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A Double Integral Containing the Modified Bessel

Function: Asymptotic* and Computation

By N. M. Temme

Abstract. A two-dimensional integral containing exp(-u - t)I0(¿ful) is considered. I0(z) is

the modified Bessel function and the integral is taken over the rectangle 0 < u < x, 0 < t < y.

The integral is difficult to compute when x and y are large, especially when x and y are

almost equal. Computer programs based on existing series expansions are inefficient in this

case. A representation in terms of the error function (normal distribution function) is

discussed, from which more efficient algorithms can be constructed.

1. Introduction. We consider the Bessel function integral

(1.1) l(x,y) = f f e-"-%(2]ful)dudt,

where x, y > 0 and I0(z) is the modified Bessel function. Integrals of this type are

encountered in many physical contexts; Goldstein [4] is a good example. A more

recent paper of Lassey [6] gives various references on applications. In that paper, the

computational problem is extensively discussed, not for (1.1), but for related

integrals. The algorithms are based on series expansions in terms of modified Bessel

functions or exponential polynomials of the type ¿Z"m=0xm/m\. These expansions are

very convenient to implement, and they give efficient algorithms in the (x, j)-plane

except in the neighborhood of the diagonal. So we do not consider the computa-

tional problem completely solved.

When x and y are large, and |jc — _y| is small compared to x and y, the integral

(1.1) has a peculiar behavior. To see this, consider the well-known estimate

/0(z) — as z -» oo.
V27TZ

It follows that in the outer parts of the quarter plane the integrand is exponentially

small, except near the diagonal, where we can see a ridge with height 0(1/ -fx). This

change in behavior causes the main problem for the computations based on the

expansions mentioned earlier. We discuss an asymptotic expansion in terms of the

error function (or normal distribution function) and related functions. This expan-

sion is valid for x, y large and it is uniformly valid with respect to |jc - y\, which

may vary in the interval [0, oo). The asymptotic expansion can be found in Goldstein
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684 N. M. TEMME

[4]; see also Luke [7, p. 279]. We rederive the expansion by using a new integral

representation, and we give error bounds for the remainders of the expansion. The

asymptotic problem resembles that for cumulative distribution functions, for which

the central limit theorem describes the role of the normal distribution function also.

From the cited literature it follows that (1.1) in fact can be viewed as a distribution

function.

In Lassey [6], a more general function is considered, in which the Bessel function

of (1.1) exhibits .an argument of the form 2^put, p > 0. It will be shown in

Subsection 2.2 that our results for (1.1) can easily be generalized for this case,

although the limiting form p -» 1 may cause some computational problems.

In the next section we give a new integral representation for I(x, y), from which

in subsequent sections an asymptotic expansion and numerical methods are derived.

The estimates and error bounds for the remainders in the expansion show the

asymptotic nature of the expansion and they give a sound basis for a numerical

algorithm.

2. A New Integral Representation for (1.1). The result of this section is the

representation

(2.1) l(x,y) = x - \e-*~y[(x + y)l0(£) + */,(*)] +(y - x)F(x,y),

(2.2) F(x,y) = ±r)    e^'f(t)dt,

(2.3) f(t) = e-%(t),    £ = 2^>7,    a=(^~^ ,    x = ^.

Before proving this, we make some remarks. I(x, y) is symmetric in x and y, so we

can (and will) assume that 0 < x < y. In (2.2), £ is the large asymptotic parameter

and a is the uniformity parameter, a > 0. The integral in (2.2) diverges on the

diagonal. The factor t in front of the integral makes F(x, y) well defined at x — y.

By partial integration a convergent integral (at a = 0) can be obtained, but our

asymptotics does not need this. The term with the Bessel functions in (2.1) is

exponentially small for large £, except when x = y where it is 0(-fx). Also, since

F(x, y) is exponentially small off the diagonal, and since I(x, oo) = x (see Remark

2.2 below), it follows that (2.1) is a stable representation for computing I(x, y) when

we have a stable algorithm for F(x, y).

2.1. Proof of (2.1), (2.2). To prove representation (2.1), (2.2), we first write

(2.4) I(x,y) = x+(y- x)K(x,y) - e-'-'[Wi(i) + xl0(i)],

(2.5) K(x,y) = f e-^y%{2fi¡)dt.
Jo

This can be verified by applying the operator 82/3x9j> to both sides of (2.4) and

using

^ff1= -e-*-»y[x7y-lMX       ¿Iv^ÄAU)] -/o«)-
Representation (2.4) also follows from more general results in Lassey [6], and it

reduces the double integral (1.1) to the single integral plus a few modified Bessel
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functions. The function

x

is considered in Goldstein [4] and summarized in Luke [7].

