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A Double-Difference Earthquake Location Algorithm: Method and

Application to the Northern Hayward Fault, California

by Felix Waldhauser and William L. Ellsworth

Abstract We have developed an efficient method to determine high-resolution
hypocenter locations over large distances. The location method incorporates ordinary
absolute travel-time measurements and/or cross-correlation P-and S-wave differential
travel-time measurements. Residuals between observed and theoretical travel-time
differences (or double-differences) are minimized for pairs of earthquakes at each
station while linking together all observed event-station pairs. A least-squares solu-
tion is found by iteratively adjusting the vector difference between hypocentral pairs.
The double-difference algorithm minimizes errors due to unmodeled velocity struc-
ture without the use of station corrections. Because catalog and cross-correlation data
are combined into one system of equations, interevent distances within multiplets
are determined to the accuracy of the cross-correlation data, while the relative lo-
cations between multiplets and uncorrelated events are simultaneously determined
to the accuracy of the absolute travel-time data. Statistical resampling methods are
used to estimate data accuracy and location errors. Uncertainties in double-difference
locations are improved by more than an order of magnitude compared to catalog
locations. The algorithm is tested, and its performance is demonstrated on two clus-
ters of earthquakes located on the northern Hayward fault, California. There it col-
lapses the diffuse catalog locations into sharp images of seismicity and reveals hor-
izontal lineations of hypocenters that define the narrow regions on the fault where
stress is released by brittle failure.

Introduction

Seismicity analysis for the study of tectonic processes,
earthquake recurrence, and earthquake interaction requires
knowledge of the precise spatial offset between the earth-
quake hypocenters. This is particularly the case for crustal
faults that are most readily investigated using microseismic
activity. The location uncertainty of routinely determined
hypocenters is typically many times larger than the source
dimension of the events itself, thus putting limits on the
study of the fine structure of seismicity.

The accuracy of absolute hypocenter locations is con-
trolled by several factors, including the network geometry,
available phases, arrival-time reading accuracy, and knowl-
edge of the crustal structure (Pavlis, 1986; Gomberg et al.,
1990). The use of a one-dimensional reference velocity
model to locate the earthquakes limits the location accuracy,
since three-dimensional velocity variations can introduce
systematic biases into the estimated travel times. One can
partially account for the velocity variations by including sta-
tion and/or source terms in the location procedure (e.g.,
Douglas, 1967; Pujol, 1988; Hurukawa and Imoto, 1992;
Shearer, 1997) and/or by jointly inverting the travel-time
data for hypocenters and velocity structure (e.g., Crosson,

1976; Ellsworth, 1977; Roecker, 1981; Thurber, 1983; Mi-
chael, 1988; Kissling et al., 1994).

The effects of errors in structure can also be effectively
minimized by using relative earthquake location methods
(Poupinet et al., 1984; Fréchet, 1985; Frémont and Malone,
1987; Got et al., 1994) (for a discussion on relative location
errors see Pavlis [1992]). If the hypocentral separation be-
tween two earthquakes is small compared to the event-
station distance and the scale length of the velocity hetero-
geneity, then the ray paths between the source region and a
common station are similar along almost the entire ray path.
In this case, the difference in travel times for two events
observed at one station can be attributed to the spatial offset
between the events with high accuracy. This is because the
absolute errors are of common origin except in the small
region where the raypaths differ at the sources.

We can further improve location precision by improving
the accuracy of the relative arrival-time readings using
waveform cross-correlation methods. Two earthquakes pro-
duce similar waveforms at a common station if their source
mechanisms are virtually identical and their sources are col-
ocated so that signal scattering due to velocity heterogenei-
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ties along the ray paths is small. A useful rule of thumb for
maximum event separation, after which local earthquake sig-
nals become incoherent, is about 1/4 wavelength of the high-
est frequency of importance in the seismogram, which is
related to the first Fresnel zone (Geller and Mueller, 1980).
The similarity in the waveforms can be exploited either in
the frequency domain (Poupinet et al., 1984) or in the time
domain (Deichmann and Garcia-Fernandez, 1992) to obtain
highly accurate time shifts. With a relative timing precision
of about 1 msec (compared to about 10–30 msec for rou-
tinely picked phase onset), such differential travel-time data
allow one to calculate the relative location between earth-
quakes with errors of only a few meters to a few tens of
meters.

Two techniques are commonly used to obtain relative
locations from differential travel-time measurements. In the
master event approach, each event is relocated relative to
only one event, the master event (Ito, 1985; Scherbaum and
Wendler, 1986; Frémont and Malone, 1987; Van Decar and
Crosson, 1990; Deichmann and Garcia-Fernandez, 1992;
Lees, 1998). As the linking occurs only through one event,
errors due to the correlation of noise in the master event may
propagate through the entire cluster and effect the location
of all other events. This approach also puts limits on the
maximum spatial extension of the cluster that can be relo-
cated, as all events must correlate with the master event.

Got et al. (1994) overcame these restrictions by deter-
mining cross-correlation time delays for all possible event
pairs and combining them in a system of linear equations
that is solved by least-squares methods to determine hypo-
centroid separations (see also Fréchet, 1985). For simplicity,
a constant slowness vector was used for each station from
all sources. Because only cross-correlation data is consid-
ered, this approach cannot relocate uncorrelated clusters
relative to each other.

Dodge et al. (1995) converted cross-correlation delay
times derived from a master event approach (Van Decar and
Crosson, 1990) to absolute times by assigning them to or-
dinary time picks. Using a joint hypocenter determination
(JHD) method, the travel times are then inverted to simul-
taneously estimate hypocentral parameters, velocity model
corrections, and station corrections. This approach allows
groups of correlatable events with accurate interevent dis-
tances to move relative to one another by weaker constraints.
In order to retain the accuracy of the cross-correlation data,
it is assumed that the events are clustered in a small volume
so that the unmodeled velocity structure can be completely
absorbed in the station corrections.

