
In press, IEEE Transactions on Software Engineering, expected April, 1995.

A Domain-Specific Software Architecture
for Adaptive Intelligent Systems

Barbara Hayes-Roth, Karl Pfleger,
Philippe Lalanda, Philippe Morignot, Marko Balabanovic

Knowledge Systems Laboratory
Computer Science Department

Stanford University
701 Welch Rd.

Stanford, CA 94304
{bhr, kpfleger, lalanda, morignot, mxb}@hpp.stanford.edu

 The research reported in this paper was supported by ARPA contract DAAA21-92-C-0028,

under subcontract 71715-1 with Teknowledge Corporation.

2

Abstract

A good software architecture facilitates application system development, promotes

achievement of functional requirements, and supports system reconfiguration. We present a

domain-specific software architecture (DSSA) that we have developed for a large application

domain of adaptive intelligent systems (AISs). The DSSA provides: (a) an AIS reference

architecture designed to meet the functional requirements shared by applications in this domain,

(b) principles for decomposing expertise into highly reusable components, and (c) an application

configuration method for selecting relevant components from a library and automatically

configuring instances of those components in an instance of the architecture. The AIS reference

architecture incorporates features of layered, pipe and filter, and blackboard style architectures.

We describe three studies demonstrating the utility of our architecture in the sub-domain of

mobile office robots and identify software engineering principles embodied in the architecture.

Index Terms: Software architecture, Domain-Specific Software Architectures, Software reuse,

Intelligent agents, Mobile robots.

3

1. Introduction

The architecture of a complex software system is its “style and method of design and

construction” [25]. When applied appropriately, a good software architecture facilitates

application system development, promotes achievement of the system's functional requirements,

and supports reconfiguration. A “bad” architecture—or the absence of a clearly defined

architecture—can thwart all three objectives.

Designing and implementing a good software architecture (with associated development and

debugging environments) is challenging and expensive. Replicating this activity across many

projects for systems that have similar requirements unnecessarily inflates their expense.

Conversely, competition for limited project resources may limit the quality of the architectural

support that can be realized for a given system.

How can we achieve the benefits of good software architecture while containing the cost?

We have been studying a software engineering methodology based on domain-specific

software architectures (DSSAs) [18, 36, 34, 35, 37, 24], where the term “domain” refers to a

class of applications. A DSSA comprises: (a) a reference architecture, which describes a general

computational framework for a significant domain of applications, (b) a component library,

which contains reusable chunks of domain expertise, and (c) an application configuration

method for selecting and configuring components within the architecture to meet particular

application requirements.

We have been developing and experimenting with a particular DSSA for the domain of

adaptive intelligent systems (AISs) that perceive, reason, and act to achieve multiple goals in

dynamic, uncertain, complex environments. AIS applications share functional requirements such

as: concurrent perception, reasoning, and action; sensitivity to externally determined priorities

and deadlines; and dynamic global control of the system's own behavior. As illustrated by the

taxonomy in Figure 1, the AIS domain may be partitioned into sub-domains defined by more

4

specific shared task requirements. For example, all autonomous robots require capabilities for

path planning and navigation, while all monitoring systems require capabilities for pattern

classification and fault detection. Sub-classes may introduce additional task requirements or

place constraints on inherited requirements.

Instantiating the general definition given above, our AIS DSSA comprises: (a) an

implemented AIS reference architecture that supports the shared computational requirements of

adaptive intelligent systems and also provides a congenial framework for both compile-time and

run-time configuration of components, (b) a framework for decomposing application-specific

expertise into reusable components, along with an evolving library of implemented components,

and (c) an application configuration tool (not completely implemented) that takes as input a

domain description, instantiated and extended with application-specific requirements, and

automatically selects and configures the best available components from the library. Each of

these elements is described in section 2 below.

