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ABSTRACT A pattern matching method (signature-based) is widely used in basic network intrusion
detection systems (IDS). A more robust method is to use a machine learning classifier to detect anomalies
and unseen attacks. However, a single machine learning classifier is unlikely to be able to accurately detect
all types of attacks, especially uncommon attacks e.g., Remote2Local (R2L) and User2Root (U2R) due to
a large difference in the patterns of attacks. Thus, a hybrid approach offers more promising performance.
In this paper, we proposed a Double-Layered Hybrid Approach (DLHA) designed specifically to address
the aforementioned problem. We studied common characteristics of different attack categories by creating
Principal Component Analysis (PCA) variables that maximize variance from each attack type, and found
that R2L and U2R attacks have similar behaviour to normal users. DLHA deploys Naive Bayes classifier as
Layer 1 to detect DOS and Probe, and adopts SVM as Layer 2 to distinguish R2L and U2R from normal
instances. We compared our work with other published research articles using the NSL-KDD data set. The
experimental results suggest that DLHA outperforms several existing state-of-the-art IDS techniques, and
is significantly better than any single machine learning classifier by large margins. DLHA also displays an
outstanding performance in detecting rare attacks by obtaining a detection rate of 96.67% and 100% from
R2L and U2R respectively.

INDEX TERMS Correlation Feature Selection, Double-Layered Hybrid Approach, Machine Learning,
Naive Bayes, Intrusion Detection System, Network Security, NSL-KDD, SVM

I. INTRODUCTION

Due to a dramatic increase of attacks on machines and
network-based services, cyber security has become an es-
sential topic in protecting systems from threats at a local
and global scale over the past decades. Although network
firewalls and data encryption have already provided basic
security for computers and networks, as well as satisfied
the requirements of fundamental security, there are still a
large number of threats that have gone unnoticed and given
rise to detrimental effects on the services as a whole [1],
[2]. Intrusions are dangerous threats that require immediate
attention. Intruders pose the greatest risk to organizations,
particularly to units that require a high level of security
such as military bases and airports. Failure to detect intrud-
ers inevitably leads to security breaches such as the theft
of classified information, gaining unauthorized access, and
disguising as an administrator for destructive purposes [2].

According to NSL-KDD [3], there are four major classes of
attacks 1) Denial Of Service (DOS) is an attack that floods
the target with a massive amount of traffics in order to render
the service unavailable abruptly. 2) Probe is an attack that
scans and exploits network vulnerabilities in open ports to
identify services run by the target. 3) Remote2Local (R2L) is
an attack that attempts to exploit the target’s vulnerabilities
to gain illegal access to local networks. 4) User2Root (U2R)
is an attack that attempts to exploit the vulnerabilities of the
machine to gain root privileges or take over control of the
machines. R2L and U2R attacks are uncommon but pose a
more detrimental effect to a system [4].

In recent years, Intrusion Detection System (IDS) increas-
ingly plays a vital role in discovering malicious activities
due to a massive expansion of network-connected IT devices
around the world [5]. IDS methods can be classified as
a signature-based (misuse) method and an anomaly-based
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method. While the signature-based method is able to detect
only known malicious activities but not the novel ones, an
anomaly-based method offers a better solution that is capable
of detecting unknown attacks including potential zero-day
exploits. It works by observing a deviation from normal traf-
fic patterns [2]. The signature-based IDS works by matching
the traffic target with the pre-defined signatures e.g., Snort
[6], in this way, it is very accurate in finding known threats.
However, it is utterly worthless in the case of unknown
threats [2]. Thus, advanced techniques for the anomaly-based
IDS need to be explored [7]. Even though anomaly-based
IDS usually produce high false alarm rates [2], nowadays it
has gained widespread acceptance amongst the IDS research
community [8], [9]. One of the best options in the domain
is to use a Machine Learning (ML) approach to create an
effective model in order to build a pattern recognition of
intruders [1], [8], [9].

Various machine learning techniques have been explored
and implemented to build an anomaly-based IDS [10]–[18].
There are two ML techniques that are widely implemented
in the IDS field 1) Supervised learning, which creates a map-
ping function based on pre-defined input-output pairs, and
2) Unsupervised learning, which allows a model to discover
internal relationships by itself. Supervised ML is the most
widely used technique in IDS. For example, Support Vector
Machine (SVM) [10], [16], [19], [20], Decision Tree (DT)
[21], [22], K-Nearest Neighbors (KNN) [17], [23], and Naive
Bayes (NB) [18], [24]–[26]. Unsupervised ML mostly refers
to clustering algorithms such as K-Means [27].

The key challenge in building an efficient IDS is the
selection of relevant features in the case of multiple attack
categories. Moreover, there will likely be many attack types
in networks for ML to learn. Thus, Feature Selection (FS)
is a crucial process to eliminate uninformative attributes and
noise. FS is one of the primary factors to enhance accuracy
in IDS [13], [28]. Thus, many IDS researchers try to explore
the best feature selection methods to extract a subset of
relevant features in order to boost classification results [29]
such as using Local Search Algorithm with K-Means [13],
Genetic Algorithm (GA) [19], [28], Particle Swarm Opti-
mization (PSO) [28], Ant Colony Algorithm [28], [30], and
Correlation Coefficient [31]–[33]. In the past years, Artificial
Neural Networks (ANN) and Deep Learning (DL) have been
successfully applied to deal with complex patterns, especially
in image and language processing. There are studies that
utilized ANN on IDS problem such as Convolutional Neu-
ral Networks (CNN) [34]–[36], Recurrent Neural Networks
(RNN) [37].

Every ML algorithm has its own capability. One can
precisely detect a specific type of attack, while others are
not accurate at it [38], [39]. Techniques that combine two or
more learning algorithms have been recently proposed due
to superior performance in detecting various attacks [39].
Ensemble method is a popular learning algorithm for IDS,
which usually offers a better result over a single estimator
[11]. Ensemble learning technique is the process where mul-

tiple base classifiers are combined to achieve better predictive
capability, for example, Random Forest (RF) [14], [40].

In the past years, another approach that has been adopted
largely in the IDS research community is a hybrid approach.
A hybrid approach, in general, refers to a method that com-
bines two or more learning techniques e.g., using a signature-
based method with an anomaly-based method [41]–[43], or
an anomaly-based method with an anomaly-based method.
For example, unsupervised ML and supervised ML [38], and
supervised ML and supervised ML [28], [44]–[46]. The main
concept behind the hybrid approach is to exploit the advan-
tages of each learning technique by combining the strong
points of different single classifiers in order to improve the
overall detection rate. It is also an effective technique that is
used to reduce bias towards more frequent attacks as a result
of data set imbalance [46]. Therefore, the hybrid approach is
a promising technique to address the major concerns in IDS
research.

However, there are three key problems in previous studies.
(I) Many works e.g., [37], [47] only focused on using a
single machine learning model to detect all attack types. This
led to a drawback of a single classifier that is difficult to
outperform a hybrid approach. (II) Low-frequency attacks are
not well detected due to a severe imbalance of classes in the
training data set, which results in bias in ML models [48].
(III) Relevant features for a specific type of attack may not be
necessary for other attacks due to a vast difference in attack
behaviours [49], [50].

In order to address the above problems, our contributions
to the cyber security domain are as follows: (I) We proposed
a Double-Layered Hybrid Approach (DLHA) that is better
than a single ML classifier and the ensemble method. The
proposed approach is composed of two layers that work in
a cascading manner, where the first layer is to detect DOS
and Probe, and the second layer is to detect R2L and U2R.
(II) We performed data analysis using PCA and found that
DOS and Probe are more distinct from the rest, and R2L and
U2R behave similarly to normal traffic patterns. The findings
inspired us to design DLHA. Contributions (I) and (II) are
exclusively dedicated to demonstrating the effectiveness of
implementing a hybrid approach, as opposed to using one
classifier as mentioned in problem (I). (III) The uniqueness
of our approach is that we divided the NSL-KDD training
data set into two groups i.e., 1) Group 1 that contains all
classes, and 2) Group 2 that contains only R2L, U2R, and
Normal classes. These were used to separately train the two
classifiers in order to have a dedicated classifier for detecting
rare attacks i.e., R2L and U2R amongst normal connections.
The group-divided strategy allows the algorithm to focus on
low-frequency attacks at the second layer to address the prob-
lem (II). (IV) We presented Intersectional Correlated Feature
Selection (ICFS) using correlation coefficients. It selected
commonly important features from different attack types
within the subgroups in order to mitigate the problem (III).
(V) We conducted an evaluation of our proposed approach
to show that DLHA yields higher detection rates on both
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overall performance and low-frequency-attack performances
compared to many other existing state-of-the-art methods.
(VI) We showed that DLHA is highly competitive as a hybrid
method, and it has a substantially superior performance to the
traditional single ML techniques.