We proceed with (2.5) and replace the Bessel function by the contour integral

ds

(2-7) 7o(2V^) = à//'
/s+ys

S

where L is a circle around 5 = 0. This integral follows, for instance, from the

generating function (Olver [9, p. 61])

e z(t +1/0/2 _=  E /„(*)/",

by using Cauchy's formula. By integrating (2.7) along the circle \s\ = yjt/y, the

standard integral

1  /•"

'0

follows. Substituting (2.7) into (2.5), we obtain

•*-y ,  ew(e*/> - ex)

(2.8) h(î) = -fe^ede
IT Jn

(2.9) rfc,,),. •_£•_!•. ds.

K{x, y)=~q^r e^ose   Mp - cose)    ^
2m    Jn a2 - 7ncr,sß + ,

When L is a circle with radius less than unity, the term — ex in the numerator gives

no contribution. Integrating (2.9) along the circle |i| = p = \jx/y (we assume

temporarily p < 1), we obtain

f ¿¿coSQ   2p(p-cosfl)

^o p2 - 2pcos0 + 1

Write 2p(p - cos0) = p2 - 2pcos0 + 1 + p2 - 1. Then

(2.10) K(x, y) = F(x, y) - \e~x~"/0(0,

where (2.8) is used, and

(l - o2)e~x~y ff pilose

(2.11) F(x,y)=y       V -(-dB.
V       ' V    y> 2m )n   p2-2pcos0 + l

Combining (2.10) and (2.4) we obtain (2.1). Hence, we are finished when we have

shown that (2.2) and (2.11) are the same. To prove this, we write

(2.12) "(*.y)/*-Jzl   ÏTÏ5Ï*.

where t is given in (2.3) and ¡i = (p2 + l)/2p = a + 1. By assuming temporarily

that ju is independent of £, we obtain with (2.8)

fiF(x,y)/r=-\e-^IQ(i).

The final result (2.2) now follows by integration. Observe that p in (2.12) is larger

than unity, and that, hence, the right-hand side of (2.12) tends to zero, when £ -> oo.
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Remark 2.1. We derived (2.2) under the assumption x < y. As remarked earlier,

we can interprete (2.2) also in the limit x = y. It easily follows that F(x, y) is

continuous (and analytic) on the diagonal x = y.

Remark 2.2. Interpreting (2.7) as an inverse Laplace transform, we obtain the

known result

f°° e-vsI0(2Jty~)dy = s-1e'/s.
Jo

Using this with 5 = 1 in (1.1), we obtain

JçX
dt = x,        /(oo, y) = y.

o

Remark 2.3. The path of integration |j| = p = \[x/y in (2.9) is the so-called

saddle-point contour, on which Im(x/i + ys) = 0. There are saddle points at

s = ± p, of which s = p is dominant. Observe that the saddle point s = p and the

pole 5 = 1 coincide when x = y. This predicts for the uniform asymptotic expansion

an error function as approximant.

Remark 2.4. By expanding in (2.9) 1/(1 - 5) = ¿Zsm, \s\ < 1, a series expansion

in terms of modified Bessel functions is obtained. Such expansions appear in Lassey

[6].
2.2. A More General Function. Lassey [6] also considered, among others, the

function

(2.13) L(x,y,p) = (l-p)f i e-"-'I0(2]fp~uf)dudt,       p > 0,
■'0   ■'0

which is not a true generalization of (1.1), owing to the factor (1 - p).

However, I(x, y) = - dL/dp (at p = 1). On the other hand,

(2.14) L(x,y,p) = (1 - ePy-y) + epy-yK(py,x) - ePx~xK(y, px),

which is given in Lassey [6], and can be verified in the same way as (2.4). It follows

from (2.10) that in (2.14) K can be replaced by F. For (2.14) the limit p = 1 requires

some care, especially when we ask for the computation of L(x, y, p)/(l - p) when

\p — 1| is small.

3. Uniform Asymptotic Expansion. The expansion of this section can be found in

Goldstein [4], where it is written in terms of Whittaker functions. Luke [7] cites this

expansion in a more transparent notation. We rederive the expansion and we write,

just as Luke, the functions in terms of incomplete gamma functions. Goldstein's

starting point for the expansion is a variant version of (2.11). Our method is based

on the integral in (2.2). In this way, upper bounds for the remainders are rather

easily constructed.

We substitute in (2.2) the well-known expansion

1      °° À
(3.1) ,(,)--*     £(_!)'£    as ,-,00,

with

2-TÜ + 5)
A=-r-2-r1, 5 = 0,1,2,...,

5TÜ-5

_ _ (2, + l)2
As+l 8(5 + 1)^' ''"'
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and obtain the formal expansion

(3.3) F(x,y)~£±£-Í(-iyA¿,,
2J2rr£    ^.0

where

(3.4) *,= &]     e-°Ts-l/2dt = iT(i-i,a{).