In this article, we present an efficient earthquake relo-
cation technique that allows the simultaneous relocation of
large numbers of earthquakes over large distances. We com-
bine P- and S-wave differential travel times derived from
cross-spectral methods with travel-time differences formed
from catalog data and minimize residual differences (or dou-
ble differences) for pairs of earthquakes by adjusting the
vector difference between their hypocenters. Thus we are

able to determine interevent distances between correlated
events that form a single multiplet to the accuracy of the
cross-correlation data while simultaneously determining the
relative locations of other multiplets and uncorrelated events
to the accuracy of the absolute travel-time data, without the
use of station corrections. This article describes the double-
difference algorithm and applies it to earthquakes on the
northern Hayward fault to illustrate the performance of the
method and to develop the error model. The relocation re-
sults were recently discussed in Waldhauser et al. (1999).

Double-Difference Algorithm for
Earthquake Location

The arrival time, T, for an earthquake, i, to a seismic
station, k, is expressed using ray theory as a path integral
along the ray,

k
i iT � s � uds, (1)k �

i

where s is the origin time of event i, u is the slowness field,
and ds is an element of path length. Due to the nonlinear
relationship between travel time and event location, a trun-
cated Taylor series expansion (Geiger, 1910) is generally
used to linearize equation (1). The resulting problem then is
one in which the travel-time residuals, r, for an event i are
linearly related to perturbations, Dm, to the four current hy-
pocentral parameters for each observation k:

i�tk i iDm � r , (2)k�m

where , tobs and tcal are the observed andi obs cal ir � (t � t )k k

theoretical travel time, respectively, and Dmi � (Dxi, Dyi,
Dzi, Dsi).

Equation (2) is appropriate for use with measured ar-
rival times. However, cross-correlation methods measure
travel-time differences between events, , and asi j obs(t � t )k k

a consequence, equation (2) can not be used directly. Fréchet
(1985) obtained an equation for the relative hypocentral pa-
rameters between two events i and j by taking the difference
between equation (2) for a pair of events,

ij�tk ij ijDm � dr , (3)k�m

where Dmij � (Ddxij, Ddyij, Ddzij, Ddsij) is the change in the
relative hypocentral parameters between the two events, and
the partial derivatives of t with respect to m are the com-
ponents of the slowness vector of the ray connecting the
source and receiver measured at the source (e.g., Aki and
Richards, 1980). Note that in equation (3) the source is ac-
tually the centroid of the two hypocenters, assuming a con-
stant slowness vector for the two events. in equation (3)ijdrk
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Figure 1. Illustration of the double-difference
earthquake relocation algorithm. Solid and open cir-
cles represent trial hypocenters that are linked to
neighboring events by cross-correlation (solid lines)
or catalog (dashed lines) data. For two events, i and
j, the initial locations (open circles) and correspond-
ing slowness vectors, s, with respect to two stations,
k and l, are shown. Ray paths from the sources to the
stations are indicated. Thick arrows (Dx) indicate the
relocation vector for events i and j obtained from the
full set of equations (5), and dt is the travel-time dif-
ference between the events i and j observed at station
k and l, respectively.

is the residual between observed and calculated differential
travel time between the two events defined as

ij i j obs i j caldr � (t � t ) � (t � t ) . (4)k k k k k

We define equation (4) as the double-difference. Note that
equation (4) may use either phases with measured arrival
times where the observables are absolute travel times, t, or
cross-correlation relative travel-time differences.

The assumption of a constant slowness vector is valid
for events that are sufficiently close together, but breaks
down in the case where the events are farther apart. A gen-
erally valid equation for the change in hypocentral distance
between two events i and j is obtained by taking the differ-
ence between equation (2) and using the appropriate slow-
ness vector and origin time term for each event (see Fig-
ure 1):

i i�t �tk ki j ijDm � Dm � dr , (5)k�m �m

or written out in full

i i i j�t �t �t �tk k k ki i i i jDx � Dy � Dz � Ds � Dx
�x �y �z �x

j j�t �tk kj j j ij� Dy � Dz � Ds � dr . (6)k�y �z

The partial derivatives of the travel times, t, for events i and
j, with respect to their locations (x, y, z) and origin times (s),
respectively, are calculated for the current hypocenters and
the location of the station where the kth phase was recorded.
Dx, Dy, Dz, and Ds are the changes required in the hypocen-
tral parameters to make the model better fit the data.

We combine equation (6) from all hypocentral pairs for
a station, and for all stations to form a system of linear equa-
tions of the form

WGm � Wd, (7)

where G defines a matrix of size M � 4N (M, number of
double-difference observations; N, number of events) con-
taining the partial derivatives, d is the data vector containing
the double-differences (4), m is a vector of length 4N, [Dx,
Dy, Dz, DT]T, containing the changes in hypocentral param-
eters we wish to determine, and W is a diagonal matrix to
weight each equation. We may constrain the mean shift of
all earthquakes during relocation to zero by extending (7) by
four equations so that

N

Dm � 0 (8)� i
i�1

for each coordinate direction and origin time, respectively.
Note that this is a crude way to apply a constraint, but ap-

propriate for a solution constructed by conjugate gradients
(see Lawson and Hanson [1974] for more exact solutions
of constrained least squares). As shown later, the double-
difference algorithm is also sensitive to errors in the absolute
location of a cluster. Thus, equation (8) is usually down-
weighted during inversion to allow the cluster centroid to
move slightly and correct for possible errors in the initial
absolute locations.

Matrix Structure and Regularization

The matrix G is highly sparse as each equation links
together only two events, i.e., of the 4N columns in each of
the M rows of G, only 8 have nonzero elements. To enhance
the numerical stability of the solution, we scale G by nor-
malizing the L2-norm of each column of G, i.e., |G • ei| �
1, for i � 1, . . . , 4N. If one event is poorly linked to all
other events, then G is ill conditioned, and the solution to
equation (7) may become numerically unstable depending
upon the solution method. One way to regularize such ill-
conditioned systems is by prefiltering the data by only in-
cluding events that are well linked to other events. In general
this is achieved by only allowing event pairs which have
more than a minimal number of observations. This number,
however, also depends on the geometrical distribution of the
stations observing the two events. A threshold value is usu-
ally found by trial and error. Another way of regularizing
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moderately or severely ill-conditioned systems is damping
of the solution. The problem then becomes

G d
W m � W , (9)� � � �kI 0

with k being the damping factor.