The rest of the paper is organized as follows. In section
II, related works on anomaly-based IDS are provided. Data
analysis on NSL-KDD is explained and shown in Section III.
The conceptual framework of our proposed DLHA is illus-
trated, and the combined NB and SVM detection system is
introduced in Section IV. Section V explains the performance
analysis of DLHA as well as presents an extensive compari-
son of our results to other anomaly-based IDS techniques. A
conclusion is provided in Section VI.

II. RELATED WORK

Numerous anomaly-based IDS nowadays implement a hybrid
ML model, as it leads to better performance and enhanced
efficiency [1], [39]. Chi-square feature selection with multi-
class SVM model was proposed in [51]. Chi-square was used
to calculate statistical significance on each feature, and then
the low-rank features were removed. The number of features
decreased from 41 to 31 during the feature selection process.
Then, hyperparameter tuning was performed for RBF-kernel
SVM to obtain the best combination of parameters i.e., C
and gamma. The model led to an outstanding result, but
the authors did not perform an evaluation in KDDTest+.
Yao et al. [39] proposed a Hybrid Multi-Level data mining
framework using hybrid feature selection. The authors per-
formed several experiments to choose the best ML algorithms
to detect each class of attack. The final detection system
consisted of four different classifiers, which were: 1. Linear
SVM to detect DOS, 2. ANN with logistic activation function
to detect Probe, 3. ANN with relu activation function to
detect R2L, and 4. ANN with identity activation function
to detect U2R. The hybrid framework resulted in a superb
performance, but the framework could be cumbersome for
a real-time IDS as it consisted of four classifiers. The data
fusion method performed better than using a single classifier
alone by integrating multiple different classifiers and predict-
ing at the last step. It allows flexibility of data pre-processing
by using different feature selection methods. However, the
use of different classifiers for different data sources resulted
in longer computational time both in training and testing
processes [52].

GA-SVM that implemented Genetic Algorithm (GA) com-
bined with SVM was introduced in [53]. The genetic al-
gorithm was used as a feature reduction technique to re-
duce features from 45 to 10 based on three priorities. The
GA applied crossover and variation to generate the optimal
subsets of features used in training by SVM. The efficient
anomaly-based IDS hybrid model was proposed in [54]. The
authors used a voting algorithm with information gain to
filter out irrelevant features. The designed hybrid classifier
algorithm utilized ensemble representing J48, Meta Tagging,
RandomTree, REPTree, AdaBoostM1, DecisionStump, and

Naive Bayes. This method claimed to address the high false
negative rate. Jiang et al. [34] proposed a combined hybrid
sampling with a Deep Hierarchical Network model. The
model was tasked to balance the class distribution by initially
employing One-Side Selection (OSS) to reduce samples
in the majority classes, then use Synthetic Minority Over-
sampling Technique (SMOTE) to increase the samples in
the minority classes. The deep hierarchical network model
worked based on spatial feature extraction with Convolution
Neural Network (CNN) and temporal feature extraction with
Bi-directional Long Short-Term Memory (BiLSTM). The
model accurately detected the under-represented classes as
a result of a hybrid sampling technique.

Biswas et al. [55] proposed hybrid feature selection with
neural network and K-Means clustering. It applied PCA to
K-Means clustering, which specified five clusters as per the
number of classes. Each cluster was trained and evaluated
by aggregating the results from different ANN functions i.e.,
feed forward neural network algorithm. Mazini et al. [56]
proposed a new hybrid anomaly-based IDS framework to
improve detection rates using Artificial Bee Colony (ABC)
as a feature selection technique and AdaBoost algorithm as a
classifier. The authors implemented an ABC meta-algorithm
to select the best subset of relevant features and deployed
AdaBoost.M2 to detect multi-class attacks. The IDS based
on Naive Bayes Classifier (NBC) using Bayesian probability
was presented in [57]. The NBC calculated probabilities of
any attack occurrence and the TCP normal traffic based on
the Bayesian network. The authors performed a score map
analysis to select the features that boost detection rates. The
results of NBC improved the detection rate of R2L attacks.
Çavuşoğlu [58] introduced a new hybrid IDS, which used
a combination of different classifiers and feature selection
techniques according to each type of attack. The authors
performed CfsSubsetEval and WrapperSubsetEval feature
selection according to protocol types on the different feature
selection algorithms. The proposed IDS works in a multi-
level manner by having four different techniques for each
attack class i.e., RF to detect DOS, Stacking method with RF,
J48, and KNN to detect R2L, RF to detect Probe, and J48 and
NB to classify normal traffics and U2R.

Hwang et al. [59] presented the three-tier architecture IDS
approach by implementing a blacklist, whitelist, and SVM.
The first tier was to filter out the known attacks, the second
tier was to classify normal connections, and the last tier was
to detect anomalies from the rest of the connections. The au-
thors claimed that the method was efficient and flexible as all
connections were not passed to every tier process. Pajouh et

al. [60] proposed a Two-layer Dimension reduction and Two-
tier Classification model (TDTC) to focus on detecting ma-
licious activities i.e., R2L and U2R. The authors’ framework
utilized two dimensionality reduction techniques: PCA and
Linear Discriminate Analysis (LDA). After PCA, LDA was
applied with labels to transform data into lower dimensions
in order to have as few dimensions as possible to suit the
IoT environment. At the two-tier classification system, NB
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and Certainty Factor of the KNN algorithm were deployed.
Tama et al. [28] presented a Two-Stage Ensemble (TSE-IDS)
model that performed three feature selection algorithms i.e.,
Particle Swarm Optimization (PSO), Ant Colony Algorithm
(ACO), and Genetic Algorithm (GA). The features were se-
lected based on the performance of the pruning tree classifier
(REPT). The two-stage meta classifier was proposed using
rotating forest and bagging to perform the majority voting
at the end. The predictive features, as a result of the three
feature selection algorithms, were used in training. Then, a
10-fold CV was used to measure average accuracy in the
training set at the validation stage. The results suggested that
a hybrid approach performed relatively better than single ML
classifiers.

Alfantookh [61] introduced Denial of Service Intelligent
Detection (DoSID), which used feed forward ANN with the
backpropagation algorithm to detect DOS attacks. The author
presented the Grey Area that used the distribution concept
and conducted experiments to evaluate different parameter
sets to select the best configurations for ANN, such as the
number of training epochs. The experimental results dis-
played a capability to detect unknown attacks that have never
been seen at the training process, as well as an improvement
in false negative rates. A two-tier classifier with LDA feature
selection was introduced in [4]. The model was trained on
the training data set that applied SMOTE to make the data set
more balanced in terms of the ratio between anomalies and
attack records. The NB and KNN classification algorithms
were employed in the proposed IDS system. Compared to
other papers, it achieved a high detection rate on uncommon
attacks such as R2L and U2R.

Baykara and Das [62] proposed a hybrid honeypot based
real-time intrusion detection and prevention system. The
system was developed by utilizing low and high interaction
honeypots to reduce installation, configuration, maintenance
and management cost. The approach led to a considerable
drop of a false positive rate, which benefited the real-time
enterprise network monitoring. An adaptive ensemble ML
IDS framework was presented in [11]. The authors proposed
a MultiTree algorithm to deal with skewed class distribution
in the training set. It adjusted a proportion of the training data
set in order to reduce bias towards over-represented classes.
The authors evaluated multiple classifiers to select the base
classifiers including Decision Tree, Random Forest, KNN,
and Deep Neural Networks. In the end, adaptive majority vot-
ing was used to make a final prediction. However, the results
indicated a high false alarm rate, especially on Probe attacks.
A hybrid approach using a two-step binary classification
method was demonstrated in [46]. The authors designed the
first step to be an ensemble algorithm by deploying several
binary classifiers with one aggregation function to predict the
exact class of the connection. The second step was based
on the outcome of the first step by performing the KNN
algorithm to predict its class when the first step failed to
confirm a certain class. This hybrid approach accomplished
a satisfactory performance in detecting rare attacks i.e., R2L

and U2R.
De la Hoz et al. [63] proposed a hybrid framework using

PCA, Fisher Discriminant Ratio (FDR), and Probabilistic
Self-Organizing Maps (PSOMs). PCA was used to extract
meaningful components from all data attributes, and FDR
was considered as a feature selection to maintain informative
features. The PSOMs algorithm was used to detect anoma-
lous instances. A fuzzy anomaly-based IDS with Content-
Centric Networks was introduced in [64]. The approach
hybridized the PSO and K-Means algorithm to optimize
the proper number of clusters obtained from performing K-
Means. At the classification stage, the fuzzy algorithm was
deployed to distinguish abnormal connections from normal
connections. Auto-Encoder (AE) intelligent IDS was pro-
posed in [65]. The authors performed feature selection by
removing features that contain zeros higher than 80%. The
rest features combined with resulted features from one-hot
encoding were used as feature vectors. The AE was trained in
an unsupervised manner using the Scaled Conjugate Gradient
method (SCG) for 100 epochs. The authors tested the model
with several shallow ANN such as Multi-Layer Perceptron
(MLP) and deep ANN such as LSTM.

