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ABSTRACT.—Although point counts are frequently used in ornithological studies, basic as-
sumptions about detection probabilities often are untested. We apply a double-observer ap-
proach developed to estimate detection probabilities for aerial surveys (Cook and Jacobson
1979) to avian point counts. At each point count, a designated ‘‘primary’’ observer indicates
to another (‘‘secondary’’) observer all birds detected. The secondary observer records all
detections of the primary observer as well as any birds not detected by the primary observer.
Observers alternate primary and secondary roles during the course of the survey. The ap-
proach permits estimation of observer-specific detection probabilities and bird abundance.
We developed a set of models that incorporate different assumptions about sources of var-
iation (e.g. observer, bird species) in detection probability. Seventeen field trials were con-
ducted, and models were fit to the resulting data using program SURVIV. Single-observer
point counts generally miss varying proportions of the birds actually present, and observer
and bird species were found to be relevant sources of variation in detection probabilities.
Overall detection probabilities (probability of being detected by at least one of the two ob-
servers) estimated using the double-observer approach were very high (�0.95), yielding pre-
cise estimates of avian abundance. We consider problems with the approach and recommend
possible solutions, including restriction of the approach to fixed-radius counts to reduce the
effect of variation in the effective radius of detection among various observers and to provide
a basis for using spatial sampling to estimate bird abundance on large areas of interest. We
believe that most questions meriting the effort required to carry out point counts also merit
serious attempts to estimate detection probabilities associated with the counts. The double-
observer approach is a method that can be used for this purpose. Received 16 November 1998,
accepted 1 October 1999.

A BEWILDERING VARIETY of methods exists for
assessing animal abundance (e.g. Ralph and
Scott 1981, Seber 1982, Lancia et al. 1994). How-
ever, all methods involve the collection of some
sort of count statistic. Count statistics are as
varied as the methods by which they are ob-
tained and include number of birds seen and
heard at a point-count location, number of un-
gulates seen while walking a line transect,
number of small mammals caught on a trap-
ping grid, number of kangaroos seen from an
airplane flying an aerial transect, and number
of tigers photographed by camera traps. The
relationship between a count statistic and the
quantity of interest, abundance or population
size, can be written as follows (see Barker and
Sauer 1992, Nichols 1992, Lancia et al. 1994):

4 E-mail: jim�nichols@usgs.gov

E (Ci) � Ni pi, (1)

where Ci denotes the count, Ni the true abun-
dance, and pi the detection probability, all as-
sociated with time and location i.

Two basic approaches use count statistics to
draw inferences about animal abundance and
changes in abundance over time (Lancia et al.
1994, Wilson et al. 1996). One approach is to
collect the count data in a manner that permits
estimation of the associated detection proba-
bility. Such estimates then permit direct esti-
mation of population size:

CiN̂ � , (2)i p̂i

where the hats denote estimates. Resulting es-
timates of population size can be used to draw
inferences about changes in abundance over
time and/or space. If the estimates of detection
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probabilities provide strong evidence that they
are similar for different times or locations, then
the count statistics themselves can be used to
draw inferences about differences in abun-
dance (Skalski and Robson 1992).

The other approach is not to estimate detec-
tion probability, but to use standardized meth-
ods to obtain the count statistic in the hope that
detection probabilities will be similar for the
times or places for which abundance compari-
sons are to be made (i.e. that pi � p for all i in
the comparison). Under this approach, the
count statistic is viewed as an index to abun-
dance (Conroy 1996). In some cases, the collec-
tion of index statistics is accompanied by the
measurement of some small number of covar-
iates (e.g. weather variables) that are thought to
influence detection probability. Under the as-
sumption that these covariates influence only
detection probability (and not abundance),
they can be incorporated into analyses that use
index statistics to draw inferences about abun-
dance (Conroy 1996).

Data resulting from point counts nearly al-
ways are treated as indices (Ralph et al. 1995).
Standardized methods have been incorporated
into large-scale surveys such as the North
American Breeding Bird Survey, or BBS (Rob-
bins et al. 1986, Peterjohn et al. 1997). In the
BBS, standardization includes such features as
duration of count, length of survey route, dis-
tance between stops, weather conditions under
which surveys are conducted, time of year, etc.
Observer identity and experience are recog-
nized as covariates that are likely to be relevant
to variation in detection probability (Sauer et al.
1994b, Kendall et al. 1996) and have been in-
corporated into most serious efforts to draw in-
ferences about abundance from BBS data (Link
and Sauer 1997, 1998). Unfortunately, in any
count-based survey, many sources of variation
in detection probability that are not associated
with observable covariates are likely to exist,
and these cannot be accommodated in analyses
(e.g. Burnham 1981, Johnson 1995).

Here, we make no claim that inferences
emerging from historical analyses of data from
the BBS or other point-count surveys necessar-
ily are wrong. Instead, we simply express dis-
comfort with the knowledge that such infer-
ences depend on untested assumptions. When
the ratio of count statistics is used to estimate
the ratio of abundances (e.g. this is termed rel-

ative abundance for two locations or popula-
tion growth rate for the same location at two
points in time), it performs best when pi � p for
the i (places or times) involved in the compar-
ison. Such use of the ratio of count statistics can
also be viewed as reasonable in the situation
where values of pi are themselves viewed as
random variables arising from some distribu-
tion that does not change over the times or lo-
cations being compared. However, variation in
habitat over time and space and temporal
changes in climatic variables that affect bird ac-
tivity and behavior (e.g. Crick et al. 1997) make
even this distributional assumption unlikely to
be true for many comparisons.

Although use of point-count data as indices
may be necessary in some instances, we believe
it is sensible to investigate alternative ways to
conduct point counts that might permit esti-
mation of detection probabilities associated
with the counts. This is the general approach
taken in most estimation methods for animal
populations, such as capture-recapture sam-
pling (Seber 1982, Lancia et al. 1994). One ap-
proach permitting estimation from point-count
data is the variable circular plot (Ramsey and
Scott 1979, Reynolds et al. 1980) in which dis-
tances to detected birds are recorded and re-
sulting data used with distance sampling
methods to estimate density. This approach has
been used in avian studies (Mountainspring
and Scott 1985, Scott et al. 1986, Fancy 1997) but
is not widely used by ornithologists. We rec-
ommend that variable circular plot methods be
given serious consideration for future point-
count surveys.

In this paper, we present a double-observer
approach that permits estimation of detection
probability from point count data. The ap-
proach uses two observers and is a modifica-
tion of a method developed by Cook and Jacob-
son (1979) to estimate abundance from aerial
survey data. We first describe the field-sam-
pling situation and the basic estimation ap-
proach. We then discuss alternative estimation
models and their implementation using pro-
gram SURVIV (White 1983). We describe 17 ex-
perimental point-count surveys conducted in
spring and early summer 1998 to test this dou-
ble-observer approach, and we present the re-
sults of our modeling and estimation efforts
with these data. Finally, we discuss the poten-
tial utility of this approach for point-count sur-
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veys of birds and make recommendations re-
garding implementation of the method.

METHODS

Field methods.—We assume a sampling situation
where multiple locations are selected for point counts
within some general area of interest. In the BBS, for
example, each route contains 50 stops at which 3-min
point counts are conducted. In other studies, we
might select, for example, a sample of 10 to 40 points
within an area of interest or in patches of similar hab-
itat within a larger area of interest. The approach is
most appropriately used when the points are placed
in areas of similar habitat, and stratification is rec-
ommended when a set of point counts is obtained
from discrete habitats between which differences in
detection probability are suspected.