Solution

A standard approach to solving equation (7) in a
weighted least-squares sense (i.e., minimizing the L2-norm
of the residual vector) is the use of normal equations

T �1 �1 T �1m̂ � (G W G) G W d, (10)

with W containing a priori quality weights. The a priori
weights express the normalized quality of the data; that is,
the precision of the cross-correlation measurements (e.g.,
proportional to the squared coherency; Fréchet, 1985; Fré-
mont and Malone, 1987), the quality and consistency with
which first-motion arrival times are determined on a routine
basis, and the relative accuracy between the two data sets.

For small clusters, and for well-conditioned systems, we
can solve equation (7) by the method of singular value de-
composition (SVD):

�1 Tm̂ � VK U d (11)

where U and V are two matrices of orthonormal singular
vectors of the weighted matrix G, and K is a diagonal matrix
of the singular values of G. We use SVD to investigate the
behavior of small systems, as the matrices U, K, and V in
equation (11) store information on the resolvability of the
unknown parameters m and the amount of information (or
lack thereof) supplied by the data d. We estimate least
squares errors, ei, for each model parameter i by

2e � C •var, (12)i ii

where Cii are the diagonal elements of the covariance matrix
C � V K�2 VT, and var is the variance of the weighted
residuals calculated by

M 2

¯d � d� i� �M
i�12¯(d � d) �� i Mi�1var � , (13)

M � (4N)

d being the mean of the residual vector and di the residual
of the ith observation.

As the system to be solved becomes larger, SVD is in-
efficient. In these cases we find the solution m̂ by using the
conjugate gradient algorithm LSQR of Paige and Saunders

(1982) that takes advantage of the sparseness of the design
matrix. LSQR solves the damped least-squares problem

G d
W m � W � 0 (14)� � � � ��kI 0 2

to find m̂ (see equation 9).
LSQR is very efficient and with a minimum storage

requirement of �25M it is applicable to very large problems.
A system of 10,000 earthquakes and two million equations
is solved in less than 5 minutes on a Sun UltraSparc-II
clocked at 300 Mhz. Typically 5 to 10 iterations are neces-
sary, depending on the accuracy of the initial locations and
the condition of the system.

Iteration

The initial solution to equation (7) is obtained from the
starting locations and the a priori quality weights. The pro-
cess is then iterated by updating the locations, the residuals,
and the partial derivatives in G. We iterate using the a priori
weights until a stable solution is obtained (usually 2 to 3
iterations using SVD, 5 using LSQR) and then iterate further
with reweighting of the data. The data is reweighted by mul-
tiplying the a priori quality weights with weights that de-
pend on the misfit of the data from the previous iteration
and on the offset between events.

Solving equation (7) in a least-squares sense assumes a
Gaussian error distribution if one wants to make statements
about the estimator. Errors in seismic travel-time data, how-
ever, have longer tails due to outliers in the data (Douglas
et al., 1997). The standard approach is to detect and remove
the outliers by cutting off the non-Gaussian tail (Jeffreys,
1973) and to use M-estimators that iteratively weight each
equation of condition by a function of its residual size (e.g.,
Anderson, 1982; Chave et al., 1987). We use a biweight
function (Mosteller and Tukey, 1977) to reweight the data
in order to reject/downweight observations with large re-
siduals:

2
dri

2W � max 0, 1 � . (15)dri MAD� �� • � �
rMAD

dri represents the ith residual difference, dr is the vector of
residuals dri, drMAD � med(|dri � med(dr)|) is the median
absolute deviation from the median (MAD), rMAD �
0.67449 is the MAD for Gaussian noise, and � is a factor
that defines the rejection level at � standard deviations.
Choices for � are typically between 3 and 6. Misfit weights
are separately obtained from the residual distribution of the
cross-correlation and the catalog data.

To downweight data for event pairs with large inter-
event distances we use
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asibW � max 0, 1 � , (16)i � � � �c

where s is the interevent distance, c is a cutoff value to dis-
miss observations of event pairs with interevent distances
larger than c, and a and b are exponents that define the shape
of the weighting curve. The choice of a biexponential func-
tion is physically based and the function’s shape needs to be
adapted for cross-correlation and catalog data separately. In
the former case, the parameters a, b, and c depend on the
data quality, and in the latter they depend on the heteroge-
neity of the local velocity structure. Typically, unit weights
are desired for events that are closeby, with a rapid/slow
decrease with separation distance for cross-correlation/cat-
alog data. Note that, although the correlation coefficient be-
tween two signals is already a measure of the distance be-
tween two events (e.g., Menke, 1999), we apply the distance
weight to cross-correlation data too. The additional weight-
ing is necessary to suppress outliers that arise from cross
correlating imperfectly aligned phases and to permit absolute
travel-time data, which are more reliable over large dis-
tances, to control the linkage between distant events.

Iteration of the process is terminated when the rms re-
sidual reaches a threshold defined by the noise level of the
data, the change in the solution vector is below a chosen
threshold, or the maximum number of iterations is reached.

