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Abstract: The condition of locomotive bearings, which are essential components in trains, 

is crucial to train safety. The Doppler effect significantly distorts acoustic signals during 

high movement speeds, substantially increasing the difficulty of monitoring locomotive 

bearings online. In this study, a new Doppler transient model based on the acoustic theory 

and the Laplace wavelet is presented for the identification of fault-related impact intervals 

embedded in acoustic signals. An envelope spectrum correlation assessment is conducted 

between the transient model and the real fault signal in the frequency domain to optimize 

the model parameters. The proposed method can identify the parameters used for simulated 

transients (periods in simulated transients) from acoustic signals. Thus, localized bearing 

faults can be detected successfully based on identified parameters, particularly period 

intervals. The performance of the proposed method is tested on a simulated signal suffering 

from the Doppler effect. Besides, the proposed method is used to analyze real acoustic 

signals of locomotive bearings with inner race and outer race faults, respectively. The 

results confirm that the periods between the transients, which represent locomotive bearing 

fault characteristics, can be detected successfully. 
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1. Introduction 

Economic and social development in most countries has increased considerably the requirement for 

transportation capability. Railway transportation has played an important role in this development due 

to its strong transportation capability and high speeds. The continuous operation of trains is crucial in 

ensuring fluid and efficient traffic circulation. However, failure of train components can result in 

unexpected breakdowns, which can lead to serious traffic accidents. Hence, both the economy and 

human safety are at risk if trains have faulty components. Locomotive bearings support the entire 

weight of a train and they rotate at a high speed when the train is running. The health of these bearings 

is crucial for the continuous and safe operation of the train. Therefore, the development of an effective 

technique for monitoring locomotive bearings is profoundly significant [1]. 

A bearing usually consists of an inner race, an outer race, a cage, and a few rollers. Once one of 

these components suffers from a local defect, approximately periodic impacts will be generated when 

the defective surface comes into contact with the rollers [2]. These transient interaction components 

therefore contain important information about the health status of the bearing. Extracting these 

components is the most important task in bearing fault diagnosis based on signal processing [3]. 

The wayside acoustic defective bearing detector (ADBD) system [4] was developed in the 1980s to 

identify bearing defects before the bearings are overheated. All the devices in this system are set on the 

wayside, which makes the system more economical and feasible compared to an on-board monitoring 

system [5]. Through the ADBD system, the health status of locomotive bearings can be detected in 

passing vehicles. However, when the sound source is moving relative on the microphone, the Doppler 

effect will occur in the recorded signals. The signals obtained by the ADBD system will suffer from 

high frequency shift, frequency band expansion, and amplitude modulation [6], causing a significant 

decline in the performance of the system, particularly when the vehicles pass at high speeds. 

Various methods have been developed for bearing fault diagnosis when no relative movement is 

observed between the bearing and the data acquisition system. Time-frequency analysis, which can 

extract information from both the time and the frequency domains, was developed for non-stationary 

signals. Several representative time-frequency distributions [7,8], such as the Wigner-Ville and the 

Choi-Williams distributions, have proven their potential in bearing fault signal processing [9]. Wavelet 

transforms were developed to decompose a temporal raw signal into different scales with varying 

frequency bandwidths [10,11]. Thus, wavelet transforms can be used to enhance bearing fault-related 

information for further processing [12,13]. The ensemble empirical mode decomposition (EEMD) is 

an adaptive decomposition method that can decompose nonlinear and non-stationary signals into a set 

of intrinsic mode functions (IMFs) according to its own natural oscillatory modes [14] and has been 

widely applied in diagnosing bearing faults [15,16]. 

Matching pursuit is an adaptive approach that selects optimal atoms to approximate a signal through 

iterations. It is effective for analyzing bearing fault transient signals [17]. Freudinger et al. [18] 
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introduced a correlation filtering approach that uses vector inner products between a time history and a 

set of Laplace wavelets as a measure of the correlation between the data and a range of modal 

dynamics characterized by the wavelets. The Laplace wavelet parameters, through which the local 

maxima are derived, are regarded as the closest to the observed the model parameters of the system. 

Based on these fundamentals, Wang et al. [19,20] proposed a method that incorporates a transient 

model and parameter identification based on wavelets and correlation filtering to achieve bearing fault 

feature detection. However, high frequency shifts, frequency band expansions, and amplitude 

modulations occur in the wayside ADBD system due to the Doppler effect. The discussed techniques 

cannot be applied directly to this problem. 