Recurrent Neural Network (RNN) based IDS was intro-
duced in [37]. The authors implemented one-hot encoding
and optimized parameters by adjusting hidden nodes and
the learning rate. The model performed well on frequent
attacks but not on uncommon attacks because no extra work
was done to address the data set imbalance. Honeypot-based
intrusion detection and prevention system combined with
a software-defined switching was presented in [66]. The
system was evaluated in a simulation environment, where the
results indicated a reduced false alarm rate. The honeypot
server that worked alongside the intrusion detection system,
produced signatures of potential zero-day attacks that bene-
fited anomaly-based IDS to detect future unseen attacks more
precisely. Gogoi et al. [38] proposed a Multi-Level Hybrid
(MLH-IDS) data mining technique. It has three levels where
it utilized a supervised ML CatSub+ as the first level to clas-
sify DOS and Probe, an unsupervised ML K-point algorithm
as the second level to detect normal traffics, and an outlier-
based classifier GBBK as the third level to classify R2L
and U2R. MLH-IDS produced excellent results as a hybrid
technique in detecting all types of attacks using NSL-KDD.
However, its real performance remains unclear because the
authors marked the attacks that exist in KDDTest+, but not in
KDDTrain+, as unknown in the testing process.

Bostani and Sheikhan [67] proposed a graph-based ML
framework based on a modified Optimum-path Forest model
(OPF). In the framework, the authors used K-Means to
partition the original NSL-KDD data set into K different
training subsets, which are used in the training process of
OPFs. The concept of centrality and prestige in social net-
work analysis was employed in a pruning module to extract
the most predictive samples from the subsets obtained by
implementing K-Means to accelerate the OPF stage. Instead
of using the full features, Mohammadi et al. [33] proposed
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a group-based feature selection, which was called Feature
Grouping based on Linear Correlation Coefficient (FGLCC)
combined with CutterFish Algorithm (CFA) on clustering
of different groups. FGLCC measured linear correlation co-
efficients from features and classes to select the maximum
correlation in order to reduce computational cost in a large
sample size. The algorithm improved the accuracy and the
detection rate of IDS. Pervez and Farid [47] developed an
anomaly-based IDS using SVM with the proposed feature
selection algorithm. The feature selection algorithm kept
removing one input feature, then built a classifier to test if
a new subset of features led to better classification accuracy.
The best classification accuracy was obtained by using 41
features, where it achieved 98.96% from a 10-fold CV in
KDDTrain+. However, it experienced a major drop in the
accuracy down to 82.37% when tested with KDDTest+.

Considering past related works, the key difference
amongst hybrid approaches is feature selection. While many
methods perform feature selection based on the most relevant
features to all attacks, the better alternative is to perform
feature selection on a specific attack type. For example, a
hybrid feature selection for each hybrid level was used in
[39]. Another major difference is a hybrid design. In [39],
[58], the authors employed four classifiers to detect each
type of attack, which led to better performance but a slower
process. On the other hand, Pervez and Farid [47] presented
a two-tier hybrid IDS using two classifiers with optimal
features derived from PCA and LDA. However, the two-
tier IDS met an inefficiency in the R2L detection perfor-
mance. Thus, past papers have failed to make contributions
in effective feature selection, and more efficient hybrid IDS
design. Table 1 highlights key differences and a summary
of the closest related works to our study that proposed a
hybrid approach. The summary explains feature selection,
ML algorithm, evaluation criteria, and the main contribution,
including our work.

III. DATA ANALYSIS

A. DATA SET DESCRIPTION

KDD99 [70] was the most widely used data set in evaluating
anomaly-based IDS approaches [71], it captured TCP dump
data from DARPA98 off-line intrusion detection evaluation
program. However, the KDD99 has numerous inherent prob-
lems. Hence, NSL-KDD data set [3] is instead utilized in this
paper. The NSL-KDD was proposed in 2009 to solve the
KDD99 data set that is skewed, and disproportionately dis-
tributed [3]. The advantages and improvements that the NSL-
KDD holds over the outdated KDD99 are that a huge number
of redundant/duplicated data are removed. Also, selected
instances are well represented i.e., the numbers of attacks
and normal instances are not very distinct, and the difficulty
levels of attacks are evenly distributed in the training and
testing sets. This results in more reliable classification results
when comparing anomaly-based methods using different ML
techniques [1], [3], [72].

In addition, it also alleviates bias in the evaluation

stage, which originally caused a higher detection rate to-
wards frequent attacks [3]. Therefore, NSL-KDD is the
standardized data set used by a number of network IDS
researchers [1], [28], [34], [65], [72]–[74]. In this pa-
per, we only consider three data sets, which are KD-

DTrain+, KDDTrain+_20Percent, and KDDTest+. KD-

DTrain+_20Percent is a subset of KDDTrain+, which con-
tains 20% of instances with the same distribution ratio of
classes. The reason behind the selection of the three data
sets is that we can perform an extensive evaluation of our
algorithm using KDDTest+ that contains 17 unseen attack
classes. The training is done by utilizing the full sample size
in KDDTrain+ data set first, then a comparatively smaller
size i.e., KDDTrain+_20Percent data set in order to observe
the difference in performance when the training data are
relatively smaller. According to NSL-KDD, there are four
main categories of attacks as shown in Table 2.

The NSL-KDD consists of five classes i.e., DOS, Probe,
R2L, U2R, and Normal. The detailed distribution of five
classes in KDDTrain+, KDDTrain+_20Percent, and KD-

DTest+ are displayed in Table 3 and Table 4 respectively.
Although the NSL-KDD is an updated version of KDD99,
it still suffers from an inherited uneven class distribution
within the data sets. For example, in the training data set it is
observed that normal records take the highest share amongst
all instances, which is about 53.46% in training data followed
by DOS (36.46%), and Probe (9.25%) while R2L (0.79%)
and U2R (0.04%) sample data are very scarce. The problem is
that if a single model is deployed, it will not be able to detect
R2L and U2R effectively owing to the model’s bias [72]. R2L
and U2R attacks, used by hackers, are more harmful than
DOS and Probe [4].

Furthermore, it is also evident that the discrepancy of the
numbers of R2L between training and testing is very high i.e.,
R2L takes up to 22.48% of all attacks in testing data, but only
1.70% in training data. Hence, in order to enhance overall
IDS performance, R2L attacks need to be well detected. It is
worth noting that the testing data set (KDDTest+) contains
17 additional unseen minor classes of attacks, which do not
appear in the training data set before i.e., apache2, httptunnel,

mailbomb, mscan, named, processtable, ps, saint, sendmail,

snmpgetattack, snmpguess, sqlattack, udpstorm, worm, xlock,

xsnoop, and xterm. Making it more challenging and realistic
to assess our hybrid approach against both known and un-
known categories of attacks. However, there are two minor
classes of attacks that appear in the training data, but they are
absent in the testing data set i.e., spy and warezclient.

B. CLASS DISTRIBUTION ANALYSIS

Each instance in the NSL-KDD contains 41 features as
displayed in Table 5. The features can be divided into four
categories which are: 1. Intrinsic features (feature 1 to 9)
derived from the header of the packets, 2. Content features
(feature 10 to 22) contain original packet payloads, 3. Time-
based features (feature 23 to 31) extracted from 2-second
interval traffic connection records, and 4. Host-based fea-

VOLUME 4, 2016 5



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3118573, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

TABLE 1. Summary of the closest related works that proposed a hybrid approach

Author(s) Year
Proposed
Method

Feature
Selection

Algorithm
Evaluation
Criteria

Main Contribution

Gogoi et al. [38] 2014 MLH-IDS Mutual Information
CatSub+, k-point,
and GBBK

Detection Rate
FDR

Proposed a 3-level hybrid
IDS using supervised,
unsupervised, and
outlier detection.