Stepwise Relocation and Memory Handling

It is often desirable to relocate new events relative to
already relocated events. In such an attempt the internal
structure of the relocated events has to be retained while the
new events are relocated relative to this structure. This is
easily done by splitting the relocation vector for the relo-
cated events in equation (5) into two components: one, m¢ ,
which represents a shift common to all relocated events (i.e.,
shift of the entire cluster relative to the new events), while
the other, m�, represents individual shifts between the
events. Thus, to link a new event, i, to a relocated event, j,
equation (5) becomes

i j�t �tk ki j ijDm � D(m� � m̄) � dr . (17)k�m �m

To relocate a set of n new events relative to a cluster of
already relocated events, equation (7) extends to

1 2d �d K 0 0 K 0
2 (n�1) (n�1)0 d K �d 0 K �d

1 (n�1) (n�1)d 0 K �d 0 K �d
1 (n�2) (n�2)d 0 K 0 �d K �d
K K K K K K K� �0 0 K 1 0 K 0
0 0 K 0 1 K 0

1Dm dr1
2Dm dr2

K dr3
(n�1)• Dm� � dr , (18)4
(n�2)Dm� K� � � �K 0

Dm̄ 0

where 1 . . . n are the new events, each d represents the four
partial derivatives for one event, Dm represents the 4-vector
changes for the new events, Dm� represents the 4-vector
changes in the individual shifts of the relocated events, Dm¢
represents the 4-vector changes of the common shift of the
relocated events, and dr represents the residual vectors.

By appropriate weighting of the equations that constrain
the individual shifts of the relocated events (last two equa-
tions in system 18), we may allow poorly constrained events
to move relative to well-constrained events and the new
events. Usually a weight inversely proportional to the
squared rms error from the previous relocation is chosen. No
constraint is put on the common shift parameters, m¢ , allow-
ing the relocated cluster to move as a whole relative to the
new events.

Note that, although the design matrix G, compared to
equation (7), has four more columns that store the common
shift parameters, the number of rows are dramatically de-
creased as only observations between new events and be-
tween new events and already located events are used, but
not between already located events. Thus the aforemen-
tioned scheme can also be used to split off very large systems
into smaller ones depending on the availability of computer
memory.

Tests and Application

Data and Data Weighting

Catalog and waveform data from the Northern Califor-
nia Seismic Network (NCSN) for earthquakes recorded be-
tween 1984 and 1998 on the Northern Hayward fault near
Berkeley and El Cerrito are used to test and demonstrate the
performance of the relocation algorithm. The NCSN catalog
lists 346 earthquakes in the magnitude range of M 0.7 to M
4.0 with routinely picked first arrival times. We obtain
travel-time differences for each event pair with a separation
distance less than 10 km at stations that locate within 200
km distance from the cluster centroid (Fig. 2). The catalog
travel-time data are selected to optimize the quality and min-
imize the number of links between events.

In addition to the catalog-derived travel-time differ-
ences, we measure P- and S-wave differential travel times
between all possible pairs of earthquakes with similar wave-
forms following the cross-spectral method of Poupinet et al.
(1984) (Fig. 3). Waveforms recorded on vertical component
seismometers located within 200 km from the cluster cen-
troid are used. Most of the measurements, however, were
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Figure 2. Map of northern California showing the
location (x) of the event clusters near Berkeley and
El Cerrito examined in this study and the distribution
of stations (triangles and square symbols) used to re-
locate the events. Solid triangles represent stations
that have at least five cross-correlation measurements
in addition to the catalog data, and open triangles rep-
resent those that have catalog data only. The solid
square symbol southeast of the earthquake cluster is
station CMC. Thin lines indicate coast line and major
faults.

Figure 3. Seismograms (bandpass-filtered be-
tween 0.1 and 8 Hz) of events located in the Berkeley
cluster and recorded at station CMC (see square in
Fig. 2). Seismograms are aligned on the P arrival.
Relative position of P- and S-wave picks derived by
waveform cross correlation are indicated. The move-
out of the S arrivals for events at greater distance from
the station is clearly visible. From Waldhauser et al.
(1999).

derived from stations closer than the crossover point (about
80 km) (Fig. 2). Two waveforms recorded at a specific sta-
tion are considered similar when 50% of the squared coher-
ency values, in the frequency range 2–10 Hz, of a tapered
2.56 sec (256 samples) window containing the P-wave (S-
wave) train, exceed 0.9. For two similar waveforms, the time
difference dt is proportional to the slope of the phase of the
cross spectrum (Poupinet et al., 1984). For sufficiently simi-
lar signals, a precision of 1 msec can be achieved for the
measurement of time differences in the energy of P- and S-
arrivals from data digitized at 10 ms intervals (Poupinet et
al., 1984; Fréchet, 1985). This is in particular important for
S-waves for which absolute arrivals cannot be picked to even
200 msec. Contamination of the windowed P-wave signal
with S waves at stations close to an event pair is avoided by
moving the end taper of the P-wave window just before the
S arrival, allowing an evaluation of the low-frequency con-
tent of such signals.

The cross-correlation data is a priori weighted by the
squared coherency. Catalog data are assigned relative a
priori weights of 1, 0.75, and 0.25 for the pick quality classes
0, 1, and 2 used by the NCSN. As cross-correlation delay
time measurements are about an order of magnitude more
precise than first-motion picks, we typically downweight the
catalog travel-time data by a factor of 100 when mixing the
two data types. Equal weights are kept for P-wave and S-
wave cross-correlation data.

After inspection of the relocation results we define the
reweighting functions as shown in Figure 4. Cutoff values,
c (see equation 16), for interevent distances are 2 km for
cross-correlation data and 10 km for catalog data. We chose
a steep curve for the cross-correlation data (a � b � 5, see
equation 16) in order to retain unit weights until the break-
down of cross-correlation, usually around 600 m. A few re-
liable cross-correlation measurements, however, have been
obtained for event pairs with interevent distances up to 1700
m. A less restrictive curve is designed to weight catalog data
based on event separation. We found a bicube function ap-
propriate for the data on the northern Hayward fault
(Fig. 4).

The weighting/reweighting scheme assures that the cat-
alog data mainly constrain the relative position of events that
do not correlate without sacrificing the highly accurate cross-
correlation data that constrain the locations of closeby events
that correlate. It also accounts for the different dependence
of each of the data types on the interevent distance. Highest
weights, therefore, are assigned to cross-correlation data of
events that locate within their common first Fresnel zone.
Beyond this distance, the weight on cross-correlation data
decreases with increasing interevent distance, eventually al-
lowing the catalog data to control the relative locations of
events with larger separation distance (Fig. 4).