In this paper, a novel technique that combines a Doppler transient model and parameter identification 

based on the Laplace wavelet and a spectrum correlation assessment is proposed for real locomotive 

bearing fault detection. The Doppler transient model is constructed by considering the effect of 

Doppler distortion. Model parameters, including the transient periods, are identified by a correlation 

assessment between the envelope spectrum of the transient model and the real bearing fault signal. The 

results obtained through both simulations and real case studies demonstrate the remarkable 

performance of the technique in identifying locomotive bearing fault types. 

The rest of this paper is organized as follows: Section 2 briefly describes the fundamental theory 

that underlies the Laplace wavelet and the correlation assessment. The proposed method is presented in 

Section 3, followed by the simulation analysis and the real case study in Section 4. Conclusions are 

presented in Section 5. 

2. Theoretical Background 

2.1. Transient Model Based on the Laplace Wavelet 

During defective bearing movement, periodic impacts occur in the obtained signals. These transient 

components can be matched by using elements in a model dictionary. Five representative transient 

models are usually used to simulate transient components caused by bearing faults, the Morlet wavelet, 

Harmonic wavelet, Laplace wavelet, single-side Morlet wavelet, and single-side Harmonic wavelet. 

The Laplace wavelet is a single-sided damped exponential function formulated as the impulse response 

of a single mode system. It is similar to the waveform feature commonly encountered in bearing fault 

signal detection tasks [19]. A transient model based on the Laplace wavelet is therefore used for 

further analysis. The formula of the real part of the Laplace wavelet is given as: 
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where W is the temporal range, f is the discrete frequency, ζ is the discrete damping coefficient, and τ 
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A periodic multi-transient model based on the Laplace wavelet is constructed to simulate the 

waveform characteristics by introducing parameter T:  

  Laplace ( , , , )
m

t f t mT      
(3)  

Figure 1 illustrates the single and periodic Laplace wavelet transient models, respectively. 

Figure 1. (a) Single transient and (b) periodic Laplace wavelet transient model. 

 

2.2. Correlation Analysis 

In mathematics, the inner product serves as a powerful tool for evaluating the similarity of two time 

series. Suppose that two time series x(n) and y(n) have the same length N. Then, the inner product 

operation  for the two finite length signals can be represented as [21]: 
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The correlation coefficient            , based on the inner product, can be used to assess the 

degree of correlation between the two time series. Its formula is given by: 
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In terms of the Cauchy-Schwarz inequality, the correlation coefficient is constrained to: 

( ), ( )1 1x n n
    (6)  

When the correlation coefficient is closer to 0, the linear dependence relationship between the two 

signals is weaker. 

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
-1

-0.5

0

0.5

1

Time/s

A
m

p
lit

u
d
e

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
-1

-0.5

0

0.5

1

Time/s

A
m

p
lit

u
d
e

(a)

(b)



Sensors 2013, 13 15730 

 

 

3. Proposed Doppler Transient Model Based on Laplace Wavelet and Spectrum  

Correlation Assessment 

The conventional bearing fault detection methods have been developed for situations with no 

relative movement between the signal acquisition system and the defective bearing, and thus the 

acquired signal is not affected by the Doppler effect, however, locomotive bearing signals suffer from 

high frequency shifts, frequency band expansions, and amplitude modulations due to the Doppler 

effect. The fault-related impact intervals are not identical in this situation. Hence, the conventional 

detection methods are not applicable in the diagnosis of real locomotive bearing faults. In this study, a 

Doppler transient model based on the Laplace wavelet and a spectrum correlation assessment is 

proposed to address the inability of traditional methods to handle Doppler-distorted acoustic signals in 

real locomotive bearing fault detection. The correlation coefficient in the frequency domain does not 

need to consider the transient model’s time delay in this method, reducing the computation time 

required for parameter identification and thus improving the computational efficiency. A flowchart of 

the proposed scheme is shown in Figure 2. 

The proposed method follows the steps of transient model construction, Doppler distortion, 

parameter identification through the assessment of the envelope spectrum correlation, and bearing fault 

type identification through the recognized impact periods. Each step is discussed in detail in the 

following subsections. 