Office Robots

Factory Robots

Household Robots

Medical Patients

Power Plant Operations

Semiconductor Mfg. Equipment

E-Mail Manager

Meeting Manager

Reference Librarian

AISs
Monitoring
 Systems

Autonomous
 Robots

Electronic
 Softbots

Surveillance

Delivery

Intensive Care

Anesthesia

Figure 1. A partial taxonomy of adaptive intelligent systems.

5

We have experimented with our DSSA in three major sub-classes of AIS applications: (a)

monitoring systems in four specific domains: intensive care [15, 20, 22], materials processing

[29], semiconductor manufacturing [27], and power plant operations [31]; (b) layout design

systems in two specific domains: protein structure modeling [17, 18] and construction site layout

[33]; and (c) autonomous office robots in two specific domains: office surveillance and office

delivery [19]. In section 3, we present three studies and their results from our work on office

robots to demonstrate the utility of the AIS DSSA. Section 4 presents conclusions.

2. The AIS DSSA

2.1 The AIS Reference Architecture

The AIS reference architecture is a heterogeneous mixture of common architectural styles

[9]. It is divided hierarchically into layers for different sets of computational tasks. The layers

and the relations among them provide properties of pipe and filter style architectures. Each layer,

itself, comprises a number of components, organized in a blackboard style, to allow for a range

of potentially complex behavior.

2.1.1 Organization of Layers

The architecture currently has two layers, or levels, to control concurrent physical and

cognitive behaviors. Behaviors at the physical level implement perception and action in the

external environment. Behaviors at the cognitive level implement more abstract reasoning

activities such as situation assessment, planning, problem-solving, etc. Information flow is bi-

directional. The results of cognitive behaviors can influence physical behaviors and vice versa.

In addition to these categorical distinctions in behavior, levels differ in the following ways:

(a) Information at the cognitive level tends to be represented symbolically, while information at

the physical level tends to be metric. (b) Cognitive control plans (described in section 2.1.2.3)

can be temporally extensive and relatively complex, while physical control plans are severely

6

bounded on both dimensions. (c) At the cognitive level, the temporal horizon for state

information is effectively unbounded in both directions, whereas at the physical level it is

effectively immediate. (d) Reaction time is an order of magnitude faster at the physical level than

at the cognitive level. In general, cognitive behaviors and representations are more abstract than

those at the physical level.

While our current architecture contains only two levels, it could incorporate more levels,

each with the same internal organization. The lowest level would interact with the external

environment and the next higher level; each higher level would interact only with the levels

immediately below and above it. The levels would exhibit graded differences along each of the

dimensions of difference mentioned above and, more generally, higher levels would organize

computations at higher levels of abstraction. Our AIS architecture has only two levels because

our current applications do not require finer resolution along these dimensions. [11, 6] discuss

similar architectures for robot agents. [1, 2, 21, 32] discuss extended multi-level architectures.

Our architectural organization provides the usual benefits of software layering. Restricting

interactions to those between adjacent levels provides modularity, allowing easy replacement or

enhancement of individual levels. (Note that this modularity is in addition to the modularity

provided within each level, as described in the next section). Also, hierarchically increasing

levels of abstraction facilitate construction of complex behaviors and manipulation of higher

level concepts [9, 1, 2].

However, our architecture differs from the common architectural layering in terms of how

adjacent levels interact. In conventional layered systems, interactions between levels occur

through function or procedure calls from one level to the next lower level. The interface

functions of each level serve as an abstract virtual machine to the next higher level [9]. In

contrast, our levels communicate with a more flexible message-passing style. All levels operate

concurrently, sending information to adjacent levels when appropriate. Thus, the architectural

organization also can be viewed as a bi-directional pipe and filter model [9], in which each level

reads from two input data streams and writes to two output data streams. (Of course the highest

7

architectural level has only one pair of input/output streams with its single adjacent level and the

lowest architectural level has one of its two pairs of input/output strems with the external

environment.) As shown in figure 2, the two architectural levels asynchronously exchange

information. The physical level sends processed perceptual information, including feedback from

the execution of actions, to the cognitive level, while the cognitive level sends control plans to

the physical level. Otherwise they share the normal pipe and filter properties: they do not share

state or directly know about one another's computations. This hybrid of pipe and filter and

layered architectural styles is quite useful. The two styles do not conflict and both provide

modularity. In addition, the hybrid introduces the combined advantages of abstraction due to the

layering style and concurrent execution due to the pipe and filter style [9].