Two observers are present during all point counts.
At each count (a visit to a single point), one observer
is designated as ‘‘primary’’ and the other as ‘‘sec-
ondary.’’ The primary observer identifies all birds
seen and heard and communicates (via speech and
gesture) to the secondary observer the species de-
tected and the direction and general distance of the
detection. The secondary observer records the spe-
cies detected by the primary observer but also sur-
veys the area. Birds detected by the secondary ob-
server but not by the primary observer also are re-
corded by the secondary observer. At the end of each
point count, the data are the number of birds of each
species (1) detected by the primary observer and (2)
missed by the primary observer but detected by the
secondary observer.

A key element of the design is that each observer
serves both primary and secondary roles on any
group of counts. We recommend that observers al-
ternate roles on consecutive counts, with one observ-
er serving as primary at the first point count, sec-
ondary at the second count, primary at the third
count, and so on. Under this design, each observer
will serve as primary observer for half of the point
counts. Although reasons exist for preferring the de-
sign with alternating primary observers, it is neces-
sary only for each observer to serve as a primary ob-
server on at least one count. This general design
leads to stop-level data that are then aggregated over
the counts in the group (e.g. all stops on a BBS route,
all counts conducted in a particular habitat type on
one day) to yield the basic count statistics needed for
estimation of abundance for each species detected.

Estimators of Cook and Jacobson (1979).—Although
the sampling situation differs from that studied by
Cook and Jacobson (1979), for convenience we follow
their general notation. Define xij as the number of in-
dividuals counted by observer i (i � 1, 2) on stops
when observer j (j � 1, 2) was the primary observer.
As noted above, the counts for the primary observer

include all birds detected, whereas the counts for the
secondary observer include only birds detected by
this observer that were missed by the primary ob-
server. Define pi as the detection probability for ob-
server i, which is assumed to be the same whether
observer i is serving as the primary or the secondary
observer. Further, let N1 denote the true number of
birds exposed to sampling efforts (for fixed-radius
point counts, we can specify the area covered,
whereas for unlimited-radius counts, we cannot) in
the point-count samples for which observer 1 served
as primary observer. We can view x11 as a binomial
random variable with parameters N1 and p1, denoted
as having distribution B(N1, p1). For a given x11, we
similarly can view x21 as a binomial random variable
B(N1 � x11, p2). The joint distribution of (x11, x21) can
thus be written as the product B(N1, p1) B(N1 � x11,
p2). Similarly, the distribution of (x22, x12) can be writ-
ten as B(N2, p2) B(N2 � x22, p1). Finally, assuming that
the pairs (x11, x21) and (x22, x12) are independent, the
joint distribution for all four random variables is
B(N1, p1) B(N1 � x11, p2) B(N2, p2) B(N2 � x22, p1).

Because values of Ni are unknown, it would be dif-
ficult to use the above distribution directly for esti-
mation. Following the recommendation of Cook and
Jacobson (1979), we thus condition on the total birds
detected in the samples of point counts for which
each observer served as primary observer. The prob-
ability that a bird in a sampled area is detected at a
point count by at least one observer is p � 1 � (1 �
p1)(1 � p2). This detection probability applies to each
of the point counts (or stops) on the route for which
it is estimated, and thus to each area (i � 1, 2) and
the entire area sampled by the counts. Thus, the dis-
tribution of (x11 � x21) is B(N1, p), and that of (x22 �
x12) is B(N2, p). Further, the probability of a bird hav-
ing been detected by observer 1 in area 1, given that
it was detected in area 1 (i.e. the probability that a
bird was a member of x11, given that it was a member
of x11 � x21) is p1/p. The complement of this proba-
bility, the probability that a bird in area 1 was missed
by observer 1 and detected only by observer 2, given
that it was detected in area 1, is (1 � p1) p2/p. For es-
timation purposes, we thus rewrite the joint distri-
bution of the four random variables as: B(N1, p) B(x11

� x21, p1/p) B(N2, p) B(x22 � x12, p2/p).
The approach to estimation begins by using the

two conditional (on detections) distributions, B(x11 �
x21, p1/p) and B(x22 � x12, p2/p), to estimate detection
probabilities. Cook and Jacobson (1979) present the
following maximum-likelihood estimators for the
general model in which detection probability differs
for the two observers:

x x � x x x x � x x11 22 12 21 11 22 12 21p̂ � , p̂ � , and1 2x x � x x x x � x x11 22 22 21 11 22 11 12

x x12 21p̂ � 1 � .
x x22 11

(3)
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Large-sample variance estimators for the detec-
tion probability estimates were also provided by
Cook and Jacobson (1979) and are presented in
Appendix 1.

Note that the estimators in equation 3 can also be
obtained simply by equating the four sufficient sta-
tistics with their expectations:

E(x ) � N p , E(x ) � N (1 � p )p ,11 1 1 21 1 1 2

E(x ) � N p , and E(x ) � N (1 � p )p .22 2 2 12 2 2 1

These equations then can be solved to yield the es-
timators in equation 3. Examination of these expec-
tations provides a good basis for the intuition un-
derlying the double-observer approach. For example,
the expected number of birds detected by observer 1
on the stops at which this observer is primary is giv-
en simply as the product of bird abundance at these
stops and the detection probability for that observer.
The number of additional birds detected by observer
2 on the stops at which observer 1 is primary is given
as the product of bird abundance, the probability
that a bird is missed by observer 1, and the proba-
bility that a bird is detected by observer 2.

Once estimates of detection probability are ob-
tained, the natural estimator (see equation 2) for
population size on the sampled area is:

x..
N̂ � , (4)

p̂

where x.. � x11 � x21 � x22 � x12. An associated var-
iance estimator is:

2 ̂(x..) var( p̂) (x..)(1 � p̂)ˆv̂ar(N) � � . (5)
4 2p̂ p̂

The above estimators for abundance (equation 4) and
its associated variance (equation 5) are used in all of
our work on estimation under the double-observer
approach, regardless of the exact model selected for
estimation of detection probability.

Confidence intervals for N̂ were approximated us-
ing the approach of Chao (1989; also used and rec-
ommended by Rexstad and Burnham 1991). The es-
timation is based on the estimated number of birds
not detected, f̂0 � N � x.. The ln(f̂0) is treated as an
approximately normal random variable, yielding the
following 95% confidence interval, (x.. � f̂0/C, x.. �
f̂0C), where

1/2ˆv̂ar(N)
C � exp 1.96 ln 1 � .

2� �[ ]� �f̂ 0

Additional models and estimators.—For each group of
point counts, we consider the modeling of two pos-
sible sources of variation in detection probability, ob-
servers and bird species. Following Cook and Jacob-
son (1979), we assume differences in detection prob-
abilities for the two observers. If we also assume dif-

ferent detection probabilities for each bird species,
then we have a very general model and must esti-
mate two parameters (a detection probability for
each observer) for each species observed. However,
large numbers of parameters lead to large sampling
variances, so we would like to reduce the number of
parameters and model the data parsimoniously
(Burnham and Anderson 1992, 1998). Consequently,
analyses of double-observer point-count data should
include consideration of models in which detection
probabilities are similar for the two observers and
for different bird species. Most North American
point counts contain many species for which only
small numbers of individuals are detected, making
estimation of species-specific detection probability
problematic or impossible. Thus, we would like to
consider grouping species for which small samples
are obtained. Detection probabilities can then be es-
timated for these multispecies groups.

