is not always practical. In the future, it would be

interesting to consider extending our approach with operators

returning non-boolean values.

VIII. CONCLUSION

We have presented a new approach for developing context-

aware services in a smart home, by analyzing a range of exist-

ing data processing layers in the domain of aging in place. We

have identified key concepts and operations specific to context-

aware processing. Based on this analysis, we have introduced

a context-aware, domain-specific language and its software

architecture, which allow to put in synergy the stakeholders

of a context-aware home by providing them with a unified

approach to designing and developing services. Our approach

offers context aware-specific abstractions and notations, within

a data-centric and data-driven paradigm.

We have validated our approach by applying it to an assisted

living platform for aging in place. In particular, we have

used our domain-specific language to re-implement existing

services of the assisted living platform. These services were

deployed and successfully tested for their effectiveness in

performing the specific tasks of the stakeholders, such as:

detection of daily activities, user risks, and sensor failures.
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