We solve the forward problem for this data set with a
1D-layered P-velocity model used for routine location by
the NCSN. The S-velocity model is obtained by scaling the
P-velocity model by a factor . Deviation of the model1/ 3�
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Figure 4. Reweighting functions used to down-
weight/reject data with large distances between the
events (shown for cross-correlation data and catalog
data of different weight classes; solid lines) and/or
large residuals (shown for catalog data only and a
typical rejection threshold of 0.2 sec; dashed line).
See text for explanation.

ratio from the real Vp/Vs ratio, which can be significant
within fault zones, will predominantely effect the spatial
scaling of a multiplet, rather than its internal structure.

Data Consistency

Because seismograms of local seismic events are
strongly influenced by the details of the local crustal velocity
structure, we generally expect greater waveform similarity
between events situated close together than between events
situated farther apart. Fig. 3 shows seismograms with rela-
tive P- and S-wave picks of 28 highly correlated events that
occurred in the cluster near Berkeley and were recorded at
station CMC, located about 10 km to the SE of the cluster
(see Figure 2). The seismograms are plotted at their actual
(relocated) distance to the station. The relocated events form
a horizontal line (streak) of about 1-km length in direction
of station CMC at a depth of about 10 km. Note how neigh-
boring seismograms are more similar than more distant seis-
mograms. The decay of signal coherency with increasing
distance between the events is due the presence of velocity
heterogeneities that induce scattering of the signals for
waves with different paths (e.g., Vernon et al., 1998). Figure
3 also shows the move-out of the S-wave arrivals for events
at greater distance to the station. This feature is observed for
events that are only a few tens of meters apart from each

other, a scale that is far beyond the resolution capabilities of
network picks.

We use the multiplet of 28 events located in the Berke-
ley cluster to evaluate the performance of the relocation al-
gorithm. We first demonstrate the consistency of the data by
independently relocating the multiplet using the P-wave cat-
alog, the P-wave cross-correlation, and the S-wave cross-
correlation data on their own (Fig. 5). No reweighting of the
data is performed during relocation in order to allow com-
parison. NCSN locations (Fig. 5a) show a diffuse picture of
the seismicity in both map view and cross section. Relocat-
ing the 28 events using only catalog travel-time differences
(Fig. 5b) greatly improves the epicenter locations that align
along a SE–NW trending zone. Depths are less well con-
strained and distributed over about 800 m. The weighted rms
residual after four iterations is 36 ms, and the average 2r
relative location error is 70 m in horizontal direction and
250 m in depth.

Relocated events using only P-wave cross-correlation
measurements collapses the hypocenters to a thin, SE–NW
trending, horizontal line (Fig. 5c). The rms residual after four
iterations is 9 msec. The average horizontal error is 13 m, and
depth errors average 32 m. Remarkably, a very similar struc-
ture is obtained after relocation with S-wave data alone (Fig.
5d). The method’s ability to relocate events using either P or
S cross-correlation data demonstrates the high accuracy of
the differential S travel-time data, and the robustness in cross
correlating the proper phases at ranges beyond the crossover
points. A small difference in the length of the streak between
Figure 5c and Figure 5d is controlled by the Vp/Vs ratio in
the model used to solve the forward problem.

Relocated events obtained using all three data types si-
multaneously with their appropriate a priori weights are
shown in Figure 5e. The average horizontal and vertical error
estimates decrease to 12 m and 25 m, respectively, and the
weighted rms residual is 11 ms, indicating that we properly
downweight the large amount of catalog data. Relocated
events using P- and S-wave cross-correlation data only and
reweighting during iteration reduces the rms residual to 3
msec and the average horizontal and vertical errors to 5 m
and 10 m, respectively.

Relative Location Error Estimates

To assess the reliability of the least-squares-error esti-
mates, we apply a statistical resampling approach (“boot-
strap” method, Efron, 1982; Billings, 1994; Shearer, 1997)
to the events along the lineation shown in Figure 5. For the
final hypocenters in Figure 5b–d, we replace the final resid-
uals in equation (7) by samples drawn with replacement
from the observed residual distribution and relocate all
events with these bootstrap sample data and unit weights to
determine the shift in location with the resampled data vec-
tor. The process is repeated 200 times, and the cumulative
results (200 � 28 samples) are presented in Figure 6a–c.
Ellipses in Figure 6 contain 95% of the points and are de-
rived from their distribution. Horizontal errors for the cata-
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Figure 5. Relocation of 28 highly correlated events in the Berkeley cluster with
three independent data sets. (a) NCSN locations, (b) Double-difference locations com-
puted using the difference of NCSN catalog travel times for each event pair; (c) P-
wave cross-correlation travel-time differences; (d) S-wave cross-correlation travel-time
differences; and (e) all three data types. Top panels show map views, lower panels
show NW–SE cross sections. Crosses indicate the 1r (a), 2r (b–e) error estimates
given by the covariance matrix of the least-squares solution. Average number of phases
per event used for relocation are 37, 47, and and 41 for catalog P, cross-correlation P,
and cross-correlation S data, respectively.

Figure 6. Bootstrap analysis of the relative location error obtained using residual
travel times from the relocated events shown in Figure 5. Top panels show map view,
lower panels show E–W cross section of the change in location from the least-squares
location for all bootstrap samples (200 � 28 samples). Individual determinations
shown by light crosses. (a) Catalog P-wave residuals, (b) cross-correlation P-wave
residuals, (c) cross-correlation S-wave residuals, and (d) cross-correlation P- and S-
wave residuals. Ellipses contain 95% of the points and are derived from observed
distributions. Note the different spatial scale for (a).
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Table 1
Standard Deviations (m) of Jackknife Errors

Direction Median
Lower

Quartile
Upper

Quartile Maximum

East 0.9 0.7 1.1 1.5
North 2.0 1.9 2.1 2.3
Vertical 4.1 3.9 4.4 5.4

Figure 7. Relocation of the events in Figure 5 using different starting locations: (a)
NCSN locations (on this scale randomly distributed), (b) common initial hypocenter,
and initial hypocenters that are aligned (c) vertically and with a (d) 45� dip. In each of
the four subfigures top panels are map view, lower panels are NW–SE cross sections.
Cross-correlation P- and S-wave data are used in all cases.