3.1. Doppler Distortion of the Transient Model Based on the Laplace Wavelet 

The Doppler effect was first proposed in 1842 by Austrian physicist Christian Doppler [22]. As 

shown in Figure 3, S is the distance between the initial position and the position when the sound source 

passes by the microphone. L is the current displacement. X is the distance between the current position 

and the position when the sound source passes by the microphone. R is the distance between the source 

point and the microphone. A time delay exists due to the distance between the sound source and the 

microphone. When the sound source has a movement speed Vs relative to the receiver, the wave 

frequency changes for the receiver. The observed frequency is higher than the emission frequency 

during the source’s approach, is identical at the instant when the source passes by, and is lower during 

the source’s departure. 

The Doppler effect makes traditional techniques unsuitable for processing locomotive bearing 

signals. To address this problem, the Doppler transient model is constructed for further analysis. The 

Doppler effect is embedded manually into the conventional transient model so that the constructed 

model is under the same distortion environment as the real locomotive bearing signal. According to 

acoustic theory, the following formula and procedures can be proposed: 

(1) Calculating the emission and reception time instants: The reception time instants  

{tR} = {t0, t0 + 1/fs, t0 + 2/fs, t0 + (N−1)/fs} are assumed, where fs is the sampling frequency,  

N is the data length, and t0 is the initial time instant. As shown in Figure 3, the relationship 

between the emission and reception time instants can be represented as: 

2 2/ ( ) /R e e sw e swt t t t R V t r S L V         (7)  
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where Vsw is the velocity of the sound waves in the medium, te is the emission time instants, 

and r is the distance between the microphone and the line corresponding to the direction of the 

velocity of the sound source. L can be obtained by: 

0
( )

t

sL t V dt   (8)  

(2) Interpolation: The periodic transient model χ(t) is interpolated in Equation (3) by using the 

emission time instants te, which were calculated in Step 1 through a cubic spline. Let χe(te) 

represent the interpolated amplitude vector. 

Figure 2. Flowchart of the proposed locomotive bearing fault diagnosis. 

 

(3) Amplitude modulation: The amplitudes of the waveform are modulated during transmission 

from the moving sound source to the microphone. As introduced by Morse acoustic theory [23], 

it is assumed that the locomotive bearing moves with subsonic velocity (M = Vs/Vsw < 0.2), 

which indicates that the sound source is a monopole point source. Supposing that the medium 

has no viscosity, the received sound pressure can be expressed as: 
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(9)  

where q represents the total quality flow rate of the source point, q’ is the derivative of q, t 

denotes the running time,  represents the angle between the forward velocity of the sound 

source and the line from the sound source to the microphone, and M = Vs/Vsw is the Mach 

number of the source point’s velocity. 

As shown in Equation (9), the received sound pressure comprises the near-field effect and 

the inverse relationship between the sound pressure and the distance between the source point 

and the microphone. When M < 0.2, the near-field effect can be neglected [24]. The received 

sound pressure is then given by: 
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which can also be written as: 
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Where r/(R(1 − Mcosθ)
2
) is the amplitude modulation function and q'[t−(R/Vsw)]/(4πr) is the 

received sound pressure when the microphone and the source point are both fixed. Therefore, 

the amplitude of the received waveform can be written as: 
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(12)  

The Doppler effect is thus embedded in the constructed transient model to ensure that the Doppler 

transient model experiences the same distortion as the real locomotive bearing signal. 

Figure 3. Depiction of a single sound source moving in a straight line. 
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3.2. Envelope Spectrum Correlation Assessment 

To simulate the characteristics of the received waveform in the fault signal of the locomotive 

bearing, the parameters of the constructed Doppler transient model must be adjusted to match the 

actual periodic impacts in the locomotive bearing signal. A suitable criterion must be established to 

optimize the parameters from the subsets, as shown in Equation (2). A new strategy to assess the 

envelope spectrum correlation is proposed as a quantitative measure to determine the optimal 

parameters. This strategy comprises three procedures: 
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(1) The Hilbert transforms of the periodic Doppler transient model and the real locomotive 

bearing fault signal are obtained [25]: 
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(13)  

where xA(t) is the real locomotive bearing fault signal, and the envelope signals are obtained 

by calculating the modulus of the analytic signals: 
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(2) Frequency spectrum analysis is performed by: 
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(15)  