Pajouh et al. [4] 2016 TDTC PCA and LDA NBC and CF-KNN
Detection Rate
FAR

Proposed two-layer
dimension reduction and
two-tier classification

Li el al. [46] 2017
Effective
Two-Step IDS

Gain Ratio in C4.5 C4.5 DT, KNN

Accuracy
F1 Score
Precision
Detection Rate
FAR

Proposed an effective
two-step hybrid using
binary classification
and KNN

Yao el al. [39] 2019 HMLD FMIFS SVM, ANN

Accuracy
F1 Score
Precision
Detection Rate

Proposed HMLD using
hybrid feature selection
and hybrid classification

Çavuşoğlu [58] 2019
Hybrid-layered
IDS

CfsSubsetEval
and Wrapper-
SubsetEval

RF, J48 DT, KNN

Accuracy
F1 Score
Detection Rate
TPR
FAR
MCC

Proposed a hybrid-layered
IDS using four different
classifiers to detect each
attack type

Gao et al. [11] 2019
Adaptive
Ensemble

CART
DT, RF, KNN, DNN,
and MultiTree

Accuracy
F1 Score
Precision
Detection Rate

Proposed an adaptive
ensemble using multiple
ML algorithms, and
adaptive voting algorithm

Tama et al. [28] 2019 TSE-IDS PSO+ACO+GA
Rotating Forest
and Bagging

Accuracy
Precision
Detection Rate
FAR

Proposed a two-stage
meta classifier with
majority voting and
hybrid feature selection

Golrang et al. [68] 2020
Hybrid
Multi-Objective
Approach

NSGAII-ANN Random Forest

Accuracy
F1 Score
Precision
Detection Rate
FAR

Proposed a hybrid multi-
objective approach to
address the redundant
feature selection issue

Liu et al. [69] 2021
Hybrid
K-Means+RF

Attribute Ratio
K-Means, RF,~
and CNN+LSTM

Accuracy
TPR

Proposed a hybrid IDS
using scalable K-Means
Random Forest, and
CNN+LSTM for anomaly
classification

Wisanwanichthan
and Thammawichai
(This paper)

2021 DLHA ICFS and PCA NBC and SVM

Accuracy
F1 Score
Precision
Detection Rate
FAR

Proposed a double-layered
hybrid IDS using NBC and
SVM with ICFS and PCA
for feature selection

TABLE 2. Major Categories of attacks in the NSL-KDD data set

Attack Categories Description

Denial Of Service (DOS)
To make the service unavailable by

flooding connections

Probe To gain important data (port scanning)

Remote to Local (R2L) To gain Super User (root) privileges

User to Root (U2R) To gain local access from remote machine

tures (feature 32 to 41) are similar to time-based features
but include all series of connections instead of a 2-second
interval. These features are beneficial to assess attacks that
operate longer than the two-second time span. 39 of the
features are numerical, and 3 features are categorical, namely
protocol_type, service, and flag.

To perform data analysis on training data, we first im-

plemented data pre-processing by assigning numerical label
tags from [Normal, DOS, Probe, R2L, U2R] to [0, 1, 2,
3, 4] respectively. Then, we perform one-hot encoding on
those categorical features. One-hot encoding is a powerful
tool used to maintain predictive information from convert-
ing a categorical feature to numerical features. However, it
assumes zero relationships from each value in the category
[76]. The categorical features have no internal order or rela-
tionship. Let n be the number of unique values in a feature,
one-hot encoder creates n new features corresponding to each
unique original value, which contain a vector binary repre-
sentation. 1 is represented as a presence of a value, and the
rest are 0 e.g., ICMP protocol is encoded as [1,0,0], and TCP
is encoded as [0,1,0]. After data pre-processing, we ended
up having 122 features, but num_outbound_cmds feature
contains only 0, which indicates no predictive power. The
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TABLE 3. 5-Class Distribution in KDDTrain+ and KDDTrain+_20Percent

Major Class Minor Class Instance (20%) Total (20%)

1. DOS

back 956 (196)

45,927

(9,234)

land 18 (1)

neptune 41,214 (8,282)

pod 201 (38)

smurf 2,646 (529)

teardrop 892 (188)

2. Probe

ipweep 3,599 (710)

11,656

(2,289)

nmap 1,493 (301)

portsweep 2,931 (587)

satan 3,633 (691)

3. R2L

ftp_write 8 (1)

995

(209)

guess_passwd 53 (10)

imap 11 (5)

multihop 7 (2)

phf 4 (2)

spy 2 (1)

warezclient 890 (181)

warezmaster 20 (7)

4. U2R

buffer_overflow 30 (6)

52

(11)

loadmodule 9 (1)

perl 3 (0)

rootkit 10 (4)

Total

Attacks
58,630 (11,743)

5. Normal 67,343 (13,449)

Total

Instances
125,973 (25,192)

feature, as a result, was dropped. Thus, we only considered
121 features in this work. After standardization was carried
out, it removed each value by its mean and divided by its
standard deviation as shown in (1).

Zij =
xij − µj

σj

, i = 1, 2, . . . , n; j = 1, 2, . . . , d (1)

where µj =
∑

n
i=1

(xij)

n
, σj =

√∑
n
i=1

(xij−x̄j)
2

n
, n is the

number of samples, and d is the number of dimensions.
In order to gain data insight, we attempted to find char-

acteristics between different attack categories by creating
visualization to gain an intuition of the class distribution
in two dimensions. We selected PCA as a dimensionality
reduction to transform large features into a smaller set of
uncorrelated linear features. The output still contains most of
the variance from its original data [77]. In this way, we can
draw a rough idea of how different classes deviate from each
other. In PCA, we constructed linear transformation. Let X be
a d dimensional vector from the training set. The new number
of features is d′ where d′ < d in order to obtain the first
d′ principal components, the covariance matrix computation
was performed. The covariance matrix is a square matrix
given by Ci,j = σ (xi, xj), where C ∈ Rd×d, and d refers to
the number of dimensions or features from the initial data

TABLE 4. 5-Class Distribution in KDDTest+ (* are attack categories that do

not appear in the training data)

Major Class Minor Class Instance Total

1. DOS

apache2* 737

7,460

(1,719*)

back 359

land 7

mailbomb* 293

neptune 4,657

pod 41

processtable* 685

smurf 665

teardrop 12

udpstorm* 2

worm* 2

2. Probe

ipsweep 141

2,421

(1,315*)

mscan* 996

nmap 73

portsweep 157

saint* 319

satan 735

3. R2L

ftp_write 3

2,885

(686*)

guess_passwd 1,231

httptunnel* 133

imap 1

multihop 18

named* 17

phf 2

sendmail* 14

snmpgetattack* 178

snmpguess* 331

warezmaster 944

xlock* 9

xsnoop* 4

4. U2R

buffer_overflow 20

67

(30*)

loadmodule 2

perl 2

ps* 15

rootkit 13

sqlattack* 2

xterm* 13

Total

Attacks
12,833 (3,750*)

5. Normal 9,711

Total

Instances
22,544

matrix X that X ∈ Rn×d. The covariance matrix can be
defined as:

C =









σ (d1, d1) · · · σ (d1, dn)
...

. . .
...

σ (dn, d1) · · · σ (dn, dn)









hence, it can be computed by:

C =

∑n

i=1

(

Xi − X̄
) (

Xi − X̄
)T

n− 1
(2)
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TABLE 5. Detailed features in NSL-KDD [75]