Perceptions &
Action Feedback

.
 COGNITIVE LEVEL

Physical Plan

PHYSICAL LEVEL

ENVIRONMENT

Current Plan
Information base
and world modelBehavior

Meta-controller

Executed
Behavior

Behavior

.Current Plan Information base
and world modelBehavior

Meta-controller

Executed
Behavior

Behavior

Perceptions &
Action Feedback

Physical Actions Sensory Inputs

8

Figure 2. AIS reference architecture. Arrows show data flow, not control flow.

2.1.2 Internal Organization of Each Layer

Each level of the architecture has isomorphic internal structure. The shared abstract control

model is embodied by the BB1 blackboard architecture [12, 13]. The BB1 system itself is used as

the implementation for the cognitive level and a much simpler implementation of the same basic

model is used for the physical level. As discussed in section 2.1.1, the simpler implementation at

the physical level restricts computational power in order to achieve order-of-magnitude speed-up.

The remainder of this section characterizes important aspects of this internal architecture. Section

2.1.3 discusses the BB1 blackboard style's distinctive control properties, which underlie the

flexible run-time behavior that is crucial for AISs.

2.1.2.1 Behaviors

Behaviors embody the potential application of particular methods to particular tasks. For

example, at the physical level, one behavior might apply a reactive feedback-control method to

navigate along a path. At the cognitive level, one behavior might apply a specialized planning

method to sequence travel destinations, taking into account constraints on the order in which the

destinations must be visited.

Each behavior has a set of triggering conditions that can be satisfied by particular kinds of

events—changes to the information base/world model (see below) resulting from perceptual

inputs or previously executed behaviors. For example, a destination sequencing behavior might

be triggered whenever a new set of places to visit appears. When an event satisfies a behavior's

triggering conditions, the behavior is enabled and its parameters bound to variable values from

the triggering situation. A given behavior will be enabled, and therefore executable, whenever

events satisfying its triggering conditions occur, regardless of its relative utility in achieving the

current goals. Conversely, at each point in time, many competing behaviors will be enabled and

the system must choose among them to control its own goal-directed behavior.

9

To support these control decisions, each behavior has an interface that describes the kinds of

events that enable it, the variables to be bound in its enabling context, the task it performs, the

type of method it applies, its required resources (e.g., computation, perceptual data, effectors), its

execution properties (e.g., speed, complexity, use of resources, completeness), and its result

properties (e.g., accuracy, precision). Interface descriptions resemble the software "wrappings"

of [23] and the model description language of [26], in providing information about how and

under what circumstances to use available resources.

2.1.2.2 Information base / world model (IB/WM)

The disparate behaviors a system performs interact with one another via changes they make

to the information base/world model—a declarative data base that houses a system's factual

knowledge, descriptions of its potential behaviors, and a temporally organized representation of

its run-time perception, reasoning, and action. In its capacity as knowledge base, the IB/WM

provides a skeletal conceptual graph to which type hierarchies of tasks, methods, and domain

concepts can be attached at compile time and accessed at run time. In its role as workspace, the

IB/WM provides a data exchange medium for interacting behaviors. Each executed cognitive or

physical behavior makes changes to the contents of the IB/WM, producing events that enable

subsequent behaviors and information that may influence their execution. For example, the

destination sequencing behavior mentioned above produces as part of its output a representation

of the planned destination sequence in the cognitive IB/WM. The appearance of a new

destination sequence will enable some of the available cognitive methods for path planning.