Consequently, for reasons of parsimony and small
sample sizes for some species, we recommend con-
sideration of grouping of species for modeling and
estimation purposes. Because of the binomial nature
of detection-probability modeling, such grouping
should be done only when detection probabilities of
the grouped species are similar. We thus recommend
a priori grouping of species into general categories
associated with predicted variation in detection
probabilities (e.g. easy to detect, difficult to detect).
Although universal agreement on any such a priori
grouping is virtually impossible (e.g. Sauer et al.
1996), this approach is subject to a posteriori testing.
For example, group-specific detection probabilities
can be compared and the results used to guide the
modeling of detection probabilities in the current
analysis (e.g. if no difference between detection
probabilities of two groups is evident, then these
groups could be modeled with a common detection
probability) and in future analyses.

To fit and obtain estimates under different models,
to test between models, and to apply model-selection
criteria to choose among them, we implemented a se-
ries of product-binomial models using program
SURVIV (White 1983). Denote a particular species, s,
by the use of a superscript. The most general model
is based on the following product binomial for each
species B(x11

s � x21
s, p1

s/ps) B(x22
s � x12

s, p2
s/ps). These

conditional binomials are multiplied together over
all species to obtain the general model, which we de-
note as (pi

s) to indicate the dependence of detection
probability on observer identity (i) and bird species
(s). This very general model permits an ‘‘interaction’’
between observer and species effects on detection
probability such that an observer with a relatively
high probability of detecting birds of one species can
have a relatively low probability of detecting indi-
viduals of another species.

We also considered models with a variety of pa-
rameter constraints. For example, model (ps) has the
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TABLE 1. Descriptive information on the point
count surveys conducted using the double-observ-
er approach.

Sur-
vey

Observer

A B Routea
No. of
stops Date

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17

1
1
1
1
1
3
3
4
5
6
6
7
7
6
3
8
8

2
2
2
2
2
2
1
1
2
1
2
3
2
3
2
3
3

PWRC-W1
PWRC-F1
BBS-A
PWRC-W2
PWRC-F2
PWRC-W1
PWRC-W2
BBS-B
PWRC-W1
BBS-C
BBS-D
PWRC-W1
PWRC-F2
PWRC-W2
PWRC-F2
PWRC-F2
PWRC-F2

20
10
50
20
20
20
20
50
20
50
50
20
20
20
20
20
20

6-14-98
6-14-98
6-20-98
6-22-98
6-24-98
6-25-98
6-26-98
6-28-98
6-28-98
6-30-98
7-07-98
7-07-98
7-09-98
7-09-98
7-14-98
7-15-98
7-16-98

a PWRC-W1 and -W2 are routes conducted in the woods at Patuxent
Wildlife Research Center. PWRC-F1 and -F2 are routes conducted in
fields at Patuxent Wildlife Research Center. The BBS routes are actual
Maryland BBS routes.

constraint that detection probability differs by spe-
cies but within species is the same for each observer
(p1

s � p2
s). Because many species are detected a small

number of times on a route, models with species-spe-
cific detection probabilities will be too general for
reasonable estimation and use. Thus, we identified
broad categories of species based on expected de-
tectability. Model (pi

g) retains different detection
probabilities for the two observers but imposes a
constraint on detection probabilities of the different
species. The g superscript indicates that species
within an a priori defined group (e.g. easily detected
vs. difficult to detect) exhibit the same detection
probability but that this probability differs between
groups. Model (pi) retains different detection prob-
abilities for the two observers but constrains detec-
tion probability for all species to be equal.

For a given data set involving species-specific data
for all species encountered on point counts, we fit
several models and then used Akaike’s Information
Criterion (AIC) to make decisions about the most ap-
propriate model(s) for use in estimation. AIC is an
information-theoretic measure used to select a par-
simonious model that adequately explains the vari-
ation in the data using as few parameters as neces-
sary (Burnham and Anderson 1992, 1998). Because
our sample sizes were not large relative to the num-
ber of parameters in our general model, we used
AICc, a second-order AIC with small-sample bias ad-
justment.

We then used the resulting estimates, p̂i
s, in con-

junction with species-specific data (e.g. x..s) to esti-
mate abundance for species s using equation 4. Note
that even when we selected a model that did not re-
tain species-specific detection probabilities, we still
applied the detection probability estimate (e.g. for a
group of species or for all species) to the number of
individuals observed in the species of interest to es-
timate abundance for that species. Thus, our ap-
proach yielded an estimate of abundance, N̂s, for each
species observed in the set of counts.

Regardless of whether a model with detection
probability subscripted by i (observer) is selected,
the detection probabilities on which the modeling is
based correspond to the probability that an individ-
ual observer detects a bird that is present in the sur-
veyed area. However, to estimate abundance, we
must then translate the estimates for observers 1 and
2 (p̂1

s, p̂2
s) into an estimate of the probability that a

bird of species s is detected by at least one of the two
observers. For the general Cook-Jacobson model (pi

s),
the closed-form estimator, p̂s, is given in equation 3.
However, we also need to compute this estimate for
the other reduced-parameter models. This is accom-
plished using the equality:

p̂s � 1 � (1 � p̂1
s) (1 � p̂2

s) (6)

that is, in order to go undetected in the survey (1 �
ps), a bird must be missed by both observers. Follow-

ing model selection using SURVIV, we reparameter-
ize the model using the identity:

s sp � p2sp � . (7)1 s1 � p2

Expression 7 is then substituted for p1
s in the SURVIV

code to obtain direct estimates of ps and associated
sampling variances and covariances.

FIELD TRIALS

We carried out the double-observer approach
on 17 different sets of point counts (Table 1).
Each set consisted of a route of 10 to 50 points.
At each point, 3-min point counts were con-
ducted, and all birds seen and heard (unlimit-
ed-radius counts) were recorded. Observers
then drove to the next site. Most of the routes
contained 20 stops and were located at the Pa-
tuxent Wildlife Research Center in either field/
scrub habitat or woods. In addition, four Mary-
land BBS routes containing 50 stops were run
using the double-observer approach. Stops
were located at 0.5-mile intervals. With the ex-
ception of the double-observer sampling, point
counts were conducted using BBS protocol.
Counts occurred in the morning hours and
were conducted under reasonable weather con-
ditions. An abbreviated protocol was prepared
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TABLE 2. �AICc values for the six models of detection probability fit to each data set. �AICc � 0.00 for the
model judged to be most appropriate for each data set. Smaller values of �AICc indicate models that de-
scribe the variation in the data more parsimoniously.

Data set Total birds

Models

pi
s ps pi

g pg pi p

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17

231
83

619
219
321
300
232
675
176
970
773
408
492
228
484
474
535

9.65
7.08
3.40

12.78
26.25
10.13

6.50
24.36

6.04
0.00
0.00

29.35
37.77

0.00
9.25

39.94
12.11

0.00
0.42

12.61
8.93

16.14
22.32

1.91
6.17
0.00

20.50
11.29
22.94
89.63

4.61
43.41
20.92
40.19

10.47
4.23
—a

3.59
4.05
—
—
—
—
—
—
2.32
0.59
7.30
—
0.00
—

6.42
0.00
—
4.92
0.00
—
—
—
—
—
—

11.84
77.59
14.35

—
9.61
—

7.53
3.17
0.14
0.00
5.41
0.00
4.15
2.00
1.35

10.30
12.30

0.00
0.00
4.21
0.00
0.07
0.00

5.58
1.32
0.00
2.89
3.41

24.08
0.00
0.00
1.97
8.51

19.74
10.10
77.27
12.54
76.54
11.24
20.59

a Too few individuals in the ‘‘difficult detection’’ group to merit analysis, so only ‘‘easy detection’’ birds were used. In this case, models with
a ‘‘g’’ superscript were not relevant.

by observers 1 and 2 following the first few
routes and distributed to the other observers
prior to their participation in the surveys. The
protocol was slightly different for the very last
survey (data set 17), because a third person ac-
companied the two observers to serve as re-
corder for the primary observer.