log data are typically less than about 100 m (Fig. 6a), and
horizontal errors for both the P- and S-wave cross-correla-
tion data are typically less than 20 m (Fig. 6b,c). Depth errors
are typically less than 250 m for the catalog data, and less
than 25 m for the cross-correlation data. Figure 6d shows
the results for the combined P- and S-wave cross-correlation
data, with errors typically less than 15 and 20 m in horizontal
and vertical direction, respectively. No elongated structure
in direction of the observed streaks is observed, indicating
that the observed streaks are not an artifact of the relocation
procedure. In fact, the error ellipses are slightly oriented in
a SW–NE (fault normal) direction, most likely due to the
sparser station coverage in those areas.

Variations in station distribution for each event pair can
introduce errors in relative event locations that cannot be
quantified directly. We apply the jackknife method (e.g., Ef-
ron, 1982) to estimate the variance of errors in each coor-
dinate direction. The procedure involves repeated relocation,
each time subsampling the data by deleting one station at a
time. No outliers are removed during this process. Results
summarizing the standard deviations for each event in the
three spatial directions are presented in Table 1. Among the

28 relocated events, we observe median errors of 0.9, 2, and
4.1 m in the east, north, and vertical direction, respectively.
Location errors range from 0 to about 15 m in horizontal
direction and to 45 m in depth. This suggests that, in general,
errors due to improper station geometry are smaller than
errors that are introduced by noise in the data or model.

The jacknife method is also used to assess the influence
of one event on the locations of all others. As each event is
linked to others by direct measurements, a bad event may
affect the relative locations between others. To investigate
this possible source of error, we relocate the multiplet 28
times, each time leaving out a different event. The resulting
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Figure 8. Effects of absolute source mislocations on double-difference locations.
Relocation of five sources using error-free synthetic data. All events were given a
common initial location �. Solid circles denote the relocated sources. Map view (top
panels) and cross sections (lower panels) are shown. (a) Relocation with trial location
at true cluster centroid. (b) Relocation with the trial location shifted to the right by 2
km with the mean relocation shift constrained to zero. (c) Relocation as in (b), but with
the constraint on the mean relocation relaxed (by a factor of 1000).

28 sets of 27 locations show differences in relative locations
between the sets that are typically less than a few meters.
Such differences, however, may become significant in cases
where data coverage and quality is not as good as in our test
case.

Although the conjugate gradient method LSQR com-
putes estimates of the standard error for each model param-
eter, the accuracy of these estimates is not guaranteed (Paige
and Saunders, 1982). This is because the diagonal elements
of the covariance matrix are only approximately computed
and critically dependent on the proper convergence during
the internal iterations. The reliability of the errors reported
by LSQR, however, can be easily assessed using SVD and
equation (12) or by the statistical resampling approaches de-
scribed above.

Robustness Against Variations in Initial Locations

To demonstrate the robustness of the relocation algo-
rithm to changes in the starting model, the 28 events were
relocated using combined P- and S-wave cross-correlation
data and four different sets of starting locations (Fig. 7).
After relocation, the hypocenters form virtually the same
structure, independent of their starting locations. Whereas
with small multiplets for which the multiplet centroid might
be an appropriate starting location, using catalog locations
as trial positions give the most stable results for larger clus-
ters (several kilometers dimension), as they are, on average,
closer to the true locations.

Consistent errors in initial absolute locations may cause

changes in the orientation and scaling of the streak due to
systematic differences in the takeoff angles and the partial
derivatives. In Figure 8 and with perfect data, however, we
show that the double-difference algorithm has some degree
of sensitivity to errors in absolute locations. We compute
synthetic travel times for five sources that are horizontally
aligned over 2 km in a east–west direction at a depth of 10
km (Fig. 8a). We then shift the common source location by
2 km to the east and use this shifted location as initial trial
source for the inversion of the error-free data. The relocated
lineation (Fig. 8b) dips slightly to the east due to the system-
atic errors in the partial derivatives when the centroid is con-
strained to the wrong initial location (equation 8). The rms
residual increases by a factor of 20. By relaxing the con-
straint on the mean shift, the relocated sources move to their
correct absolute locations (Fig. 8c). Although the double-
difference algorithm is able to properly correct for errors in
absolute locations in the case of perfect data, this sensitivity
is limited by the presence of errors in the case of real data.

Application to the Northern Hayward Fault

The 346 events on the northern Hayward fault near
Berkeley and El Cerrito (i.e., 100% of the seismicity listed
in the NCSN catalog) were relocated using the double-
difference method. Figure 9a shows the NCSN locations of
these events. The seismicity forms a northwest-striking zone
associated with the Hayward fault, and a diffuse zone of
earthquakes about 2 km northeast of the fault zone near
Berkeley (Waldhauser et al., 1999). In cross section, the cat-



A Double-Difference Earthquake Location Algorithm: Method and Application to the Northern Hayward Fault, California 1363

Figure 9. (a) NCSN locations and (b) double-difference locations obtained from
catalog travel-time differences and (c) the combined set of catalog and cross-correlation
data of events located in the El Cerrito and the Berkeley cluster. Top panels show map
view, lower panels show cross sections along the fault in NW–SE direction. The surface
trace of the Hayward fault and shore line is shown. Boxes indicate events included in
the cross sections in this Figure and in Figure 11.

alog locations of earthquakes along the fault zone are scat-
tered but tend to concentrate at different depths along the
fault zone.

Figure 9b shows the double-difference locations based
solely on catalog data. The relocation method collapses the
epicenters to a narrow zone of seismic activity, with the
events clustered in depth. The rms residual decreases from
125 msec before to 41 msec after relocation. There is a sig-
nificant reduction in the relative solution uncertainties. The
2r standard errors in relative horizontal coordinates average
about 50 m, and in depth about 130 m, compared to the 270
m and 590 m of absolute routine location uncertainties.