Thus, the IB/WM provides a workspace in which a system can coordinate the interactions and

products of groups of related tasks, each of which may be performed by any of a number of

alternative methods, in order to achieve higher-order goals.

2.1.2.3 Control plans

Control plans describe the system’s intended behavior as a temporal pattern of plan steps,

each of which comprises a start condition, a stop condition, and an intended activity in the form

10

of a 3-tuple: <task, parameters, constraints>. For example, the physical activity <navigate,

(origin, destination), {fast}> , describes the task of moving quickly from origin

to destination .

Control plans reside as data structures in the IB/WM, so the system can develop and modify

them dynamically by means of whatever control planning methods are enabled in its run time

situation. Note that control plans do not refer explicitly to any particular method in the system’s

repertoire. Unlike a simple list of machine instructions or program subroutines, they are not

directly executable. Instead, control plans only describe intended behaviors in terms of the

desired tasks, parameter values, and constraints. Thus, at each point in time, the system has a

plan of intended action, which intensionally describes an equivalence class of desirable behaviors

and in which currently enabled specific behaviors may have graded degrees of membership. (See

[14, 19] for more detailed treatment of these ideas.)

2.1.2.4 Meta-controller

A meta-controller attempts to follow a system's current control plan by executing the most

appropriate enabled behaviors. Specifically, at each point in time, the meta-controller executes

the enabled behavior that: (a) is capable of performing the currently planned task with the

specified parameterization; and (b) has a description that matches the specified constraints better

than any other enabled behaviors that also satisfy (a). For example, a system might have two

methods for navigation, a fast dead reckoning method that uses minimal or no sensory feedback,

but requires an accurate metric map of the area, and a slower, reactive feedback-control method

that is capable of avoiding collisions and requires less information about the area. Given the plan

step <navigate, (origin, destination), {fast}> , this system will execute the

dead reckoning method if it has detailed metric map information about the area from origin to

destination , and will execute the reactive method otherwise. Conversely, given the plan step

<navigate, (origin, destination), {safe}> , the system will execute the reactive

method, to avoid collisions, regardless of the accuracy of its map. Thus, a system continuously

11

improvises its specific course of behavior, following intended plans as well as possible, given the

behaviors that happen to be enabled along the way.

2.1.3 Key Properties of the Reference Architecture

The AIS has two key architectural properties, the pipe and filter properties of its layered

architecture and the adaptive properties of its control model, both of which are designed to

support the distinctive interactions required between AISs and their environments [13, 14, 16].

2.1.3.1 Pipe and filter properties of the layered architecture

The AIS architecture's hybrid combination of layered and pipe and filter styles is designed to

support resource-bounded, time-sensitive interaction with dynamic, complex, uncertain

environments. Conventional application systems function in precisely structured, static

environments for which function call interactions are appropriate. For example, an operating

system's environment is the computer hardware, with its well defined behavior. Each successive

layer of the operating system provides a higher-level abstraction of the computational machine it

controls [9]. (One might argue that the user does not provide well-defined behavior; but the user

of conventional layered systems typically interacts with the highest layer in the hierarchy, not the

lowest.) By contrast, AISs function in environments where unpredictable external events occur

asynchronously. The system has limited resources (computation, time, data, knowledge) for

responding to events and must satisfy constraints on the timing as well as the quality of its

responses. Successful performance in such environments demands opportunistic message

passing, continuous filtering of input data streams, and continuous management of output data

streams.

2.1.3.2 Adaptive properties of the control model

The AIS architecture's within-level dynamic control model is designed to support the

considerable flexibility of behavior required in AIS environments. A system can have in its

knowledge base many alternative behavioral methods for performing diverse tasks. It can

12

coordinate different combinations and sequences of tasks and methods in order to achieve goals,

without planning the exact sequence of tasks and methods in advance. Whatever events occur

will enable associated behavioral methods. Depending on the current control plans, the meta-

controllers will choose to execute whichever enabled behaviors best match those plans. Thus, a

system can work toward high-level objectives by coordinating its performance of a variety of

tasks under a variety of context-specific constraints. It can plan and pursue an intended course of

action by incorporating the best available behaviors that are enabled in its immediate situation.