The data obtained from these trial routes
were analyzed using the SURVIV (White 1983)
code developed for this purpose. We used the
approach described above with observer, bird
species, and species group as potential sources
of variation. Under the more general models,
we estimated separate parameters for each spe-
cies for which at least 10 individuals were de-
tected. The remaining species were pooled into
one of two groups, ‘‘difficult’’ or ‘‘easy,’’ for es-
timation of a group-level detection probability.
We were conservative in our species grouping
because we placed only the following species
with high-frequency calls in the ‘‘difficult de-
tection’’ group: Brown Creeper (Certhia ameri-
cana), Blue-gray Gnatcatcher (Polioptila caeru-
lea), Cedar Waxwing (Bombycilla cedrorum),
Black-and-white Warbler (Mniotilta varia), Prai-
rie Warbler (Dendroica discolor), and Grasshop-
per Sparrow (Ammodramus savannarum). For a
small number of species, the numbers of indi-
viduals detected by the different observers as-
sumed values that led to problems with param-

eter identifiability (see below). In such cases,
the data were pooled with data from the ap-
propriate species group (‘‘difficult’’ or ‘‘easy’’).

�AICc values were computed for all 6 models
for each of the 17 data sets. These values reflect
the difference between the AICc value of the
model in question and the model with the low-
est AICc (the model considered the most appro-
priate for the data set; Burnham and Anderson
1998). Small differences (e.g. �AICc �2) indi-
cate models that are very similar in their abil-
ities to explain the data in a parsimonious man-
ner (Burnham and Anderson 1998). The num-
ber of detections of birds in the ‘‘difficult’’ cat-
egory was too small for analysis in nine data
sets, so the two models using these species
groups (pg, pi

g) were not used with these data.
Model pi showed the lowest AICc for the larg-

est number (6) of data sets (Table 2). Models pi
s

and p each showed the lowest AICc value for
three data sets (Table 2). Models pg and ps each
were judged most appropriate for two data
sets, and model pi

g showed the lowest AICc for
a single data set (Table 2). Based on these re-
sults, all of the factors hypothesized a priori to
be potential sources of variation in detection
probabilities indeed were important on at least
some routes. Variation between the two observ-
ers on each route was an important model fac-
tor in 10 of the 17 data sets (models pi, pi

g and
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TABLE 3. Mean detection probabilities (based on
model pi) for the different observers.

Observer
(i)

Number of
counts iˆ̄p aŜE ( ˆ̄p )i

1
2
3
4
5
6
7
8

7
10

7
1
1
3
2
2

0.88
0.81
0.85
0.89
0.82
0.84
0.93
0.85

0.013
0.025
0.042
0.018
0.042
0.045
0.010
0.045

a Estimated standard errors are based on replication except for ob-
servers 4 and 5, who ran only a single set of counts. Model-based stan-
dard error estimates are presented for these observers.

TABLE 4. Number of birds observed (n) and estimated detection probability (standard error) for birds in
the ‘‘difficult detection’’ and ‘‘easy detection’’ groups based on model pg.

Data set

Difficult

n p̂ ( [p̂])ŜE

Easy

n p̂ ( [p̂])ŜE

1
2
4
5

12
13
14
16

x̄

6
11
12
12

5
9
4

11
9

0.50 (0.433)
0.63 (0.254)
0.91 (0.095)
1.00 (0.213)
0.75 (0.280)
0.50 (0.354)
0.67 (0.385)
0.43 (0.358)
0.67 (0.072)a

225
72

207
309
403
483
224
463
298

0.82 (0.033)
0.93 (0.035)
0.90 (0.024)
0.86 (0.024)
0.87 (0.020)
0.82 (0.023)
0.81 (0.034)
0.85 (0.021)
0.86 (0.015)a

a Standard errors of the mean detection probability estimates were obtained using the data sets as replicates.

pi
s) . Point estimates of detection probability for

individual observers showed substantial vari-
ation, with averages on specific routes ranging
from 0.65 to 0.97 (Appendix 2). The average es-
timated detection probabilities for individual
observers over all data sets ranged from 0.81 to
0.93 (Table 3).

Our ability to draw inferences about the dif-
ference in detection probabilities of ‘‘difficult’’
and ‘‘easy’’ species was greatly limited by the
small number of individuals in the ‘‘difficult’’
category. Nevertheless, model selection results
indicated that this distinction was important in
three of the six data sets that contained both
difficult and easy species and that did not re-
quire species-specific detection probabilities.
Species group or identity was included in the
selected models for 8 of the 17 data sets (Table
2). We used point estimates of detection prob-
ability under model pg to reflect average detec-
tion probability for species in the two detection
categories (Table 4). The average detection

probabilities over all eight routes for which
such estimates could be obtained were 0.67 for
difficult species and 0.86 for easy species. A
one-tailed paired t-test yielded a test statistic
with probability P � 0.01 under the null hy-
pothesis of no difference. Thus, despite the
poor precision of estimates for the difficult spe-
cies, our results provided evidence of a true dif-
ference in the detection probabilities for these
two groups.

To illustrate the actual estimation approach,
we computed estimates of abundance for all
bird species encountered on one of the sample
routes, BBS-C (data set 10). On this route, the
general Cook-Jacobson model (pi

s) was selected
as most appropriate for the data set (Table 2).
Under this model, separate detection probabil-
ities were estimated for species for which at
least 10 individuals were detected (and for
which the sufficient statistics did not yield
identifiability problems; such problems oc-
curred in two species). Species not meeting the
criteria for separate estimation of detection
probabilities were categorized as belonging to
the ‘‘difficult’’ or ‘‘easy’’ detection groups to
estimate group-level detection probabilities.
On this particular route, no ‘‘difficult’’ species
were detected. We note that model (pi

s) was a
fairly clear choice for data set 10, based on the
magnitudes of the �AICc values for the other
models. For data sets where model selection is
not so clear, model-averaged estimates of de-
tection probabilities (based on estimates from
different models weighted using the �AICc val-
ues; Buckland et al. 1997, Burnham and An-
derson 1998) may be a more reasonable ap-
proach to estimation of detection probability
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and bird abundance. This approach basically
involves computing a weighted estimate (e.g. of
detection probability) using the estimates from
different models weighted by their respective
�AICc values, such that the estimates from
models with smaller �AICc values have larger
weights (Burnham and Anderson 1998). Con-
sequently, the parameter estimate is not based
solely on the low-AICc model, but is most
strongly influenced by the models that are
judged to be the most appropriate for the data
set.