(3) The degree of correlation of the envelope spectrum is assessed by: 
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(16)  

3.3. Parameter Identification and Locomotive Bearing Fault Detection 

The number and the diameter of the rolling elements in the locomotive bearings are represented by 

Z and d, respectively. Dm is the pitch diameter, α denotes the contact angle of the bearing, and fn 

denotes the rotational frequency. The ball pass frequency of the outer race (BPFO) can be obtained by: 

Zf
D

d
BPFO

n

m

)cos1(
2

1
   

(17)  

If the surface of the outer race suffers a defect, then every time the rolling element passes through 

the crack, periodic impulses will be created with interval t as: 

BPFO
t

1
  (18)  

Similarly, the ball pass frequency in the inner race (BPFI) is given by: 

Zf
D

d
BPFI n

m

)cos1(
2

1
  

(19)  

Therefore, the inner race fault characteristic frequency is equivalent to BPFI. The optimal 

parameters to obtain the local maximal envelope spectrum correlation coefficient are then identified, as 

discussed in Section 3.2. The identified impact period in the Doppler transient model is the related 
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bearing fault impact interval. The fault type can be determined by referring to the calculated theoretical 

fault-related impact intervals. 

4. Simulation Validation of the Proposed Method 

A simulated signal contaminated by noise is investigated to confirm the effectiveness of the 

proposed Doppler transient model in recognizing the impact intervals embedded in fault signals. The 

simulated signal is represented as: 

  300 mod( ,2/125) cos(2000 ) ( ), 0 :1/ 50000:12400 / 50000tx t e t n t t     (20)  

The sampling frequency is 50,000 Hz and the impact interval embedded in the simulated signal is 

0.016 s. The number of data points is 12,401. A randomly distributed noise n(t) is added to the 

simulated signal. The simulated and polluted signals are illustrated in Figure 4a,b, respectively. 

Figure 4. Simulated signals. (a) Simulated signal with periodical impacts; (b) polluted signal; 

(c) Doppler-distorted signal and (d) the Fourier spectrum of the Doppler-distorted signal. 
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3 described in Section 3.1. The distorted signal is shown in Figure 4c. Both the impact moments and 

their amplitudes have changed due to the Doppler effect. These phenomena will significantly affect the 

recognition of fault-related impacts, thereby enhancing difficulties during fault diagnosis. 

Figure 5. The emission and reception time instants. 

 

The proposed detection method is applied to the Doppler-distorted signal. The transient model is 

first constructed according to Equation (3). Its parameters require optimization from the sets T, F, and 

Z. The selection of these sets is crucial, as a larger interval range and a smaller parameter subset step 

will give a more accurate result. However, this will also result in excessive computational time and 

decrease the efficiency of the method. Hence, a balance between efficiency and accuracy should be 

guaranteed. The parameter subsets of F and T are uniform, as shown in Equations (1) and (2). The 

range of F is set at {800:10:1200}, which is drawn from the Fourier spectrum of the distorted  

signal. The subset of Z is non-uniform to provide higher resolution at lower damping ratio values, so 

that the efficiency of the method can be retained. Hence, the range of subset Z is selected as  

{{0.005:0.001: 0.03}{0.04:0.01:0.1}{0.2:0.1:0.9}} which have small steps in the low value range and 

large steps in the high value range. The impact interval of the transient model is searched from the set 

T, which is selected as {500/50,000:1/50,000:1,000/50,000}. The grid of the model parameters is 

constructed according to F and Z for each element from set T. When a group of parameters is 

determined, the transient model Doppler distortion is performed according to the procedures discussed 

in Section 3.1 to obtain the Doppler transient model. The envelope spectrum correlation between the 

Doppler transient model and the simulated Doppler distorted signal is assessed. Figure 6 shows the 

maximal correlation coefficients for the different elements from set T. 

When the impact interval of the Doppler transient model is determined to be 800/50,000 = 0.016 s, 

the maximal correlation coefficient of the envelope spectrum between the Doppler transient model and 

the simulated Doppler distorted signal can be obtained. The optimal parameters f=900 and ζ =0.05 

when the element 800/50,000 = 0.016 s is determined from set T are thus considered the best 

parameters for the Doppler transient model.  
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Figure 6. Maximal correlation coefficients for different elements from the set T. 