Group No. Feature Name Description Type

Intrinsic Features

1 Duration Length of time of the connection Continuous

2 Protocol Type Type of protocol used in the connection Categorical

3 Service Destination network service Categorical

4 Flag Status of the connection Categorical

5 Src Bytes Number of data bytes transferred from source to destination Continuous

6 Dst Bytes Number of data bytes transferred from destination to source Continuous

7 Land 1 If source and destination IP addresses are equal Discrete

8 Wrong Fragment Total number of wrong fragments in this connection Discrete

9 Urgent Number of urgent packets Discrete

Content Features

10 Hot Number of hot indicators in the content Continuous

11 Num Failed Logins Count of failed login attempts Continuous

12 Logged In Login Status, 1 if successful Discrete

13 Num Compromised Number of "compromised” conditions Continuous

14 Root Shell 1 if root shell is obtained; 0 otherwise Discrete

15 Su Attempted 1 if "su root” command attempted or used Discrete

16 Num Root Number of "root” accesses Continuous

17 Num File Creations Number of file creation operations in the connection Continuous

18 Num Shells Number of shell prompts Continuous

19 Num Access Files Number of operations on access control files Continuous

20 Num Outbound Cmds Number of outbound commands in an ftp session Continuous

21 Is Hot Logins 1 if the login belongs to the "hot” list Discrete

22 Is Guest Login 1 if the login is a "guest” login Discrete

Time-based Features

23 Count Number of connections to the same dst host in the past two seconds Continuous

24 Srv Count Number of connections to the same service in the past two seconds Continuous

25 Serror Rate % connections have activated the flag (4) s0, s1, s2 or s3 from (23) Continuous

26 Srv Serror Rate % connections have activated the flag (4) s0, s1, s2 or s3 from (24) Continuous

27 Rerror Rate % connections have activated the flag (4) REJ from (23) Continuous

28 Srv Rerror Rate % connections have activated the flag (4) REJ from (24) Continuous

29 Same Srv Rate % connections to the same service from (23) Continuous

30 Diff Srv Rate % connections to different services from (23) Continuous

31 Srv Diff Host Rate % connections to different dst machines from (24) Continuous

Host-based Features

32 Dst Host Count Count for destination host Continuous

33 Dst Host Srv Count Srv-count for destination host Continuous

34 Dst Host Same Srv Rate Same-srv-rate for destination host Continuous

35 Dst Host Diff Srv Rate Diff-srv-rate for destination host Continuous

36 Dst Host Same Src Port Rate Same-src-port-rate for destination host Continuous

37 Dst Host Srv Diff Host Rate Diff-host-rate for destination host Continuous

38 Dst Host Serror Rate Serror-rate for destination host Continuous

39 Dst Host Srv Serror Rate Srv-serror-rate for destination host Continuous

40 Dst Host Rerror Rate Rerror-rate for destination host Continuous

41 Dst Host Srv Rerror Rate Srv-rerror-rate for destination host Continuous

Following this, we calculated eigenvalues and eigenvec-
tors, Av = λv, corresponding to the computed covariance
matrix. It then ranked the eigenvectors with the highest
eigenvalues to be the first principal component and so on.
Thus, d′ is the number of dimensions, sorted in descending
order, obtained from implementing PCA. For the purpose of
illustration, we chose two as the number of the principal com-
ponents in order to be able to plot their instances separated by
classes on a two-dimensional graph. We performed a scatter
plot of the two-dimensional PCA analysis on training data as
visualized in Fig 1.

In Fig 1, we labelled DOS as orange, Probe as green,

R2L as yellow, U2R as red, and Normal as blue. In the top
graph, we excluded Normal. Obviously, most DOS and Probe
instances are located far from normal instances, while most
R2L and U2R attacks overlap with each other and with the
normal connections. It means that R2L and U2R intruders
shared some characteristics, or in other words, they behave
more similarly to each other than those far-away attacks i.e.,
DOS and Probe. Given the bottom graph, the majority of
DOS and Probe attacks are relatively independent to the rest,
with a minor overlapping region at the top. Moreover, only
few DOS and Probe records overlap normal connections. It
is clear why many IDS methods failed to provide accurate
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FIGURE 1. 2D-PCA Visualization separated by classes of KDDTrain+

detection of R2L and U2R threats, which also led to a
high false alarm rate because of their behavioural similarity
to normal connections. The information we received from
the PCA analysis and previous studies, demonstrates that
their models perform well in detecting DOS and Probe but
suffer from low detection rates on under-represented attacks.
Implying that R2L and U2R attacks need a careful detection
strategy. Thus, we designed DLHA in order to address this
particular problem.

IV. PROPOSED METHODOLOGY

In this section, we explained the framework overview of our
proposed method inspired by the findings of data analysis

as displayed in Fig 2. It includes three main steps: data
preparation, data transformation, and training and valida-
tion processes. Then we demonstrated how DLHA anomaly-
based IDS works to detect anomalous connections in a real-
time manner. Our approach is also unique in the sense that
we first adopted Intersectional Correlated Feature Selection
(ICFS), in which intersecting features of different attacks
against others are selected. Furthermore, we have two de-
tection layers, where Layer 1 is to detect DOS and Probe
attacks out of all connections because of their distinction
from others. Then, at Layer 2 we have a dedicated classifier
to focus on detecting R2L and U2R threats.

A. A CONCEPTUAL FRAMEWORK OF DLHA

Based on the previous findings, most DOS and Probe attacks
significantly deviated from the normal patterns, and R2L
and U2R attacks were more similar to normal connections.
We designed a conceptual model for a real-time IDS that it
should consist of two classifiers. The first classifier needs to
be accurate and fast to deal with a large number of network
connections simultaneously. The Naive Bayes Classifier is
selected based on its efficiency and reliable performance
[18], [25]. The second classifier is Support Vector Machine
(SVM). It offers a Radial Basis Function (RBF) kernel to
solve non-linearly separable problems, which is an effective
measure to observe the gap amongst R2L, U2R and normal
instances.

1) Data Preparation and Data Transformation

As we have two layers, each layer has its own capability. In
order to facilitate this purpose, two groups of data are created
based on the original NSL-KDD training data during the data
preparation process. The first group contains all instances and
classes, while the second group has only R2L, U2R, and Nor-
mal instances. At the second step, ICFS, normalization, one-
hot encoding, and PCA are implemented. Feature selection
technique is a process to select a subset of predictive features
and exclude irrelevant features. It not only increases accuracy
but also decreases computational time. Nevertheless, feature
selection is difficult when the data set contains several classes
i.e., the features that are relevant for the specific type of attack
might not be predictive for another type of attack. Moreover,
it has been proven that different attacks are influenced by
different features because the patterns of the attacks vary [1],
[78]. For example, TCP protocol is likely to be found in DOS
attack [75]. Choosing unimportant features always causes
inefficiency in IDS. To handle this problem, we presented
ICFS. An example of the ICFS is illustrated in Fig 3.

At this process, we performed feature selection on the two
groups using Pearson Correlation Coefficient (PCC). PCC
is a bivariate analysis that measures the linear relationship
between two random variables, and ranks the features by
importance. This method has low computational complexity,
and it is scalable for high dimensional data. For numerical
features, Pearson’s correlation coefficients are used to calcu-
late how much two data points vary together [79]. It is equal
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FIGURE 2. A conceptual framework of DLHA anomaly-based IDS

to the covariance divided by the product of their standard
deviations. Let X be a random vector with n instances,
X = [x1, x2, x3, . . . , xn], and Y be a random vector with
n instances, Y = [y1, y2, y3, . . . , yn], PPC can be expressed
as follows:

ρx,y =
cov(x, y)

σxσy

thus, it can be calculated by

FIGURE 3. Intersectional Correlated Feature Selection (ICFS)

ρx,y =

∑n

i=1 (xi − x̄) (yi − ȳ)
√

∑n

i=1 (xi − x̄)
2
·
√

∑n

i=1 (yi − ȳ)
2

(3)

where n is the number of samples, σx =

√∑
n
i=1

(xi−x̄)2

n−1 ,

x̄ =
∑

n
i=1

xi

n
, and cov(x, y) =

∑
n
i=1

(xi−x̄)(yi−ȳ)

n−1 .
Let F be features {F1, F2, . . . , Fn} in training data. In

Group 1, we assigned DOS and Probe as 1 and the rest as
0. Let F(DOS) = {F1, F2, . . . , Fi} be the features between
DOS and the rest, which have PCC greater than 0.1. Let
F(Probe) = {F1, F2, . . . , Fj} be the features between Probe
and the rest, which have PCC greater than 0.1. F(DOS) are
predictive features to classify DOS from the rest, F(Probe) are
predictive features to classify Probe from the rest. Therefore,
F(DOS)∩F(Probe) are common predictive features to classify
DOS and Probe from the rest. As a result, F(DOS) and
F(Probe) are the selected features for Group 1. We imple-
mented the same for Group 2 but with a 0.01 threshold
because most features are not correlated. In Group 2, R2L
and U2R were labelled as 1, and normal records were labelled
as 0. Then, PCC was calculated between R2L and Normal as
well as U2R and Normal. Consequently, F(R2L)∩F(U2R) are
the selected features for Group 2. The main aim of ICFS is to
remove obvious uncorrelated features from the groups. After
the ICFS was completed, we normalized the data to be in the
range [0,100] as their standard deviations were fairly small.
Normalization can be done using a formula in (4).

x′
ij =

xij −min(x)j
max(x)j −min(x)j

, i = 1, 2, . . .m; j = 1, 2, . . . , n

(4)
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Afterwards, we performed one-hot encoding and PCA
respectively. PCA was used to extract meaningful variance
from high dimensional data and turned it into uncorrelated
linearly-transformed lower dimensional data. To build an
efficient IDS, we only use as few features as possible. Thus,
we selected the lowest number that can retain 95% of the
variance. We performed data transform individually for each
group since the instances are different. This resulted in a dif-
ference in the selected features, scaling coefficients, and the
number of principal components. Hence, we have two types
of data transforms. One-hot encoding and PCA implemen-
tation details are presented in Section II. Following the data
transform, data balancing in the training set is critical in order
to hinder bias towards overwhelming records. Noticeably,
we have R2L+U2R = 1,047 instances, and Normal = 67,343
instances, the ratio is approximately 64:1. To prevent bias,
downsampling of the majority class is required. For example,
1,047 normal instances were randomly selected in order to
make the ratio 1:1. Since the class ratio in Group 1 is not
high, the downsampling method was not necessary.