The relocated events derived with the combined set of
catalog and cross-correlation data are shown in Fig. 9c. Re-
weighting leads to the rejection of 6% of the data, most of
which were catalog data with pick quality 2. The residuals
for the final locations are individually examined for each

data type and weight class (P- and S-wave cross-correlation
data, NCSN catalog weight classes 0, 1, and 2) (Fig. 10).
The rms residual for cross-correlation derived locations de-
creases from about 96 ms (P-waves) and 147 ms (S-waves)
before relocation to about 8.5 ms after relocation for both,
P- and S-waves. The catalog rms residual decreases for
weight class 0 from 83 ms to 60 ms, for weight class 1 from
100 ms to 77 ms, and for weight class 2 from 146 ms to 113
ms. The left panels in Fig. 10 shows the histograms of the
residuals. The distributions look reasonably Gaussian-like,
although they deviate from a Gaussian distribution in the
tails where it is somewhat hard to see. The departures from
Gaussian is made visible in quantile–quantile plots based on
a Gaussian model scaled by the inner quartile of the sample
distribution (right panels of Fig. 10). The straight line is the
expected trend for the data if it were drawn from the Gaus-
sian distribution. For all data types and weight classes, ex-
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Figure 10. Distribution of delay time residuals
after relocation. Shown are residuals of (a) cross-
correlation P-wave and (b) cross-correlation S-wave
data, and catalog data with (c) weights of class 0, (d)
1, and (e) 2. Left panels show histograms of the re-
siduals. Right panels show quantile–quantile plots
based on a Gaussian distribution. See text for expla-
nation.

cept catalog weight class 2, the observed data bends away
from the Gaussian distribution at about 2 standard deviations
from the mean. For catalog data of weight class 2, the de-
viation shows up somewhat earlier. The errors, therefore, are
nearly normal, but have much longer tails than the Gaussian
distribution. Douglas et al. (1997) found a similar error dis-
tribution for ISC travel-time data. The observed long tails
justify the down-weighting of large residuals during relo-
cation to obtain a more Gaussian-like distribution.

Double-difference locations based on the combined data
set (Fig. 9c) reveal a focused picture of seismicity, with most
of the events aligning in depth along linear, horizontal
streaks (Waldhauser et al., 1999). The inclusion of highly
consistent cross-correlation-derived differential times
greatly reduced location uncertainty, in particular in depth
due to the differential S-wave measurements for earthquakes
that correlated. Figure 11 shows cross sections of the on-
fault seismicity before and after relocation with 2r uncer-

tainties indicated. Most of the on-fault activity consists of
grouped similar events (solid circles in Fig. 11b) with strong
cross-correlation coupling and location errors typically
about a few meters to a few tens of meters. These multiplets
contain more than half of the earthquakes recorded between
1984 and 1998. Weak cross-correlation coupling exists be-
tween earthquakes that belong to different multiplets or to
the background seismicity. Some of the on-fault and most
of the off-fault activity is constrained by catalog picks only
and show typical errors of a few hundred meters.

Relocation of the individual multiplets with only the
cross-correlation data reveal the same structure as seen in
the relocated seismicity based on the combined data set, with
rms residuals as low as the noise level of the data and lo-
cation uncertainties of a few meters. This indicates that we
obtain the desired high precision for interevent distances
within multiplets, and the catalog precision for distance be-
tween multiplets and uncorrelated events.

Discussion

In ordinary JHD locations, one event influences the lo-
cation of other events through a common station correction.
In the double-difference approach, each event is coupled to
its neighbors by direct measurements. Figure 12 displays the
type and degree of coupling that exists between the relocated
events on the Hayward fault from Fig. 11. A dense network
of catalog-based observations (gray lines) constrains the
relative locations of multiplets and uncorrelated events,
whereas cross-correlation data (black lines) tie together
events that occur within multiplets. A few event pairs show
cross-correlation measurements over rather large distances
(dashed black lines in Fig. 12). Such long-range correlations
suggest that relatively little scattering occurs along the un-
common part of the raypath for these events. These mea-
surements, although reliable, are rare (less than 5 per event
pair), and the relative position between their hypocenters,
therefore, is mainly constrained by catalog data.

The strong connectivity between closeby correlated
events is shown in a histogram of cross-correlation mea-
surements in 200-m bins of interevent distances (Fig. 13a).
Over 60% of the measurements relate to event pairs with a
separation distance smaller than 200 m. The mean coherency
for P and S phases calculated for the same bins show the
expected decrease as a function of interevent distance (Fig.
13b). Note that the curve for the S-phase data is slightly
steeper than the one for the P-phase data, most likely due to
the contamination of the S-phases with earlier, out-of-phase
P waves.

Figure 14 illustrates how the quality of the locations
shown in Fig. 9c relate to data type and event separation.
Event pairs constrained by cross-correlation data have
binned rms travel-time errors that range from 6 to 13 msec
(P waves) and 7 to 19 msec (S waves) between 0- and 2-km
distance between the events (Fig. 14a). The rms residual
errors for catalog data range from 43 to 89 msec for weight
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Figure 11. Cross sections of the on-fault seismicity along and across the Hayward
fault. (a) NCSN locations with 1r errors indicated. (b) Double-difference locations
using all data and 2r errors indicated. Events that are well constrained by cross-cor-
relation measurements are represented by solid dots, and those with little or no cross-
correlation data by open circles. For location of cross sections, see Figure 9.

Figure 12. Cross section of the on-fault seismicity
with the type of coupling between events indicated.
Gray lines connect hypocenters constrained by cata-
log data, solid black lines connect hypocenters with
more than five cross-correlation measurements,
dashed black lines those with less that five cross-cor-
relation measurements. � represents hypocenters.

class 0, from 61 to 100 ms for weight class 1, and from 97
to 120 ms for weight class 2 for separation distances between
0 and 10 km (Fig. 14b). In all cases, the rms residuals gen-
erally increase with increasing event offset. The observed
increase for the cross-correlation data is most likely due to
a decrease in data quality because scattering along the ray
path and/or source orientation lower the coherency between
the signals. In addition, noise may arise from the fact that
the frequency bandwidth in the common Fresnel zone gets
narrower as separation distance grows. In contrast, the in-
crease in the rms residual for the catalog data is predomi-
nantly caused by heterogeneities in the velocity structure and
thus depends on the area of investigation.