 

The optimal Doppler transient model and the simulated Doppler distorted signal are shown in 

Figure 7. Thus, after parameter optimization, the optimal Doppler transient model’s impact interval 

matches that of the simulated distorted signal. The impact interval of the original transient model is 

800/50,000 = 0.016 s, as shown in Figure 7c. Therefore, the impact interval of the simulated Doppler 

distorted signal is determined successfully. 

Figure 7. Results obtained by the proposed method: (a) the optimal Doppler transient model; 

(b) the simulated Doppler distorted signal; (c) the optimal periodical transient model. 
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acquired through the microphone. The collected acoustic signals are embedded with the Doppler effect 

in the second experiment. The test rigs for these experiments are illustrated in Figure 8. 

As shown in Figure 8a, the test rig is composed of a drive motor, two supporting pillow blocks 

(mounted with a healthy bearing), and a bearing [NJ(P)3226XI] for testing, which is loaded on the 

outer race through a worm-and-nut and an adjustable loading system installed in the radial direction. A 

4944-A-type microphone from the B&K Company (Copenhagen, Denmark) is mounted adjacent to  

the outer race of the defective bearing to measure its acoustic signals. An advanced data acquisition 

system (DAS) by National Instruments (Austin, TX, USA) is used to perform data acquisition. The 

parameters of the test bearings are listed in Table 1. Some parameters used in the experiment are listed 

in Table 2. 

Figure 8. Experimental setup for acoustic signal acquisition with the Doppler effect:  

(a) test bench of the first experiment and (b) actual scene of the second experiment. 

 
(a) (b)

  

Table 1. Specifications of the testing bearing. 

Type NJ(P)3226XI 

Diameter of the outer race 250 mm 

Diameter of the inner race 130 mm 

Pitch diameter (D) 190 mm 

Diameter of the roller (d) 32 mm 

Number of the roller (z) 14 mm 

Table 2. Parameters used in the first experiment. 

Loading 3 t, 1 t 

Rotating Speed 1,430 rpm 

Sampling Frequency 50 kHz 

Figure 8b shows a realistic setup of the second experiment, which is represented by the model 

illustrated in Figure 3. The parameters are established as follows: S = 8 m, r = 2 m, Vs = 30 m/s, and 

Vsw = 340 m/s. The acoustic source is mounted in a moving vehicle, and the microphone and DAS 

from the first experiment were used. To simulate the locomotive bearing fault, an artificial crack with a 

width of 0.18 mm is made with a wire-electrode cutting machine on the surfaces of either the outer 

race and inner race, as shown in Figure 9. The Doppler-distorted inner race fault and outer race fault 
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signals are obtained in these experiments. The proposed method is then used to detect the fault-related 

impact intervals. 

Figure 9. Artificial defects on the (a) outer race and (b) on the inner race of the bearing. 

 (a) (b)

 

Figure 10 shows the Doppler-distorted outer race fault signal under the loading of 3 t and its 

spectrum. As computed by Equation (17), the outer race characteristic frequency is 138.74 Hz and the 

periodical impact interval is 0.0072 s. 

Figure 10. Outer race fault signal of the locomotive bearing under the loading of 3 t:  

(a) time domain signal and (b) its spectrum. 
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real bearing fault-related impact interval. The optimal transient model and its Doppler-distorted model 

are shown in Figure 12a,b, respectively. A comparison between the optimal Doppler transient model 

and the real locomotive bearing fault signal in Figure 12c indicates that the proposed transient model 

correctly reveals the embedded fault-related impact intervals. 

Figure 11. Maximal correlation coefficients for different elements from set T. 

 

Figure 12. Results obtained using the proposed method: (a) the optimal periodical 

transient model; (b) the optimal Doppler transient model and (c) the outer race fault signal. 

 

The conventional method, which conducts the correlation assessment in the time domain, is applied 

to the problem for comparison. A transient model with parameters requiring optimization from sets T, 

F, and Z is constructed. The correlation between the transient model and the Doppler distorted signal is 

assessed in the time domain [19] instead of the frequency domain.  
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Figure 13 shows the maximal correlation coefficients for the different elements from set T. The 

maximal correlation coefficient is obtained when the impact period is 0.0067 s. However, this is not 

the real outer race fault-related impact interval. The values of the correlation coefficients are much 

smaller than those in Figure 11. Hence, the conventional method is not applicable to this problem. 