And it can dynamically adapt its plans in response to changing environmental conditions. As a

result, its plans and plan following are extremely robust over a range of situations. This run-time

flexibility is important precisely because of the dynamic and uncertain natures of the external

environment that are the defining characteristics of adaptive intelligent systems.

As demonstrated below, the dynamic control model also provides a framework in which

appropriate sets of components can be configured at both design time and run time. Application

domain schemas (see section 2.3) generalize the concept of descriptive control plans. They allow

an application builder to describe the kinds of cognitive and physical tasks a system might have

to perform and the kinds of constraints under which it might have to perform them. Moreover,

applications can be configured at design time and reconfigured later, while the system is in

operation. As shown in section 3 below, the meta-controller makes use of whatever plan-relevant

components are available and enabled at run time.

2.2 Framework for a Component Library

The AIS reference architecture provides an extremely general computational framework in

which to configure diverse software components and coordinate their activities. Amplifying this

capacity for architecture reuse, we also provide a framework for developing software

components that can be reused and reconfigured easily in a large domain of applications.

Specifically, we decompose expertise along three orthogonal dimensions (Figure 3) so that each

13

of the three components produced by a given decomposition may be reused in combination with

multiple (not necessarily all) alternative components on the other two dimensions.

Method =
 Operations & Strategies
 Resource Requirements
 Performance Properties

 Deductive Case-Based Associative

Subject Domain =
 Ontology
 Semantics
 Factual Knowledge
 Metric Knowledge

Task =
 I/O Specifications
 Resource Parameters
 Performance Parameters

 Assess

 Plan

 Schedule

 Monitor

 Explain

 Office

 Critical Care

 Semiconductor Mfg.

Figure 3. Orthogonal components of expertise: definitions and examples.

Tasks are classes of jobs a system might perform, defined by their abstract input/output

specifications, independent of method and domain. For example, the task of path planning

transforms an initial and final location into a representation for a path and can be performed by a

number of different methods and in many different domains. Tasks may be specified further by

imposing resource limitations (e.g., time limits) or performance requirements (e.g., precision,

reliability). For example, an agent (used interchangeably with "system") may need to plan very

quickly, but not necessarily guarantee optimal plans. As discussed in section 2.3, certain classes

of applications are defined by characteristic configurations of required tasks along with potential

constraints on the performance of those tasks. For example, a mobile office robot must perform

navigation, but a bedside critical care monitoring agent need not.

14

Methods are classes of computational approaches a system exploits for a variety of tasks,

independent of domain. They are defined in terms of sets of abstract component operations, each

of which may be enabled by run-time events, along with abstract strategies for selecting and

sequencing enabled operations at run time in order to achieve goals. For example, generative

reasoning and case-based reasoning are two different cognitive methods a system might apply to

a planning task. Case-based planning would comprise abstract operations such as “find a similar

case” and abstract strategies such as “find the n most similar cases, then map the n cases onto the

present situation, then ...” Methods for a given task may differ in their resource requirements

(e.g., amount of real time, computation time, sensor utilization, domain knowledge), run-time

properties (e.g., interruptability, intermediate results, incremental solution improvement), or their

characteristic results (e.g., precision, reliability, qualitative contents of conclusions). Thus,

different methods that are equivalent in their logical applicability to an abstract task may be more

or less appropriate for different task instances or domains. For example, case-based methods may

be more appropriate than generative methods for tasks that require fast real-time performance,

but do not require guaranteed optimal solutions. More generally, case-based methods are

appropriate only in domains for which large numbers of relevant cases exist.