The detection probabilities used to estimate
abundance (Table 5) were those corresponding
to the probability of a bird being detected by at
least one observer (equation 6), as estimated us-
ing the substitution of equation 7. It is impor-
tant to recall that these are not equivalent to the
observer-specific detection probabilities that
were presented in previous tables and on which
modeling was based. For many species, the es-
timated detection probability was 1 (Table 5).
This occurred, for example, when at least one
observer detected all of the individuals of a
given species that were detected while that per-
son served as primary observer (i.e. the second-
ary observer detected no additional birds of
that species). In such cases, the best estimate of
abundance is the number of birds detected, and
the variance of p̂ (see Appendix 1), and hence
of N̂, are undefined.

The high detection probabilities produced
abundance estimates that are very precise and
that are only slightly higher than the actual
counts (Table 5). This should not be taken as ev-
idence that standard point counts perform rea-
sonably well in the absence of estimation ef-
forts, because the detection probability esti-
mates for individual observers are substantial-
ly lower (Tables 3 and 4, Appendix 2). To obtain
abundance estimates that correspond to stan-
dard point counts with single observers, we fo-
cus on the half of the point counts for which
one specific observer served the primary role.
We estimate abundance for the survey stops at
which primary observer i serves as primary ob-
server by dividing the number of birds detect-
ed on these stops by both observers by the es-
timated detection probability for both observ-
ers for the species in question (e.g. N̂1

s � x.1
s/

p̂s). Such abundance estimates corresponding to
half of the survey route, N̂i

s, can differ substan-
tially from the number counted by the primary

observer on these stops, x11
s (Table 6), clearly

demonstrating the bias associated with use of a
count from a standard point-count survey
route as an estimate of actual population size.

DISCUSSION

PROBLEMS IN APPLYING THE DOUBLE-OBSERVER

APPROACH

Results from our field trials indicate that the
double-observer approach to estimation of de-
tection probabilities can be applied usefully to
point counts. The field methods and the sub-
sequent modeling and estimation appear to be
reasonable and to yield reasonable results. As
in any field implementation of an estimation
procedure, our attempts to use this approach
were not without problems. Here, we discuss
the main problems and difficulties that we en-
countered.

Field application.—This approach requires
that detection of a bird by the primary observer
be independent of detection by the secondary
observer. If the primary observer notices the
secondary observer focusing attention in a par-
ticular direction, then the primary observer
may focus attention similarly. The act of the
secondary observer writing down an observa-
tion when the primary observer has not indi-
cated a detection can serve as a cue to the pri-
mary observer. To minimize the provision of
cues by the secondary observer, we recommend
that the secondary observer attempt to remain
directly behind the primary observer and out
of his/her field of vision. Clearly, this is easier
said than done, because the primary observer
will be constantly turning his/her head to de-
tect birds, so the recommendation is simply
that the secondary observer stay behind the
primary observer to the extent possible.

If it appears that recording observations by
the secondary observer is serving as a cue to
the primary observer (this will likely be a prob-
lem only when few birds are present), then the
secondary observer should probably go
through the motions of recording (even to the
point of scribbling on the data sheet) at times
when no birds are detected. Similarly, the sec-
ondary observer must sometimes focus binoc-
ulars on a specific position to identify a detect-
ed bird. Again, we recommend that the second-
ary observer attempt to disguise the location of
the observed bird to the degree possible by
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scanning areas and focusing on locations with-
out, as well as with, detected birds. In many
(perhaps most) point counts, most birds are de-
tected by hearing, and such detections are least
likely to provide cues to the other observer.

We have not formally investigated the con-
sequences of dependent detection probabilities,
but we believe that they will yield estimates of
detection probability that are biased high (and
abundance estimates that are biased low). Al-
though every effort should be made to reduce
dependence among detection probabilities,
even with such dependence, the double-observ-
er approach is preferable to counts in which de-
tection probabilities are assumed to be 1. That
is, the positive bias in detection probability es-
timates will never be larger for the double-ob-
server approach than for standard point
counts, and it will nearly always be smaller.

Another potential problem involves the as-
sumption that an observer’s detection proba-
bility is the same regardless of whether the per-
son is serving a primary or secondary role. At
points with small to moderate numbers of
birds, this assumption was not perceived to be
a problem. In areas with many birds, however,
secondary observers sometimes believed that
their detection probabilities were reduced be-
cause of their recording duties. If this is be-
lieved to be a substantial problem, then it may
be necessary to use a third person who would
serve as recorder for the primary observer. As
noted, we followed this approach on the last
survey (data set 17), and it appeared to work
reasonably well. Another possible solution is to
have both the primary and secondary observ-
ers record the data from the primary observer.
This redundancy would serve no purpose with
respect to the actual data collection but would
serve to make detection probabilities as similar
as possible for a person in the two different ob-
servation roles.

The problem that we view as potentially the
most serious involves differences in distances
at which different observers detect birds. The
double-observer approach deals well with sim-
ple differences in detection probabilities (one
observer is more likely to detect a bird of a par-
ticular species than is the other observer), and
our results provided strong evidence of varia-
tion among observers in detection probabili-
ties. However, the above models were devel-
oped assuming that the same group of birds

was potentially detectable by both observers,
whereas in reality it may be that one observer
detects birds from a much larger distance than
the other observer. In this situation, a group of
birds may be undetectable by one observer and
detectable by the other. This situation can lead
to the detection probabilities for a particular
observer appearing to change according to the
identity of the observer with whom he/she is
paired. Of course, this problem is not unique to
the double-observer approach.

A reasonable approach to dealing with this
problem is to use fixed-radius point counts
rather than unlimited-radius counts. The fixed
radius would be set to a value for which the
possibility that birds are undetectable ap-
proaches zero (i.e. the radius would be suffi-
ciently short that all observers would be able to
detect birds at that distance). The argument
against fixed-radius counts is that it is difficult
to judge distances accurately, and that such in-
accuracies will translate into ambiguity and
variation among observers in actual distances
over which birds are detected. Certainly, this is
true to some extent, and no two observers will
be recording birds from the same exact dis-
tances. Nevertheless, we suspect that variation
among observers in distances at which birds
are detected will be much smaller for fixed-ra-
dius counts than for unlimited-radius counts.
Training can be used to increase an observer’s
ability to distinguish distance to a fixed count-
ing radius. An alternative approach for dealing
with differences among observers in detection
radii involves development of models that spe-
cifically incorporate parameters associated
with these differences (see below).

Other minor problems exist in application of
the double-observer approach. In some cases,
the secondary observer will disagree with the
identity of a species determined by the primary
observer. In cases of a passing flock or group of
birds, the counts of the primary and secondary
observers may differ. In the absence of any in-
formation indicating greater faith in one ob-
server over the other, we have assumed that the
primary observer has correctly identified and
enumerated detected birds. Such disagree-
ments did not occur frequently, and arbitrary
resolution (primary observer is always right)
seems as reasonable as any approach. Obvious-
ly, this sort of problem is not unique to the dou-
ble-observer approach. Errors made by a single
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TABLE 5. Number of birds counted, and estimated detection probability and abundance, for species detected
on BBS-C (data set 10).

Species x..