2) Training and Validation

The training and validation steps are vital. Naive Bayes
(NB) is selected as a classifier for Group 1. Support Vector
Machine (SVM) is selected as a classifier for Group 2.

Naive Bayes Classifier (NBC)

NBC is a simple, yet powerful probabilistic estimator based
on applying the Bayes’ theorem with an assumption that the
considered attributes are independent amongst all. Meaning
that each feature influences the result independently [80].
In our proposed method, the NBC’s task is to detect DOS
and Probe. To serve this goal, DOS and Probe attacks are
labelled as 1, and the rest are 0. Let y = {y1, y2} = {Rest,
DOS/Probe}, and let x be a dependent feature vector in the
data such that x = {x1, x2, . . . , xn}. The Bayes’ theorem
can be written as follows:

P (y | x1, . . . , xn) =
P (y)P (x1, . . . , xn | y)

P (x1, . . . , xn)
(5)

where P (y) is a prior probability, P (x1, x2, . . . , xn | y)
is the likelihood of a given dependent vector relative to
its class, P (x1, x2, . . . , xn) is a marginal likelihood or ev-
idence. P (y | x1, x21 . . . , xn) is the posterior probability
of y happening, given (x1, x2, . . . , xn) has occurred. With
the conditional assumption that every feature is independent
from each other, it can be defined as:

P (y | x1, . . . , xn) =
P (y)

∏n

i=1 P (xi | y)

P (x1, . . . , xn)

where n is the number of features after data transform 1.
Since P (x1, x2, . . . , xn) is constant for all. The NBC, then,
has the following classification expression:

y′ = argmax
y

P (y)
n
∏

i=1

P (xi | y) (6)

As the NBC implements Gaussian algorithm for classifi-
cation, The P (xi | y) is assumed to be Gaussian as follows:

P (xi | y) =
1

√

2πσ2
y

exp

(

−
(xi − µy)

2

2σ2
y

)

Despite having the feature-wise independence assumption
violated almost all the time in real-world applications, the
NBC has demonstrated outstanding classification results in
the IDS problem [18]. It is proven to be efficient in detecting
frequent DDOS attacks [25]. NBC’s computational complex-
ity is defined as O(cf) where c is the number of classes, and
f is the number of features. As the dimensions are reduced in
the data transform process, NBC is suitable for dealing with
a large amount of connections.

Support Vector Machine (SVM)

SVM is one of the most popular supervised ML algorithm
in classification tasks. It was initially proposed in [81], [82]
to deal with linear and non-linear optimization problems.
SVM creates the best hyperplane in a high-dimensional space
in order to separate two classes with the maximum margin
between them. It has also been applied to the intrusion
detection research area [19], [20], [83]. It provides flexibility
in implementations by allowing choices of kernels e.g., linear
and radial basis function (RBF). Since RBF is a non-linear
support vector classifier (SVC) kernel, it is especially effec-
tive in dealing with the data that share complex boundaries
[10] i.e., classifying R2L and U2R from normal connections.

For any given training vector pairs of connection-class
(xi, yi) , i = 1, 2, . . . , n where xi ∈ Rn and y ∈ {1,−1}n,
in which 1 corresponds to a positive class, and -1 corresponds
to a negative class. SVM requires a solution to the following
problem:

minw,b,ζ
1
2w

Tw + C
∑n

i=1 ζi

subject to yi
(

wTφ (xi) + b
)

≥ 1− ζi

ζi ≥ 0, i = 1, . . . , n

(7)

In the equation, it is attempted to maximize the margin
between the two classes by minimizing w⊤w = ‖w‖2. C is
the penalty strength to control misclassified samples at a dis-
tance ζi from the correct margin boundary that corresponds to
the value yi

(

wTφ (xi) + b
)

≥ 1− ζi. The decision function
output for any sample x is defined as:

∑

i∈SV

yiαiK (xi, x) + b (8)

Its sign is the corresponding class from the prediction. The
chosen SVC kernels for validation, in this study, are linear
and RBF. Linear kernel is expressed as:

K(x, y) = (x, x′)

RBF kernel is defined as:

K(x, y) = e−γ‖x−y‖2

, γ > 0
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It has never been confirmed if a non-linear RBF kernel
could always perform better than its linear counterpart in this
task. Then, we selected linear and RBF as two kernels for
the parameter adjustment to observe R2L and U2R bound-
ary. In order to avoid data leakage and data set overfitting,
we performed SVM’s hyperparameter tuning using 10-fold
stratified cross validation within the training set only i.e.,
KDDTrain+ and KDDTrain+_20Percent. The stratified cross
validation is the process of splitting data into folds, in which
each fold has to ensure the same proportion of class labels to
other folds. The concerned parameters are C and gamma. C
is available for both linear and RBF, which is a regularization
parameter that adds a penalty for each misclassified instance.
The RBF gamma controls the distance of influence of a single
training sample. The set of parameters are as follows; linear:
C = 0.01, 0.1, 1, 10, 100, 1000, RBF: C = 0.1, 1, 10, 100
and gamma = 0.01, 0.1, 1, 10. Consequently, we have six
parameters for the linear kernel and 16 parameter sets for the
RBF kernel.

SVM was implemented by using LIBSVM [84]. The ma-
chine specification is on Ubuntu 20.04 LTS, Intel Corei9-
9900 3.10GHz, and 32GB of RAM.

B. DLHA ALGORITHM

Real-time traffic classification using DLHA is displayed in
Fig 4. DLHA is proposed to improve the overall detection
rate, and especially the detection rate of rare attacks that
are more hostile i.e., R2L and U2R in this study. It is also
designed to be an efficient real-time IDS since we have ICFS
and PCA to reduce data dimensions as much as possible.
DLHA algorithm works as follows: the network connection
packages are captured and sent through Data Transformation
1 process, then the transformed data are passed to Layer 1,
which is NBC, to determine if the connection is DOS, Probe,
or Normal. If the prediction is negative, then the connection
is highly unlikely to be DOS or Probe. Then, the second
layer is activated. The original data are sent through Data
Transformation 2 process. Then the transformed data are
passed to Layer 2, which is SVM, to determine if the con-
nection is R2L, U2R or normal. If the prediction is negative,
this connection is expected to be normal. If any of the two
classifiers predicted positive, the connection is terminated
and marked as an anomaly. Since DOS and Probe attacks
are more likely to occur, this framework is computationally
efficient to detect DOS and Probe first, then R2L and U2R
subsequently. DLHA algorithm is explained as follows:

As our 2-classifier hybrid approach is dedicated to max-
imizing the detection rates of R2L and U2R attacks, there
are few continuing costs of operation as a trade-off. Firstly,
time spent on attack detection increases because the decision
process becomes more complex, where two negative pre-
dictions are required to confirm that the connection is safe.
Additionally, performing data transformation for each layer
leads to higher resource consumption. Powerful machines are
recommended for this approach to avoid traffic bottlenecks.
Significantly, machine learning approaches rely on quality

Algorithm 1 DLHA algorithm

Input: X = {f1, f2, . . . , f40} // 40 attributes captured

Output: y ∈ {0, 1}

while DLHA IDS is running do

// for every network connection
after performing data transform 1
represent Xi as Xt1

if Layer1 predicts Xt1 as 1 then

y ← 1
return y

else

Layer 2 is activated
after performing data transform 2
represent Xi as Xt2

if Layer2 predicts Xt2 as 1 then

y ← 1
return y

else

y ← 0
return y

end if

end if

end while

data to establish a reliable model. Collecting attack signatures
e.g., using a honeypot strategy, would be beneficial for a long
term IDS implementation [62].

V. EVALUATION AND RESULT

To evaluate the performance of our proposed DLHA, we
conducted experiments using the two training data sets KD-

DTrain+ and KDDTrain+_20Percent in order to analyze the
framework on a large sample size and a small sample size. To
measure generalization of the model, training and validation
were only implemented using training data as described in
Section IV. Thus, the testing data in KDDTest+ are left
unseen.