Subject domains comprise the different kinds of knowledge (e.g., ontology, facts, relations) a

system might have regarding its environment or subject matter, independent of the tasks it might

perform or the methods with which it might perform them. For example, an office domain might

include both cognitive knowledge (e.g., an ontology of office objects and services, a symbolic

model of the relationships between certain objects and their locations, a topological model of the

office layout) and physical knowledge (e.g., metric models of passageways, recognition

templates for important objects). This knowledge could be used to support various methods for

various tasks and jobs (e.g., office surveillance robot, office delivery robot, office design

assistant).

Our three-way decomposition of expertise combines the complementary decompositions of

software engineering and knowledge engineering practice. Software engineers typically

15

decompose software into its interface (conflating our task and subject domain components) and

its implementation (our method component). Knowledge engineers typically decompose

software into its knowledge (our subject domain component) and its inference engine (conflating

our task and method components) [5]. As demonstrated in the experimental results in section 3,

our three-way decomposition expands opportunities for reuse. A component along one

dimension might be reused in combination with alternative (not necessarily all) components from

either or both of the other two dimensions to produce a large number of distinctive competencies.

For example, at the cognitive level, either generative or case-based methods could be applied to

either the destination sequencing or path planning tasks in several robot domains (e.g., office or

factory surveillance, office delivery, household chores) or autonomous vehicle domains (e.g.,

errands, chauffeur). Similarly, at the physical level, either reactive feedback-control (closed loop)

or blind dead reckoning (open-loop) navigation could be used to perform a path following task in

a variety of domains. For all of these configuration and reuse purposes, a descriptive language of

tasks, methods, and domains is critical. In our work we have identified a number of descriptive

characteristics that are important in our experimental domains. However, developing a formal

descriptive language for software components remains an important research problem. (See also

[23, 26].)

2.3 Application Configuration

Even though the AIS architecture supports run-time enabling and selection of competing

components, application system configuration remains important because inclusion of "extra"

components in an application may not increase utility and may degrade performance. Inclusion

of extra components will not increase utility if, for example, the components are irrelevant to the

application, the necessary hardware (e.g., sensors, effectors) is not available on the application

platform, or the required knowledge or data are not available in the application domain. Inclusion

of extra components will degrade performance if, for example, they cause the knowledge base to

exceed space limitations or meta-control decision time to exceed acceptable response latencies.

16

Together, the AIS reference architecture and the orthogonal decomposition of expertise

support both design-time and run-time system configuration. At design time, one can select and

configure an application-specific set of required tasks, an application-specific set of appropriate

methods for performing those tasks, and the application-specific domain knowledge required to

apply those methods to those tasks. In cases where a given task must be performed under

variable circumstances, suitable alternative methods can be selected and configured at design

time and then selectively enabled and executed at run time. At run time, if useful new

application-relevant task, method, or domain components should become available, the new

components can be substituted for old ones or added to the knowledge base alongside the old

ones, without interrupting system operation. The architecture's event-based enabling of

behavioral methods, its plan-based meta-control choices among competing methods, and its

efforts to retrieve necessary knowledge from the IB/WM are not preprogrammed to require any

particular tasks, methods, or domain facts; they operate on whatever task, method, and domain

knowledge are available in the IB/WM at run time. The AIS architecture can accommodate new

components acquired through machine learning in exactly the same fashion, as demonstrated for

domain knowledge in the experiments below.

As demonstrated in our initial experiment below, we already can create diverse agents at

design time and reconfigure agents at run time by manually selecting and automatically loading

different combinations of components into the architecture. If the configuration of components is

conceptually complete (e.g., it includes the required domain knowledge to apply at least one

method to each of the specified tasks), the agent runs immediately and makes appropriate use of

all available components. As illustrated in Figure 4, each agent instantiates a different,

application-specific configuration of cognitive and physical task, method, and domain

components. Application shemas will further automate this process. With them, we propose to

use an application configuration tool to automatically configure diverse AIS agents at both

design time and run time.