Detection
probability

p̂ (p̂)ŜE

Abundance

N̂ (N̂)ŜE 95% CI

Great Blue Heron (Ardea herodias) 1 0.9625 0.0159 1.04 0.20 1.00 to 2.39
Cattle Egret (Bubulcus ibis) 2 0.9625 0.0159 2.08 0.29 2.00 to 3.92
Turkey Vulture (Cathartes aura) 47 0.9865 0.0159 47.64 1.11 47.06 to 53.46
Canada Goose (Branta canadensis) 21 0.9625 0.0159 21.82 0.99 21.13 to 26.26
Mallard (Anas platyrhynchos) 1 0.9625 0.0159 1.04 0.20 1.00 to 2.39
American Kestrel (Falco sparverius) 4 0.9625 0.0159 4.16 0.41 4.01 to 6.60
Ring-necked Pheasant (Phasianus colchicus) 2 0.9625 0.0159 2.08 0.29 2.00 to 3.92
Northern Bobwhite (Colinus virginianus) 44 0.9808 0.0218 44.86 1.37 44.10 to 51.77
Killdeer (Charadrius vociferus) 6 0.9625 0.0159 6.23 0.50 6.02 to 9.08
Rock Dove (Columba livia) 38 1.0000 — 38.00 —
Mourning Dove (Zenaida macroura) 29 1.0000 — 29.00 —
Yellow-billed Cuckoo (Coccyzus americanus) 1 0.9625 0.0159 1.04 0.20 1.00 to 2.39
Chimney Swift (Chaetura pelagica) 5 0.9625 0.0159 5.19 0.46 5.01 to 7.85
Ruby-throated Hummingbird (Archilochus

colubris) 3 0.9625 0.0159 3.12 0.35 3.01 to 5.30
Red-bellied Woodpecker (Melanerpes carolinus) 6 0.9625 0.0159 6.23 0.50 6.02 to 9.08
Downy or Hairy woodpecker (Picoides pubescens,

P. villosus) 1 0.9625 0.0159 1.04 0.20 1.00 to 2.39
Northern Flicker (Colaptes auratus) 7 0.9625 0.0159 7.27 0.55 7.02 to 10.28
Pileated Woodpecker (Dryocopus pileatus) 2 0.9625 0.0159 2.08 0.29 2.00 to 3.92
Eastern Wood-Pewee (Contopus virens) 7 0.9625 0.0159 7.27 0.55 7.02 to 10.28
Acadian Flycatcher (Empidonax virescens) 1 0.9625 0.0159 1.04 0.20 1.00 to 2.39
Eastern Phoebe (Sayornis phoebe) 1 0.9625 0.0159 1.04 0.20 1.00 to 2.39
Great Crested Flycatcher (Myiarchus crinitus) 5 0.9625 0.0159 5.19 0.46 5.01 to 7.85
Eastern Kingbird (Tyrannus tyrannus) 2 0.9625 0.0159 2.08 0.29 2.00 to 3.92
Red-eyed Vireo (Vireo olivaceus) 28 1.0000 — 28.00 —
Blue Jay (Cyanocitta cristata) 22 0.9899 0.0150 22.22 0.58 22.01 to 25.71
American Crow (Corvus brachyrhynchos) 16 1.0000 — 16.00 —
Fish Crow (Corvus ossifragus) 8 0.9625 0.0159 8.31 0.59 8.03 to 11.46
Horned Lark (Eremophila alpestris) 2 0.9625 0.0159 2.08 0.29 2.00 to 3.92
Purple Martin (Progne subis) 15 0.9625 0.0159 15.58 0.82 15.08 to 19.52
Tree Swallow (Tachycineta bicolor) 1 0.9625 0.0159 1.04 0.20 1.00 to 2.39
Barn Swallow (Hirundo rustica) 12 1.0000 — 12.00 —
Carolina Chickadee (Poecile carolinensis) 2 0.9625 0.0159 2.08 0.29 2.00 to 3.92
Tufted Titmouse (Baeolophus bicolor) 9 0.9625 0.0159 9.35 0.62 9.03 to 12.64
White-breasted Nuthatch (Sitta carolinensis) 1 0.9625 0.0159 1.04 0.20 1.00 to 2.39
Carolina Wren (Thryothorus ludovicianus) 11 1.0000 — 11.00 —
Eastern Bluebird (Sialia sialis) 5 0.9625 0.0159 5.19 0.46 5.01 to 7.85
Wood Thrush (Hylocichla mustelina) 16 1.0000 — 16.00 —
American Robin (Turdus migratorius) 72 0.9924 0.0083 72.55 0.96 72.05 to 77.60
Gray Catbird (Dumetella carolinensis) 5 0.9625 0.0159 5.19 0.46 5.01 to 7.85
Northern Mockingbird (Mimus polyglottos) 34 1.0000 — 34.00 —
Brown Thrasher (Toxostoma rufum) 1 0.9625 0.0159 1.04 0.20 1.00 to 2.39
European Starling (Sturnus vulgaris) 55 0.9778 0.0193 56.25 1.58 55.18 to 63.51
Northern Parula (Parula americana) 1 0.9625 0.0159 1.04 0.20 1.00 to 2.39
Kentucky Warbler (Oporornis formosus) 1 0.9625 0.0159 1.04 0.20 1.00 to 2.39
Common Yellowthroat (Geothlypis trichas) 13 1.0000 — 13.00 —
Summer Tanager (Piranga rubra) 1 0.9625 0.0159 1.04 0.20 1.00 to 2.39
Scarlet Tanager (Piranga olivacea) 4 0.9625 0.0159 4.16 0.41 4.01 to 6.60
Eastern Towhee (Pipilo erythrophthalmus) 3 0.9625 0.0159 3.12 0.35 3.01 to 5.30
Chipping Sparrow (Spizella passerina) 15 1.0000 — 15.00 —
Field Sparrow (Spizella pusilla) 6 0.9625 0.0159 6.23 0.50 6.02 to 9.08
Song Sparrow (Melospiza melodia) 8 0.9625 0.0159 8.31 0.59 8.03 to 11.46
Northern Cardinal (Cardinalis cardinalis) 21 1.0000 — 21.00 —
Blue Grosbeak (Guiraca caerulea) 17 0.9815 0.0279 17.32 0.75 17.02 to 21.71
Indigo Bunting (Passerina cyanea) 24 0.9545 0.0550 25.14 1.82 24.13 to 34.31
Red-winged Blackbird (Agelaius phoeniceus) 114 0.9973 0.0024 114.31 0.63 114.03 to 117.76
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TABLE 5. Continued.

Species x..

Detection
probability

p̂ (p̂)ŜE

Abundance

N̂ (N̂)ŜE 95% CI

Eastern Meadowlark (Sturnella magna) 5 0.9625 0.0159 5.19 0.46 5.01 to 7.85
Common Grackle (Quiscalus quiscula) 87 0.9661 0.0205 90.06 2.61 87.72 to 100.05
Brown-headed Cowbird (Molothrus ater) 11 1.0000 — 11.00 —
Orchard Oriole (Icterus spurius) 6 0.9625 0.0159 6.23 0.50 6.02 to 9.08
Baltimore Oriole (Icterus galbula) 4 0.9625 0.0159 4.16 0.41 4.01 to 6.60
House Finch (Carpodacus mexicanus) 11 1.0000 — 11.00 —
American Goldfinch (Carduelis tristis) 11 1.0000 — 11.00 —
House Sparrow (Passer domesticus) 56 0.9969 0.0039 56.17 0.47 56.01 to 59.02

TABLE 6. Number of birds counted by observer 1 (x11), estimated abundancea (N̂1), and estimated species-
specific detection probabilities for stops at which observer 1 was the primary observer for selected bird
speciesb detected on BBS-C (data set 10).