A. EVALUATION METRICS

There are five metrics presented in this work i.e., 1) Accuracy,
2) F1 Score, 3) Precision, 4) Detection Rate (Recall), and
5) False Alarm Rate. The four measures used to calculate
the metrics are presented as follows: True Positive (TP) =
correctly predicted attacks, True Negative (TN) = correctly
predicted normal instances, False Positive (FP) = incorrectly
predicted attacks, and False Negative (FN) = incorrectly
predicted normal instances.

1. Accuracy is the overall percentage of correct classi-
fication. However, it is unreliable for imbalanced data set,
particularly for the IDS problem. It can be computed as:

(TP + TN)

TP + TN + FP + FN
(9)

2. F1 Score is the harmonic mean of precision and recall.
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FIGURE 4. Real-time traffic classification using DHLA

It can be computed as:

2 x
Precision x Recall

Precision+Recall
=

2TP

2TP + FP + FN
(10)

3. Precision is the classification ability to correctly detect
attacks out of the total positive predictions. It can be com-
puted as:

TP

TP + FP
(11)

4. Detection Rate (Recall) is the classification ability to
correctly predict attacks from actual attacks. It can be com-
puted as:

TP

TP + FN
(12)

5. False Alarm Rate is the proportion of wrongly predict-
ing attacks. FAR infers overestimation that falsely requires
human interference. It can be computed as:

FP

FP + TN
(13)

In this work, we mainly focused on Detection Rate (DR).
DR is critical because it implies how many attacks the model
can identify out of the total number of actual attacks.

B. EXPERIMENTAL RESULT

At the training stage, we re-created the training data into
2 groups as mentioned previously. Then, we conducted the
ICFS. The correlated features between DOS and the rest
{F1, F2, . . . , Fi} are [8, 12, 23, 25, 26, 27, 28, 29, 30, 31, 32,
33, 34, 35, 36, 37, 38, 39, 40, 41] (see Table 5). The correlated
features between Probe and the rest {F1, F2, . . . , Fj} = [1,
12, 23, 24, 25, 27, 28, 29, 30, 31, 33, 34, 35, 36, 37, 38,
39, 40, 41]. Therefore, the intersect features of DOS/Probe
are [12, 23, 25, 27, 28, 29, 30, 31, 33, 34, 35, 36, 37,
38, 39, 40, 41] In group 2, the correlated features between
R2L and Normal {F1, F2, . . . , Fk} are [1, 5, 6, 9, 10, 11,
12, 14, 18, 22, 23, 24, 29, 30, 31, 32, 33, 34, 35, 36, 37,
38, 39]. The correlated features between U2R and Normal
{F1, F2, . . . , Fl} are [9, 10, 12, 14, 17, 18, 24, 31, 32, 33, 36,
37]. Hence, the intersect features of R2L/U2R are [9, 10, 12,

FIGURE 5. Cumulative explained variance against the number of principal

components measured in both groups to select the optimal number of

dimensions

14, 18, 24, 31, 32, 33, 36, 37]. This is reasonable e.g., count

is commonly high in DOS and Probe attacks, and num_shells

is commonly relevant to R2L and U2R patterns.

After that, normalization and one-hot encoding were per-
formed respectively. PCA is the last step in the Data Trans-
form process. 95% of cumulative variance was chosen as a
threshold. The cumulative variance against the number of
principal components is visualized in Fig 5. It indicated that
28 is the suitable number of components in Group 1, which
represented 95.07% of variance. 13 is the selected number of
components in Group 2, which constituted 96.55% variance.

Then, downsampling was carried out on the frequent
records i.e., Normal on Group 2 to keep a 1:1 ratio be-
tween anomaly and normal. At the last step, we performed
hyperparameter tuning on Group 2 with a series of linear
and RBF kernel parameters. The same set of parameters
was also implemented on the comparatively smaller data set
i.e., KDDTrain+_20Percent to evaluate a variety of different
configurations with a primary performance boost based on
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the stratified 10-fold cross validation method. The results
were shown in Fig 6, and Fig 7 respectively. Our main goal
is to maximize the detection rates of the model in order to
prevent losses caused by intruders. Accordingly, each box-
and-whisker plot measured the detection rates as a result of
each testing fold from 10 folds. The horizontal line in the box
indicated the median detection rate value, and the + specified
the average detection rate of 10 scores.

The first experiment used KDDTrain+ in training. We
attempted to select the best parameters to classify R2L and
U2R attacks out of normal instances. Fig 6 indicated that
linear kernel performed well on lower C and dropped its
performance on higher C. The RBF kernel performed com-
paratively better in most combinations of parameters. There
is an exception that when C is equal to 0.1 and gamma is
equal to 10, where the SVM performance is significantly
lowered. It is evident that the higher the gamma value is,
when C is equal to 0.1, the more the detection rate dropped.
Additionally, when C is equal to or greater than 1, the per-
formances are relatively consistent as seen in configurations
10-21. The highest detection rate is located at configuration 6,
where C equals 0.1 and gamma equals 0.01. It accomplished
an acceptable average detection rate of 0.9943 with STD =
0.0061 and 0.1337 in FAR.

The second experiment used KDDTrain+_20Percent in
training. In Fig 7, we observed a small difference where the
configurations in linear kernel performed moderately better
compared to its previous evaluation. Most configurations of
linear kernel performed worse when the data set becomes
larger as shown in Fig 6. Noticeably, the same pattern is
confirmed in a smaller data set, that the RBF kernel has a
similar performance in configurations no.10-21. It performed
best when C is equal to 0.1, and gamma is approximately
0.01 or 0.1. The performance dramatically dropped when C
is equal to 0.1 and gamma is equal to 10 by reducing to lower
than 0.6 in the detection rates on some testing folds. The
highest detection rate is attained in configuration 7, where C
equals 0.1, and gamma equals 0.1 by acquiring the average
detection rate of 0.9864 with STD = 0.0291 and 0.1136
in FAR. The results intuitively suggested that in order to
detect R2L and U2R accurately, the penalty on misclassified
samples should not be high (low C), and a single training
instance should not have too much influence on the decision
boundary (low gamma).

To evaluate our framework on the two experiments, we
tested DLHA on the unseen data i.e., KDDTest+ using the
procedure explained in Algorithm 1 and the best parame-
ters derived from the CV process. Our proposed framework
presented outstanding classification results achieving 88.97%
in accuracy, 90.57% in F1 score, 88.17% in precision, and
93.11% in detection rate with 11.82% of false alarm rate
by using KDDTrain+ in training. The framework was also
proven effective in a comparatively smaller data set i.e.,
using only 20% of all samples (KDDTrain+_20Percent) in
training, where it obtained acceptable results, these being
87.55% accuracy, 89.19% in F1 score, 88.17% in precision,

and 90.24% in detection rate with 11.83% of false alarm rate.
Then, we conducted a detailed analysis of our results to

explore the detection rates of each class as shown in Fig 8. It
was found that our proposed method, from using KDDTrain+

in training, has the detection rates of 92.4% on DOS (6,893
out of 7460), 90.87% on Probe (2,200 out of 2,421), 96.67%
on R2L (2,789 out of 2,885), and 100% on U2R (67 out of
67). When using KDDTrain+_20Percent in training, it has
the detection rates of 92.84% on DOS (6,926 out of 7,460),
89.88% on Probe (2,176 out of 2,421), 83.6% on R2L (2,421
out of 2,885), and 100% on U2R (67 out of 67). Therefore,
it is demonstrated that our proposed DLHA accomplished
its objective in maintaining great detection rates on DOS
and Probe, and showed excellent performance in detecting
96.67% on R2L and 100% on U2R in KDDTest+. In addition,
the time measurement was also presented as displayed in
Fig 9. The presented numbers were the average of 10 times
running on the desktop machine. It was apparent that the
time used for training in the KDDTrain+_20Percent was only
one-third of the full data set as it contains only 20% of all
training data. The testing time is similar on both training
sets, where approximately 2.5 seconds were spent classifying
22,544 instances, or in other words, that ≈ 9,000 instances
were successfully classified in one second.