Figure 13. Maximal correlation coefficients for different elements from set T using the 

conventional method. 

 

An outer race fault signal under a different loading, 1 t, is analyzed. Figure 14 shows the  

Doppler-distorted outer race fault signal under the loading of 1 t and its spectrum. This signal  

is processed according to the procedures in Figure 2, the results of which are shown in  

Figures 15 and 16. The proposed method correctly reveals the fault-related impact intervals under this 

different working condition. 

Figure 14. Outer race fault signal of the locomotive bearing under the loading of 1 t:  

(a) time domain signal and (b) its spectrum. 
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Figure 15. Maximal correlation coefficients for different elements from set T. 

 

Figure 16. Results for a loading of 1t obtained using the proposed method: (a) the optimal 

periodical transient model; (b) the optimal Doppler transient model and (c) the outer race 

fault signal. 

 

The conventional method in the time domain is again used for a comparative analysis. Figure 17 

shows the maximal correlation coefficients between the transient model and the real bearing fault signal 

for the different elements from set T. The conventional method fails to identify the locomotive bearing 

fault-related impact interval, as the optimal impact interval found is 0.00628 s instead of 0.0072 s. 

The actual inner race fault signal shown in Figure 18 is analyzed using the proposed method. Using 

Equation (19), the inner race fault characteristic impact interval is calculated as 0.0051 s.  
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A transient model with optional parameters is established to recognize the locomotive bearing fault. 

The Doppler distortion is added into the constructed model. The maximal correlation coefficients  

for every selected impact period after parameter optimization are shown in Figure 19. The global 

maximal correlation coefficient is obtained when the impact period for the established transient model 

is set as 0.0051 s. 

Figure 17. Maximal correlation coefficients for different elements from set T, using the 

conventional method and a loading of 1 t. 

 

Figure 18. Inner race fault signal of the locomotive bearing: (a) time domain signal and  

(b) its spectrum. 
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Figure 19. Maximal correlation coefficients for different elements from set T, using the 

proposed method on the inner race fault signal. 

 

Figure 20a–c illustrates the optimal transient model, the Doppler distorted transient model, and  

the real inner race fault signal, respectively. Based on the results in Figure 20, the inner race  

fault-related impact interval embedded in the actual fault signal is successfully revealed by applying 

the proposed method. 

Figure 20. Results obtained by using the proposed method: (a) the optimal periodical 

transient model; (b) the optimal Doppler transient model and (c) the inner race fault signal. 
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method incorrectly selects the impact period T = 0.00638 s. The performance and superiority of the 

proposed method is therefore validated by these specific case studies and comparative analyses. 

Figure 21. Maximal correlation coefficients for different elements from set T, using the 

conventional method on the inner race fault signal. 

 

6. Conclusions 

In this study, a new Doppler transient model based on the Laplace wavelet and a spectrum 

correlation assessment is proposed for diagnosing locomotive bearing faults. The proposed scheme 

includes Laplace wavelet transient model construction, Doppler distortion, spectrum correlation 

assessment, and parameter optimization. After implementing the proposed method, the fault-related 

impact interval can be successfully determined using on the optimal Doppler transient model. 

The Laplace wavelet is used as the impact base function due to its superior ability to match actual 

bearing fault impulses. A periodical transient model based on the Laplace wavelet is constructed.  

The parameters of the model require optimization to properly match the real locomotive bearing fault 

impact interval. 

Through acoustical theoretical analysis, a procedure for adding the Doppler effect to the constructed 

periodical transient model is proposed to simulate the Doppler distortion experienced by real 

locomotive bearing fault signals. 

A new criterion is established to choose proper parameters during Doppler transient model 

construction. Correlation analysis is conducted between the envelope spectrum of the established 

Doppler transient model and the locomotive bearing fault signal. The parameters for obtaining the 

maximal correlation coefficient are found to be the optimal parameters for the model. Hence, the impact 

interval in the optimal Doppler transient model is recognized as the fault-related impact interval. 

The results obtained by investigating both simulated signals and locomotive bearing fault signals 

indicate that the proposed method exhibits satisfactory performance in analyzing Doppler-distorted 

locomotive bearing acoustical fault signals. The proposed method could be developed further for use in 

a wayside train condition monitoring system. 
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