We can separate the effect of errors in the data from
those caused by inadequacies of the velocity structure by
looking at the residuals for very close (�50 m) events. The
rms residual for these event pairs is about 2 msec for cross-
correlation data, and 15 msec for weight class 0 catalog
data. For a repeating earthquake source of 17 events on the
Calaveras fault (Vidale et al., 1994), we obtain double-
difference locations with rms residuals for cross-correlation
data of 1.5 msec and for the catalog data of 10 msec.
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Figure 13. (a) Histogram showing the number of
cross-correlation measurements in 200 m bins of in-
terevent distances. (b) Mean P- and S-wave coherency
as a function of interevent distance.

Figure 14. Rms travel-time residuals as a function
of interevent distance for (a) cross-correlation data
and (b) catalog data for different weights. Solid cir-
cles represent rms residuals derived from (a) 200 m
and (b) 500 m bins of interevent distance.

When simultaneously using both first-motion picks and
cross-correlation delay times, we have to keep in mind that
the locations calculated using first breaks are hypocenter lo-
cations, but the locations calculated using cross correlation
are relative centroid locations. In general these locations will
not be the same. Without knowing the details of the rupture
process for each earthquake, it is impossible to reconcile
them. For sufficiently small earthquakes, the errors intro-
duced by combining the two types of picks may be com-
parable to or even less than the uncertainty in the centroid
locations. For larger earthquakes, however, the difference
may become significant and may even exceed the uncer-
tainty of the relative locations.

Figure 15 shows events that belong to a multiplet in the
El Cerrito cluster (at 5 km depth and �4 km model distance
in Fig. 11). The earthquakes are represented by their equiv-
alent rupture area, modeled using a 30 bar constant stress
drop, circular rupture model. They span a magnitude range
from M 1.5 to M 4.0. In order to study the difference in
source location between the two types of data, we relocate
the hypocentroids (including the two largest events, M 3.9
and M 4.0) using cross-correlation data (solid circles) while

simultaneously relocating the hypocenters of the M 3.9 and
M 4.0 events with first-motion data only (dashed ‘�’, Fig.
15). For the M 3.9 event, the hypocentroid location is insig-
nificantly different from the hypocenter location, suggesting
that it nucleated near the center of the final rupture. In con-
trast, the M 4.0 hypocenter locates deeper than the hypocen-
troid, suggesting that the rupture started near the base and
spread upward.

In summary, the double-difference earthquake locations
of the northern Hayward fault seismicity reveal a sharp im-
age of the seismicity. The on-fault seismicity defines a nearly
planar and vertical fault zone beneath the surface trace of
the Hayward fault. The longitudinal cross-section (Fig. 11b)
shows that most of the seismicity is concentrated in elon-
gated northwest oriented structures that are embedded within
less clustered activity. These streaks are horizontal lineations
of hypocenters that extend along the fault zone, outlining
characteristic patterns of conditions on the fault where brittle
failure conditions are met (for a detailed discussion on these
lineations see Waldhauser et al., 1999). As demonstrated in
this article, the streaks are not an artifact of the relocation
procedure. This is also supported by the existence of similar
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Figure 15. Relocation of 20 hypocentroids of the
multiplet located in the El Cerrito cluster between 5
and 6 km depth. Hypocentroids denoted by � giving
2r confidence intervals. Circles represent rupture ar-
eas modeled for a 30-bar constant stress drop source.
The nucleation point (hypocenters) of the two largest
events were simultaneously located using only cata-
log data linking them to each of the smaller events
(dashed �). See text for discussion.

streaks that have recently been found on the San Andreas
fault (Rubin et al., 1999).

In transverse cross-sections, the seismicity clearly de-
fines a narrow, steeply northeast dipping structure for the El
Cerrito cluster (F-F�, Fig. 11b) and a near-vertical structure
for the Berkeley cluster (G-G�, Fig. 11b). Both structures
can be interpreted to represent the discrete active fault zone.
The width of the seismicity band, and thus the discrete zone
where the fault is accommodating slip by earthquakes, is
very thin, about 200 m, rather than the about 2.5 km seen in
the catalog locations. At some locations, an effective width
of 25 m is measured.

An interesting feature to note is the acute angle between
the direction of the surface trace of the fault near Berkeley
and the direction of the lineation (Fig. 9c). Representative
focal mechanisms computed for the events along the linea-
tion show right lateral strike-slip motion consistent with the
direction of the lineation, indicating that the imaged seis-
micity is real. Features like that and others, when imaged
with very high resolution and along entire fault systems,
permit the recognition of segment boundaries and fault
bends that are believed to play important roles in the initi-
ation and arrest of rupture.

Conclusion

We presented an efficient, double-difference technique
to relocate large numbers of earthquakes with very high res-
olution. On the northern Hayward fault, this method col-
lapses diffuse clouds of routinely located events into hori-
zontal lineations of seismicity. We performed numerous

tests including statistical resampling approaches to assess the
accuracy of the data and to estimate relative location errors.
The results demonstrate that the horizontal lineations are not
an artifact of the relocation procedure. Instead the double-
difference locations image the very fine-scale structure of
the seismicity along the fault zone.

The method presented is directly applicable to existing
earthquake catalogs and/or digital waveform data as pro-
vided by almost any seismic network. The ability to consis-
tently relocate the seismicity with high resolution along
entire fault systems opens a wide range of research possi-
bilities, from the scale of individual earthquakes to the scale
at which tectonic processes take place.

The double-difference algorithm is implemented in the
computer program hypoDD, which is available from the
authors.
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