Species x11

Abundance

N̂1 (N̂1)ŜE 95% CI

Detection probability

p̂1 (p̂1)ŜE

Turkey Vulture
Northern Bobwhite
Blue Jay
American Robin
European Starling
Blue Grosbeak
Red-winged Blackbird
Common Grackle
House Sparrow

33
13
11
22
27

6
54
39
19

37.51
19.37
12.12
29.22
29.66

7.13
58.16
45.55
20.06

0.94
0.75
0.40
0.53
1.01
0.42
0.42
1.59
0.26

37.05 to 42.52
19.03 to 23.53
12.01 to 14.62
29.01 to 32.33
29.08 to 34.67

7.01 to 9.76
58.01 to 60.71
44.29 to 52.19
20.00 to 21.78

0.8799
0.6711
0.9074
0.7529
0.9103
0.8413
0.9285
0.8563
0.9471

0.0581
0.1119
0.0892
0.0816
0.0619
0.1479
0.0346
0.0615
0.0516

a N̂1 � x1/p̂.
b Selected species were those for which species-specific detection probabilities were estimated and for which p̂ � 1.

observer conducting a point count simply go
unchallenged. The best way to circumvent this
problem is to try to insure that all observers are
experts at bird identification and observation.

Some bird species are virtually undetectable
in daytime surveys such as those reported here
(e.g. owls and nightjars). Even if an individual
of such a species is detected now and then, it
will be impossible to estimate associated detec-
tion probabilities. Thus, although the double-
observer approach holds promise for species
with reasonable detection probabilities (e.g.
�0.40), the approach will not be useful for spe-
cies with detection probabilities that approach
0. Similarly, in some situations certain classes
of individuals (e.g. females) will have detection
probabilities that approach 0, in which case es-
timates of detection probability and abundance
for the species would correspond to the classes
of individuals that have non-zero detection
probabilities. Clearly, undetectable species and
individuals present problems in any type of

survey, and if these species or classes are of pri-
mary interest, then an alternative sampling ap-
proach should be used (e.g. capture-recapture
methods rather than observation-based meth-
ods).

Computations.—Under certain combinations
of values of the sufficient statistics, the param-
eters of interest are not identifiable and cannot
be well estimated. One such situation is when
only one observer detects individuals of a par-
ticular species (e.g. x11 � 0, x12 � 0, x22 � 0, x21

� 0). In this situation, the denominator of the
estimator (equation 3) for the observer who de-
tected birds is 0, and the estimator is unde-
fined. If x11 x22 � x12 x21 � 0, and xij � 0 (i � 1,
2; j � 1, 2), then the two detection probabilities
are not identifiable. When we encountered such
situations for particular species in our analy-
ses, we did not attempt to estimate a species-
specific detection probability but pooled the
data for the problem species with the other spe-
cies in the same detection group (i.e. difficult or
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easy) that did not have adequate data for sep-
arate estimation. Finally, detection probability
estimates of 0 or 1 produce undefined variances
(see Appendix 1).

ADDITIONAL MODELING OF DETECTION

PROBABILITY

Our intent is to present the basics of the dou-
ble-observer approach to the conduct of point
counts. In the process of examining our data
and considering the approach, we identified
several other possible extensions to the mod-
eling of detection probabilities. Our results in-
dicate that observer identity and bird species
are sources of variation that should be incor-
porated into virtually all attempts to model de-
tection probability. During our field trials, bird
detections were categorized as occurring by vi-
sual or by auditory means. Detection probabil-
ities associated with these two modes of detec-
tion are likely to be different, and it would be
possible to build models that incorporate mode
of detection. We suspect that any gains in abil-
ity to model detection probabilities would not
merit the extra parameters associated with
such models, but we do not know this and be-
lieve that such modeling should be investigat-
ed.

Habitat may be an important source of vari-
ation in detection probabilities. It would be
possible to classify habitats associated with dif-
ferent point counts according to a simple clas-
sification scheme and then incorporate habitat
type into models of detection probability.

We found it necessary to group species into
broad categories based on ease of detection be-
cause small numbers of individuals were de-
tected for many bird species. Certainly, it
would be possible to consider different classi-
fication schemes and to test their efficacy with
data from our field trials or from new efforts.
In particular, our ‘‘difficult’’ detection category
contained a small number of species, none of
which was very abundant in the areas surveyed
in our field trials. If the ‘‘difficult’’ category
contained more species, then it would be more
likely that at least a group-specific detection
probability could be estimated. We can also en-
vision species being placed into different de-
tection categories depending on phenology and
survey timing, as when males of some species

stop singing earlier in the breeding season than
do males of other species.

Point counts are used in a variety of types of
investigation ranging from broad surveys such
as the BBS, to intensive studies of particular
sites or locations. Multiple counts by specific
observers will permit additional modeling of
detection probability that should prove useful
in estimating bird abundance. Our field trials
perhaps are analogous to intensive research in-
vestigations in that some individuals served as
observers on many routes and occasions. In
such situations, we can create models contain-
ing multiple surveys (surveys at different times
and places) that share at least some observers.
Then, reduced-parameter models can be con-
sidered in which species-specific detection
probabilities for a particular observer are mod-
eled as constants over time/space or perhaps
time/habitat. Even in large-scale surveys in
which a pair of observers may conduct only one
survey route per year, it may be possible to ex-
ploit data from a single observer obtained over
multiple years. Such modeling should result in
gains in precision.

Multiple routes with specific pairings of in-
vestigators also may be an approach to deal
with the problem of two observers having dif-
ferent distances from which they can detect
birds (different detection radii). Such modeling
might require that each individual be paired
with every other individual in a small group of
investigators. Given data from such multiple
routes, parameters reflecting variation in ob-
server detection radius can be incorporated
into modeling efforts to standardize detection-
probability estimates to correspond to birds
that are potentially detectable.

We might categorize the Cook-Jacobson
model and our various extensions as ‘‘condi-
tional’’ in that estimation is conducted by first
conditioning on the numbers of birds observed,
estimating detection probability from such a
conditional distribution, and then applying the
estimates of detection probability to numbers
of birds observed to estimate abundance. In the
future, we will consider the possibility of de-
veloping unconditional models that incorpo-
rate abundance or annual population growth
rate directly as model parameters.

RECOMMENDATIONS

We were sufficiently encouraged by the dou-
ble-observer approach that we believe it should
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be strongly considered for use in future point-
count studies. In particular, the variation in es-
timated detection probabilities we document
for single-observer counts provides a strong ar-
gument against use of these counts when re-
sults are to be compared over space or time. Be-
cause detection probabilities could vary among
the counts being compared (e.g. associated
with an experimental treatment), investigators
cannot make statements about differences in
population sizes based on observed differences
in counts. Based on our results, we see little jus-
tification for use of standard point counts un-
accompanied by some effort to estimate detec-
tion probability. The variable circular plot and
the double-observer approach described here
offer two distinctly different approaches to es-
timation of detection probability, and hence
bird abundance, from point counts. Both re-
quire additional effort beyond that required for
simple counts, but it is our opinion that most
questions that are sufficiently important to
merit the effort required to conduct point
counts in the first place also are sufficiently im-
portant that estimation should be taken seri-
ously.

Computations associated with estimation
under the general Cook-Jacobson model are
straightforward (e.g. equations 3 and 4) and
can be done easily on a hand calculator. The
SURVIV models are available at �www.
mbr-pwrc.usgs.gov/software/dobserv.html�,
as is a more user-friendly Visual Basic program
to implement detection probability modeling.