17

Cognitive Components

Physical Components

Reference Architecture Component Library

Tasks Methods Domains

Variety of Individual Agents

Office
Surveillance

Robot

Office
Delivery
Robot

ICU Patient
Monitoring

Agent

Anesthesia
Monitoring

Agent

Cognitive Level

Physical Level

Environment

Application
Configuration

Tool Tasks Methods Domains

Figure 4. Building a variety of individual agents by configuring selected components within the reference
architecture.

Application schemas generalize the abstract language of control plans (specified by tasks,

parameters, and constraints), to describe the range of behavior capabilities an agent might need

for its particular application. For every potentially useful task in an application, one or more

schema entries specify the subject domain elements with which the task might be instantiated

and the constraints that might be applied. Formally, an application schema is a 3-tuple: <task,

domain, constraints>. For example, the schema entry <plan-destination-sequence,

KSL offices, {fast, optimal}> specifies that the agent might have to perform a

destination planning task, instantiated for any subset of the KSL offices, under either of two

constraints: fast, real-time planning or guaranteed optimal plans. Given a schema entry, the

application configuration tool would select the best available components for meeting each of the

specified constraints, using the same component characterizations used by the meta-controllers

for run-time selection among enabled components within an already configured agent.

18

Thus, the configuration tool and the meta-controller use the same language and semantics to

describe and select task, method, and domain components. However the configuration tool

operates at design time (or at run time in the case of system reconfiguration), assembling the

repertoire of components an agent will need in order to function effectively over a period of time

in its anticipated application environment. The meta-controller operates at run time, selecting the

best available components in the agent's repertoire to apply in the present situation.

We envision a taxonomy of domain-specific skeletal schemas, corresponding to the AIS

taxonomy sketched out in Figure 1. Each sub-domain schema would specialize and elaborate its

parent schema. For example, an autonomous robot schema might describe an agent that can

sequence a set of destinations using constraints, plan a path between two successive destinations,

and control the robot's motion to follow a path. This schema would be quite general, specifying

only a small number of components and a variety of constraints under which they might have to

be performed. An office robot schema might describe a more specific kind of autonomous robot,

specifying more tasks and a more restrictive set of constraints under which they may have to be

performed. An application builder would begin by selecting the most specific schema that

applied to the target application and then modify, specify, or elaborate it.

3. Empirical Studies

3.1 Overview of the Three Studies

We conducted three empirical studies of our approach using a Nomad 200 mobile office

robot [39]. The Nomad 200 has hardware for sensing, moving, and communicating. For sensing,

the robot has an orientable 2D laser beam and three sensor rings holding: 16 sonar sensors, 16

infra-red sensors, and 20 pressure-sensitive bumpers. For moving, it has effectors to control

translational and rotational speed and rotation of the laser. For communicating, the robot has a

voice synthesizer and can exchange electronic messages with other computers. The Nomad robot

simulator provides the same interface and command language used by the actual Nomad robot

19

for sampling sensor data and actuating effectors. It permits simulation of uncertainty for both

sensing and moving. The three studies differ on several dimensions, summarized here (see Table

1) and described in detail in section 3.2.

In study 1, we automatically configured three different agents to control a simulated robot

performing a surveillance job in office environment 1. Each agent instantiates the AIS

architecture and a different subset of the components from component library 1. All of the

components in library 1 were developed by our research group.

In study 2, we configured a single agent to control a simulated robot performing a delivery

job in office 2. The agent instantiates the AIS architecture and all of the components in library 2,

which includes a subset of library 1 components developed for the surveillance job, new

components developed by our research group for the delivery job, and new components imported

from another research group having no particular interest in either the surveillance or delivery

job.

In study 3, we configured a single agent to control a physical robot performing the delivery

job in our own laboratory, KSL Building C (office 3). The agent instantiates the AIS architecture

and all of the components in library 3, which includes the same components as library 2, with

three exceptions: the domain component is office 3 instead of office 2, the physical method

components were modified to cope with real-world complexities and noise, and the learning

component was excluded.