Here, T(a, z) is the incomplete gamma function, usually defined as

(3.5) T(a,z)=       e-'f-'dt,

which for a = \ reduces to the error function. We have T(\,x2)= -fn erfcx, x > 0,

where

2    r°°
(3.6) erfcx = -=- /    e"'

Therefore, as a first approximation, we have

(3.7)

dt.

,      v     v/x + y/y ,      \fx + Jy
F(x,y)~—¡=^<t>o =

2/2?
erfc(/y - /x).

Further terms are obtained from the recursion

(3.8) T(a + l,z) = aT(a,z) + zae-z,

giving, for the first few terms in (3.3),

(a0= 1, <f>0 = vVerfcv/z,

(3.9)
A\= -*>    <i>i = 2a

9 2a2
>,2 = Ï28'     *2 = ~

~F" - ^o
vz

2<*>0 + —(l-2z)
zVz

with z = ai- = (-/v - v7*)2. Observe that a uniform bound for <f>s follows from (3.4)

by replacing e~"' by e"oi:

vaVoi
(3.10) <fc<(5-è)^1/2'

From Luke [8, p. 201], we obtain for z > 0

fz
(3.11)

Z + 5 + 1/2   {■

e~z 1

<<t>s<

1,2,...

z + 1

^ z + 5 + 3/2  ¿*

where s = 0,1,2,_These inequalities show the asymptotic nature of (3.3). More

about this is considered in the next section.

The representations for <f>x and <j>2 in (3.9) are not stable for large z. In fact, early

terms in the well-known asymptotic expansion

(3.12) «/>0=vWcv/z-~^(l-¿ + ¿ +
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will cancel other contributions in, say, <b2. To describe this in more detail, it is

convenient to introduce rs, cs by writing

(3.13) *-^T'   Cj = ("1)_mT-

Then (3.4) and (3.8) give the recursion

(3.14) rs+x = rs-csz-\       5 = 0,1,....

The numbers cs are the coefficients in the expansion (3.12), and  rs are the

remainders. That is,

"_1 c
(3.15) r0 = i/^Verfcv£"= £ -* + /-,,,       " = 0,1,...,

j = 0 z

where, for n = 0, the empty sum is zero. For large values of z, we have

00      p

(3.16) rs~Z-r       s = 0,l,2,....

Therefore, when we use (3.14) for large z, we subtract the dominant term in the

series in (3.16). For more about this numerical instability, see Section 5.

4. Error Bounds for Remainders. From Olver [9, p. 269] it follows that (3.1) can be

replaced by the exact representation

where 8n and ym, for any r > 0, are bounded as follows:

(4.2) \8n\<2X(n)e^*'\       |yj < 2e1/*4",

with

(4.3) x(«)-V»r(i + è«)/r(è + è«).
Substitution of (4.1) in (2.2) gives an exact version of (3.3), complete with re-

mainders.

We use the second series in (4.1) with m = 0. It follows that F(x, y) in (2.2) can

be written as

(4.4) F(jc, ,) = £+£
2J2tt£

where e(¿\ e{02) are estimated by

j=0

2vWe1/(4i)
(4.5) \e^\^2X(n)\An\*ne"^\       \e?\^^™ erfc fifrTí) ■

yo + 2

Now, since the argument of the error function is bounded away from zero (it equals

Jx + yfy) when £ is large, we can use the bound

erfcz < e~**/z       (z > 0).

When we compare \ë02)\ with the first term of the series in (4.4), we obtain

(4.6) K2)/*o|< 2^fi|e1/(4f)-2f>       É > 0>
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where we used the lower bound in (3.11). We assume that £ is large enough to make

the upper bound in (4.6) negligible.

The bound for e*,1' in (4.5) contains the quantity x(n)- By Stirling's formula it

follows that

x(n) = 0[(Trn/2)    j    as n -* oo.

A simple upper bound follows from the beta integral for x(n) (see Olver [9, p. 118]),

written in the form

x(„) = i^±ly0Oe-(, + l)r/2rl/2|£^lj dt

Using e' - 1 > t (t > 0), we obtain x(«) < \M« + l)/2, n > -1. We conclude

that |e<X)| < ]l2ir(n + 1) exp[7r/(8£)]\A„\4>„- In other words: the remainder e(nl) is

bounded by the absolute value of the term with 5 = n in (3.3), apart from the factor

•¡2m(n + 1) exp[7r/(8£)]. This gives a very simple criterion for terminating the

asymptotic expansion (3.3). Observe that a priori bounds of le^'/^ol follow from

(3.11). We have

(4 7) |e<»/* I < ft'("*1>e./W)(* + 1/2)(* + 1)
(4./) |e„/*o|< ,„ e 7(7 + „ + <in\   '

€" z(z + n + 3/2)

which is not sharp for z -> 0, however.