We have pointed out potential problems with
our initial efforts to apply the double-observer
approach, but most of these problems are even
more serious for standard point counts. The sit-
uation with point counts that do and do not in-
corporate attempts to estimate detection prob-
ability is analogous to uses of capture-recap-
ture data that do and do not attempt to estimate
capture probability. Proponents of the use of
raw catch statistics once claimed that they pre-
ferred their approach because it was free of the
assumptions required by efforts to model and
estimate capture probability. This claim was
shown to be false, and indeed the ‘‘estimators’’
based on catch statistics were shown to be
much more sensitive to assumption violations
than were the probabilistic estimators based on
modeling capture probability (Jolly and Dick-
son 1983, Nichols and Pollock 1983, Skalski and

Robson 1992). Although this has not been for-
mally investigated with point counts, we be-
lieve that abundance and trend estimates based
on the double-observer approach are likely to
be much more robust to the various problems
discussed above than are estimates based on
single-observer counts.

Our primary recommendation regarding im-
plementation of the double-observer approach
is the restriction to fixed-radius counts. We be-
lieve that two very important advantages are
associated with use of a fixed radius. The first
advantage has been discussed above and in-
volves an attempt to minimize the probability
that a group of birds (e.g. at a particular dis-
tance) will be undetectable by one observer, yet
detectable by another. The second involves the
issue of geographic or spatial sampling. In our
treatment above, we followed the traditional
treatment of point-count data and omitted dis-
cussion of the area sampled and of spatial var-
iation in bird abundance and density. However,
spatial variation is easily (and usefully) includ-
ed in the double-observer approach.

Consider the goal of density or abundance
estimation for some large area of interest. One
approach to such estimation would be to ran-
domly select locations for the conduct of point
counts from all possible locations in the area of
interest (stratification could also be used with
random selection within strata). The double-
observer sampling at the selected points would
then cover a known area (equal to k�r2, where
k denotes the number of point counts conduct-
ed and r denotes the fixed radius) and a known
fraction of the total area of interest. The abun-
dance estimates from the sampled area can
then be used to estimate the total density and
abundance on the entire area of interest. The
variance of this overall estimate of abundance
or density will then depend not only on the pre-
cision of the estimate of detection probability,
but also on the fraction of the total area on
which counts were conducted and on the spa-
tial variation in bird density and abundance
(Cook and Jacobson 1979, Lancia et al. 1994).
This latter spatial variation results in the need
to include in the overall variance estimator a
variance component associated with the count-
to-count (and place-to-place) variance in num-
ber of birds detected. Such estimation of overall
abundance or density and its variance is
straightforward and is presented in Cook and
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Jacobson (1979). Whether the objective of the
point-count survey involves monitoring goals
or specific study goals, inclusion of spatial var-
iation in bird abundance or density likely will
yield stronger and more widely applicable in-
ferences.

A final recommendation is to investigate the
potential for use of independent observers to
collect point-count data. Two or more observ-
ers would detect birds at the same point and
the same time, recording the approximate lo-
cations and detection times of birds seen and
heard on a rough map. After the point count,
the different maps would be used to determine
which birds were detected by which observ-
er(s). Resulting data would have the form of a
capture history, with a vector of 0s and 1s in-
dicating for each bird the observers that did (1)
and did not (0) detect it. If detections of the dif-
ferent observers are really independent, then
the resulting data can be used with the entire
suite of closed-population capture-recapture
models (Otis et al. 1978, Rexstad and Burnham
1991). This model set includes models that per-
mit detection probability to be different for
each individual bird in the sampled area, and
we suspect that such models would prove use-
ful for point-count data. Our primary reason
for not exploring this approach was our a priori
belief that it would be very difficult in the field
to insure independence of observers who were
counting birds at the same point. However, Ted
Simons (pers. comm.) has experimented with
this approach, and his initial results suggest
that this sort of sampling is possible.

Note that this final recommendation involves
multiple observers sampling at the same point
in space and time. This approach is not the
same as a single observer surveying the same
point(s) on multiple occasions (e.g. days). Al-
though data from this latter approach can be
used to estimate species-specific detection
probabilities, the estimates are very model de-
pendent and relatively imprecise (Carrol and
Lombard 1985, Sauer et al. 1994a). Sampling
using variable circular plots and the double-ob-
server approach should be preferable to this
latter approach. Multiple surveys by the same
pair of observers using the double-observer ap-
proach at each survey can be modeled using the
approach described here and should produce
more precise estimates of detection probability
and abundance, as well as inferences about pos-

sible changes in abundance over the repeat vis-
its.
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APPENDIX 1. Estimation of variances of detection-probability estimates based on Cook and Jacobson (1979).

Large-sample variances and covariances for individual detection probability estimates are given by Cook
and Jacobson (1979) as:

p (1 � p)(1 � � p)1 1ˆvar(p ) � ,1 x..p (1 � p )� �2 2 1 2

p (1 � p)(1 � � p)2 2ˆvar(p ) � ,2 x..p (1 � p )� �1 1 1 2

(1 � p)
ˆ ˆcov(p , p ) � , (8)1 2 x..� �1 2

where �i � x.i /x.. They also give the following asymptotic variance of the estimated detection probability
for both observers, p̂:

2(1 � p) p 1 1 1 1
ˆvar(p � x..) � � � � . (9)[ ]x.. p � p � p (1 � p )� p (1 � p )�1 1 2 2 2 1 1 1 2 2

These expressions can be used to compute estimates of the variances of detection probability estimates under
a general model in which detection probabilities are assumed to be different for the two observers. In practice,
we obtain our variance and covariance estimates for p̂1 and p̂2 directly from the appropriate model in program
SURVIV. To compute a variance estimate for the overall detection probability, p̂, we rewrite p1 as a function
of p (equation 7). This expression (equation 7) is substituted for p1, and the SURVIV output then contains
estimates of p2, p, and their variances.

APPENDIX 2. Estimated average detection probability (from model p) and detection probabilities for specific
observers (from model pi).

Data set

Observers

A B

Detection probability, p̂i ( [p̂i])ŜE

A B Average

1
2
3
4
5
7
6

15
8
9

10
11
14
13
12
16
17

1
1
1
1
1
3
3
3
4
5
6
6
6
7
7
8
8

2
2
2
2
2
1
2
2
1
2
1
2
3
2
3
3
3

0.82 (0.039)
0.91 (0.049)
0.88 (0.020)
0.94 (0.024)
0.88 (0.025)
0.86 (0.034)
0.96 (0.019)
0.97 (0.013)
0.89 (0.018)
0.82 (0.042)
0.86 (0.017)
0.90 (0.017)
0.75 (0.042)
0.94 (0.017)
0.92 (0.021)
0.89 (0.022)
0.80 (0.031)

0.81 (0.043)
0.88 (0.051)
0.84 (0.023)
0.86 (0.036)
0.87 (0.033)
0.87 (0.035)
0.77 (0.035)
0.70 (0.034)
0.89 (0.018)
0.90 (0.038)
0.85 (0.017)
0.83 (0.020)
0.90 (0.034)
0.66 (0.035)
0.81 (0.030)
0.78 (0.030)
0.65 (0.034)

0.82 (0.033)
0.89 (0.040)
0.86 (0.017)
0.90 (0.024)
0.87 (0.022)
0.87 (0.027)
0.85 (0.026)
0.84 (0.021)
0.89 (0.014)
0.85 (0.034)
0.86 (0.014)
0.86 (0.015)
0.81 (0.034)
0.81 (0.023)
0.87 (0.020)
0.84 (0.021)
0.72 (0.029)