Table 1. Summary of differences between studies 1, 2, and 3.

Study 1 Study 2 Study 3

Number of Agents 3 agents 1 agent 1 agent

Robot Embodiment simulated simulated physical

Agent Job surveillance delivery delivery

Office Environment office 1 office 2 office 3 (= KSL Building C)

Components Used library 1 library 2 (= subset of

 library 1 + new)

library 3 (= library 2 +

 modifications)

20

As discussed in section 3.3, each of the three studies demonstrates, in its own way, the

advantages of the AIS DSSA: promotion of the functional requirements of adaptive intelligent

systems, facilitation of new application development, and support for system reconfiguration. As

discussed in section 3.4, the three studies together demonstrate the cumulative advantages of the

DSSA in evolutionary development efforts.

3.2 Details of the Three Studies

3.2.1 Study 1: Surveillance with Three Different Simulated Robots

3.2.1.1 The surveillance job

The surveillance job requires an agent to respond to two kinds of electronic messages

received asynchronously at run time, basic surveillance instructions and alarm signals. Basic

surveillance instructions designate the regular destinations for the job, which are a subset of the

potential destinations on the agent’s map, and constraints the agent must satisfy in visiting any

regular or alarm destinations (e.g., pair-wise ordering constraints, relative frequencies, etc.).

Alarm signals identify alarms occurring “now” at any subset of potential destinations on the map

(possibly including regular destinations). To do its job well, a surveillance agent must perform

three activities. It must repeatedly visit each of the regular destinations in accordance with the

constraints among them. Whenever alarms occur, it must visit the alarm destinations as quickly

as possible, in accordance with the constraints. When possible, it must acquire new knowledge

(e.g., metric map information, cases of destination sequences) and exploit both new knowledge

and new behavioral methods (e.g., new planning or navigation methods) to improve its

performance.

3.2.1.2 Component library 1

For this study we developed an initial component library containing components for the

tasks, methods, and subject domain knowledge useful for the surveillance job.

21

[a][b]

[c]

[d] [e] [f]

[g]
[h][i]

3

11

10

7

8

96

52

41

17

1813

12

14

15 16

Figure 5. Office 1 subject domain used in study 1.

The domain of study 1 is office 1 (Figure 5). The cognitive domain component is a

topological map that represents office 1 as a set of potential destinations (shown as alphabetic

characters), intervening nodes (shown as numbers), and connecting paths. The physical domain

component includes metric information about all objects and spaces, but no information about

potential destinations.

Library 1 also includes components representing seven cognitive and physical tasks required

for the surveillance job (Table 2) and 1-3 alternative methods for each of these tasks (Table 3).

While some of these methods are powerful and robust, others are rudimentary or only simulate

part of their ostensible functionality. Our purpose in creating and presenting them here is not to

claim anything about the methods themselves, but to illustrate the kinds of methods that might

exist in a component library and how they can be configured in our AIS architecture to produce a

variety of surveillance agents.

22

Table 2. Cognitive and physical task components in library 1.

Input Output
Cognitive Tasks: (from physical level) (to physical level)
(1) Assess communicationNew message received =

Regular destinations or Alarm
destinations

New goal = New set of
destinations, Context-specific
constraints

(2) Plan reasoning Changed goal = New goal or
Prior goal achieved

New reasoning plan = Sequence
of reasoning tasks, Context-
specific constraints

(3) Sequence destinationsNew goal New destination sequence =
Sequence of destinations under
[constraints]

(4) Plan routes New destination plan New route plan = Sequence of
paths [a->b] under [constraints]

(5) Monitor execution New perceived node New physical command =
Navigate [next path] under
[constraints]

Physical Tasks: (from cognitive level or
environment)

(to cognitive level)

(6) Navigate New node perceived (from
environment) and Neighboring
node (from cognitive level)

At new node, New node
perceived, Other conditions
perceived

(7) Interpret messages New electronic message (from
environment)

New perceived problem =
Regula