The above analysis shows that (3.3) is a uniform asymptotic expansion of F(x, y),

with £ as large parameter and a e [0, oo) as a uniformity parameter.

5. On the Recursion of the Incomplete Gamma Function. In (3.3) the incomplete

gamma functions are needed, which can be obtained by the recursion (3.8). As

remarked earlier, the terms <j>s shown in (3.9) exhibit some kind of instability

property. For higher terms, this instability becomes more pronounced. Although

higher terms are required with less numerical precision than the earlier ones, it is

appropriate to pay attention to this matter.

The origin of the instability is (3.8). Observe that we use this relation in backward

direction, with negative a-values. Gautschi [2] considered the computation of ex-

ponential integrals, which are special cases of T(a, x) with a = — «; in the present

case we have a = - n + 1/2, n = 0,1,_From Gautschi's analysis, we obtain the

following procedure: To compute

(5.1) {^};_0,       *, defined in (3.4),

where n is appreciably larger than z = oi; and z is larger than five, the subsets

(5.2) {<u;°=0, {♦,};..„, *„-[*],

can be computed by recursion with 4>s as starting value in, respectively, backward

and forward direction. See Amos [1] for an implementation of this procedure for

computing exponential integrals. Gautschi's approach is also considered in Van Der

Laan and Temme [5], with modifications of the error analysis.
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To investigate the need of such a procedure, we consider (3.14). For this recursion,

the relative amplification factors ps introduced in Gautschi [2] are given by ps =

\r0/rs\. Suppose that we start with initial value r0 having a relative error e0. Then,

according to Gautschi's theory, the quantities rs are generated with relative errors

es = pse0. The rs are not of interest, but the terms A/f>s in (4.4) are. By normalizing,

using (3.13), we consider the summation of

(5.3) "£ (-l)X<í>y<f>o = i (-l)sAso\/(csr0).
s=0 s=0

Since rs has relative error es = pse0, the 5th term of the sum has absolute error

8S = Asase0/cs. From (3.10), (3.11) it follows that the sum in (5.3) equals 1 + 0(l/£),

as £ -» oo. Consequently, after adding the 5th term in (5.3), the 5th partial sum has

an absolute error 80 + • • • +8S. Since

A,     2-T(s + |)      2-s
- = -^777-1=      as 5 ^  00 ,
cs      jir(i)       v^

we claim that summation of the series in (4.4), where the terms are obtained by

forward recursion, is a numerically safe procedure, as long as 0 < a < 2.

The above analysis is confirmed in numerical experiments. It appeared that the

value a = 2 is not very critical, especially when n in (4.4) is not too large. For

a = 1(1)10, n = 5(1)15, £ = 5(5)30, we computed

sr="¿1(-i),^F),   sr=L(-iyAMB\
s=0 s=0

where {<^F)}, {<Í>1S)} are computed by recursion in, respectively, forward and

backward/forward direction; the latter according to the procedure described in

(5.2). The starting values <j>(0F) and <J><B) were computed with relative accuracy 10"10

by using the procedures described in Gautschi [3]. For a = 1,2,3 and the above

values of n and £, all values of |(5„(F) - S„(Ä))/S„(B)| were less than 10 "10. For a > 4

values larger than 10 ~10 occurred only for n > 7, especially for the larger o-values

and the smaller £-values. Our aim was not to compute F(x, y) with relative accuracy

10  10. Only the instability of the forward recursion was investigated.

To see the consequences for the (x, j0-plane, we note that pairs (x, y) defined by

the relation a = constant are located on the line

y = [2a2 + 4a + 1 + 2(a + l)-/o(o + 2)]jc.

For a = 2 (the maximal value for forward recursion), we obtain y = (17 + 12v/2 )x

— 33.97.x. It follows that forward recursion can be used for (x, j0-pairs satisfying

1 ^y/x < 33.97.
It is also important to have a rough idea for which values of £ the asymptotic

expansion (3.3) can be used. From (3.2), (3.10), (3.11) it follows that \As<bs\ —

\As+l<f>s+1\ when 5 = [2£]. Therefore, the smallest term in (3.3) occurs at s - [2£].

For this value of s, we have \As$s/§0\ — exp( — s) = exp( —2£) (apart from algebraic

factors or constants). Consequently, when exp(-2£) is smaller than the demanded

relative precision, £ = 2y(xy is large enough (roughly speaking) to use the asymp-

totic expansion. Observe that (4.6) also contains exp( - 2£) as dominant part.
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