One of the most important areas we highlighted in this
study is how successful our approach is in detecting addi-
tional attack categories in KDDTest+, the attack categories
that are absent in the training data set. There are 12,833 at-
tacks in KDDTest+, 9,083 belong to known attack categories,
and 3,750 are in unseen attack categories. DLHA, using
KDDTrain+ in training, achieved detection rates of 94.01%
(8,539 out of 9,083) from known attack categories, and
90.90% (3,411 out of 3,750) from unseen attack categories.
DLHA, using KDDTrain+_20Percent in training, achieved
detection rates of 89.81% (8,157 out of 9,083) from known
attack categories, and 91.28% (3,423 out of 3,750) from
unseen attack categories. From the results, DLHA performed
outstandingly well in detecting both known and unknown
attack categories. DLHA trained on KDDTrain+_20Percent

gained a slightly higher detection rate on unseen attack
categories. However, DLHA detected 94.01% of attacks from
known attack categories when the total samples were used in
training due to a greater amount of the samples per each cat-
egory in KDDTrain+ compared to KDDTrain+_20Percent.

It is worth mentioning that there are a number of existing
works that previously studied anomaly-based IDS using a
refined version of the KDD99 i.e., NSL-KDD [1], the same
data set we considered in this study. However, some scholars
presented their results from implementing a cross validation
method, a holdout method, or using a portion of the KDD99
data set, which are not sufficiently reliable in the context
of IDS research i.e., achieved over 99-100% in accuracy
or detection rate [28]. In this study, we used KDDTrain+

and KDDTrain+_20Percent in the training and validation
steps, and only used KDDTest+ in testing. Therefore, we
only compared our results to the studies that take a similar
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FIGURE 6. Box-and-whisker plots present mean, median, range, and quartile distribution of the detection rates from different parameters for SVM 10-fold CV in

KDDTrain+

FIGURE 7. Box-and-whisker plots present mean, median, range, and quartile distribution of the detection rates from different parameters for SVM 10-fold CV in

KDDTrain+_20Percent

FIGURE 8. Detection rates of major attack categories

approach i.e., using the KDDTest+ in testing.

In order to objectively evaluate our proposed framework
on wider impacts, we conducted an extensive comparison of
our results to other publicly published IDS research papers as
shown in Table 6. It is acknowledged that our framework is
highly competitive in the field. Evidently, DLHA obtains the
highest F1 Score and DR. However, the obvious downside
of our model is a relatively high FAR because we attempt to
maximize the detection rate. The no.22-26 results are derived
from the original NSL-KDD article, which are set as a base-

FIGURE 9. Training and testing time of DLHA in seconds

line. Any models that perform worse than the baseline are
considered substandard. Our DLHA has considerably higher
accuracy than the best baseline single machine learning clas-
sifier, NB Tree, by +6.95%, and +11.56% compared to Multi-
Layer Perceptron. Furthermore, [37], [47] developed the
single machine learning classifier models, SVM and RNN,
to detect all attack types. Their accuracy scores were 82.37%
and 81.29% respectively, indicating no improvement over the
baseline, while most hybrid methods performed better than
the baseline. In addition, we compared our detection rates of
the major attack categories to other studies as displayed in
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TABLE 6. Performance comparison on Accuracy, F1 Score, Precision, Detection Rate, and False Alarm Rate with other anomaly-based IDS approaches (only

compared to the studies that performed evaluation in the original KDDTest+)

No. Algorithm Year Training set Accuracy(%) F1 Score(%) Precision(%) Detection Rate(%) FAR(%)

1 Our proposed DLHA 2021 KDDTrain+ 88.97 90.57 88.17 93.11 11.82

2 Our proposed DLHA 2021 KDDTrain+_20% 87.55 89.19 88.16 90.24 11.83

3 Hybrid K-Means+RF [69] 2021 KDDTrain+ 85.24 - - - -

4 CNN+BiLSTM [34] 2020 KDDTrain+ 83.58 85.14 85.82 84.49 -

5 BAT-MC [73] 2020 KDDTrain+ 84.25 - - - -

6 Autoencoder [65] 2020 KDDTrain+ 84.24 81.98 87 80.37 -

7 CBR-CNN [74] 2019 80% KDDTrain+ 89.41 - - - -

8 TSE-IDS [28] 2019 KDDTrain+ 85.797 - 88.0 86.8 11.7

9 Adaptive Ensemble [11] 2019 KDDTrain+ 85.2 84.9 86.5 86.5 -

10 Multi Tree algorithm [11] 2019 KDDTrain+ 84.23 - - - -

11 Sparse AE + SVM [85] 2018 KDDTrain+ 84.96 85.28 96.23 76.57 -

12 MOPF [67] 2017 KDDTrain+ 84.12 - - - -

13 RNN-IDS [37] 2017 KDDTrain+ 81.29 - - - -

14 TDTC [4] 2016 KDDTrain+ - - - 84.86 4.86

15 TDTC [4] 2016 KDDTrain+_20% - - - 84.82 5.56

16 PSOM+PCA+FDR [63] 2015 KDDTrain+ 88.0 - - 92.0 -

17 Two-Tier [60] 2015 KDDTrain+ - - - 81.97 5.44

18 Two-Tier [60] 2015 KDDTrain+_20% - - - 83.24 4.83

19 GAR-Forest [86] 2015 KDDTrain+ 85.06 85.1 87.5 85.1 12.2

20 SVM-IDS [47] 2014 KDDTrain+ 82.37 - - - 15.0

21 Fuzzy with Evolution [87] 2011 KDDTrain+ 82.74 - - - 3.9

22 NB Tree [3] 2009 KDDTrain+_20% 82.02 - - - -

23 Random Tree [3] 2009 KDDTrain+_20% 81.59 - - - -

24 J48 DT Learning [3] 2009 KDDTrain+_20% 81.05 - - - -

25 Random Forest [3] 2009 KDDTrain+_20% 80.67 - - - -

26 Multi-Layer Perceptron [3] 2009 KDDTrain+_20% 77.41 - - - -

TABLE 7. Comparative detection rates of major attack categories

Algorithm DOS Probe R2L U2R

Our proposed DLHA 92.4 90.87 96.67 100

TDTC [60] 88.20 87.32 42 70.15

Hybrid K-Means+RF [69] 90.42 91.53 73.84 25.79

Two-tier [4] 84.68 79.76 34.81 67.16

PCA+KNN [88] 94.23 78.86 69.87 80.09

HFR-MLR [43] 89.7 80.2 34.2 29.5

SVM+BIRCH [89] 97.5 99.5 19.7 28.8

Two-Level [90] 97.37 94.72 14.02 90.71

Siam-IDS [91] 85.37 48.66 33.25 56.72

Adaptive Ensemble [11] 84.37 87.11 55.27 25.0

Table 7. The comparison indicates that DLHA is not the best
algorithm to detect DOS or Probe, as our results attain ap-
proximately 90-92%, while others show superior outcomes.
However, our model can accurately detect every type of
attack compared to others that exhibit undesirable detection
scores on R2L and U2R. Our model clearly outperforms all
other methods by reaching the detection rates of 96.67% in
R2L and 100% in U2R.

VI. CONCLUSION

Rule-based IDS methods are not sufficient for the new era of
rapidly-growing internet connections worldwide. Anomaly-

based IDS approaches using machine learning offer a promis-
ing performance, but usually suffer from bias towards fre-
quent attacks as well as underestimation of rare threats.
Single machine learning models are not accurate in detecting
all types of attacks, which result in a low detection rate,
particularly on infrequent attacks. Thus, the IDS problem
requires a hybrid solution.

This paper proposed an algorithm called a Double-Layered
Hybrid Approach (DLHA) to tackle an unsatisfactory perfor-
mance on rare attacks, which also give rise to an improved
overall detection rate. An Intersectional Correlated Feature
Selected (ICFS) was presented as part of DLHA to exclude
commonly irrelevant features on the subgroups to reduce
dimensions and accelerate the whole framework for real-time
practice. The detection part consists of two layers. The first
layer utilized NBC to classify DOS and Probe attacks from
all connections. The second layer adopted SVM with RBF
kernel to detect R2L and U2R attacks among normal traffic,
which is a more difficult task. Hyperparameter tuning is
paramount, c and gamma on SVM were optimized as they are
the primary factors to accurately detect attacks that share a
similar pattern to normal connections i.e., R2L and U2R. Our
proposed DLHA was evaluated on the NSL-KDD data set. It
achieved exceptional results with an overall detection rate of
93.11% with over 96.67% detection rate of R2L, and 100%
of U2R. The execution time and F1 score have proven its
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enhanced efficiency and capability for broader applications.
Our experimental results demonstrated how successful and

effective the hybrid IDS approach is by using two different
classifiers with ICFS. Since we avoided overfitting and data
leakage by implementing hyperparameter tuning on 10-fold
CV using training data, we concluded that our DLHA of-
fers a generalized model with a class-topping performance
in detecting uncommon but more dangerous attacks. This
approach is suitable for a real-time IDS and aims to secure
critical network environments.
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