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Abstract. Solar-induced chlorophyll fluorescence (SIF) has

been shown to be a powerful proxy for photosynthesis and

gross primary productivity (GPP). The recently launched

TROPOspheric Monitoring Instrument (TROPOMI) features

the required spectral resolution and signal-to-noise ratio to

retrieve SIF from space. Here, we present a downscaling

method to obtain 500 m spatial resolution SIF over Cal-

ifornia. We report daily values based on a 14 d window.

TROPOMI SIF data show a strong correspondence with daily

GPP estimates at AmeriFlux sites across multiple ecosystems

in California. We find a linear relationship between SIF and

GPP that is largely invariant across ecosystems with an in-

tercept that is not significantly different from zero. Measure-

ments of SIF from TROPOMI agree with MODerate Resolu-

tion Imaging Spectroradiometer (MODIS) vegetation indices

– the normalized difference vegetation index (NDVI), en-

hanced vegetation index (EVI), and near-infrared reflectance

of vegetation index (NIRv) – at annual timescales but indicate

different temporal dynamics at monthly and daily timescales.

TROPOMI SIF data show a double peak in the seasonality

of photosynthesis, a feature that is not present in the MODIS

vegetation indices. The different seasonality in the vegeta-

tion indices may be due to a clear-sky bias in the vegeta-

tion indices, whereas previous work has shown SIF to have

a low sensitivity to clouds and to detect the downregulation

of photosynthesis even when plants appear green. We further

decompose the spatiotemporal patterns in the SIF data based

on land cover. The double peak in the seasonality of Califor-

nia’s photosynthesis is due to two processes that are out of

phase: grasses, chaparral, and oak savanna ecosystems show

an April maximum, while evergreen forests peak in June.

An empirical orthogonal function (EOF) analysis corrobo-

rates the phase offset and spatial patterns driving the double

peak. The EOF analysis further indicates that two spatiotem-

poral patterns explain 84 % of the variability in the SIF data.

Results shown here are promising for obtaining global GPP

at sub-kilometer spatial scales and identifying the processes

driving carbon uptake.

1 Introduction

Photosynthesis is the process by which plants and other or-

ganisms use sunlight to synthesize carbon dioxide (CO2) and

water to glucose and oxygen. Accurate knowledge of gross

primary productivity (GPP) through photosynthesis is crucial

for understanding the land–atmosphere carbon exchange,

which is one of the largest and most uncertain aspects of

the global carbon cycle (IPCC, 2013; Anav et al., 2015; US-

GCRP, 2018). This uncertainty in the land–atmosphere car-

bon exchange has led to long-standing questions regarding

the magnitude of the Northern Hemispheric terrestrial carbon

sink and how it has changed over the past few decades (e.g.,

Tans et al., 1990; Ballantyne et al., 2012; Ciais et al., 2019).

As such, methods of inferring GPP are of great interest to the

scientific community.
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Previous work estimating regional or global-scale GPP has

typically relied on biosphere models (e.g., the early work on

SiB2 from Sellers et al., 1986), used remote-sensing mea-

surements in Monteith light-use efficiency models with scal-

ings for different ecosystems and climatic conditions (e.g.,

Monteith, 1972; Mahadevan et al., 2008), or attempted to

back out GPP from CO2 flux inversions (e.g., CarbonTracker

from Peters et al., 2007). The advent of global remote-

sensing observations of solar-induced chlorophyll fluores-

cence (SIF) represents a breakthrough in our ability to con-

strain photosynthetic activity from space. This is because a

number of studies have shown SIF to be a powerful proxy for

photosynthesis both in laboratory environments (e.g., Baker,

2008) and at larger spatial scales (e.g., Frankenberg et al.,

2011a; Parazoo et al., 2014; Yang et al., 2015, 2017; Y. Sun

et al., 2017, 2018; Magney et al., 2019a). During the initial

stage of photosynthesis, absorbed sunlight excites chloro-

phyll a molecules. The primary pathways for de-excitation

are via photochemistry or non-photochemical quenching, the

latter of which dissipates excess energy as heat when the

plant does not have the capacity for photosynthesis (i.e., un-

der stress). However, a small fraction dissipates as heat or is

re-emitted as fluorescence and can be measured by remote

sensing. This remote-sensing retrieval is termed SIF.

The first global space-borne measurements of SIF were

made by Frankenberg et al. (2011b) and Joiner et al. (2011)

using observations from the Japanese Greenhouse Gases Ob-

serving Satellite (GOSAT) instrument (Kuze et al., 2009).

Since then, SIF has been retrieved from other space-borne in-

struments such as the Global Ozone Monitoring Experiment-

2 (GOME-2) on the MetOp-A satellite, Scanning Imag-

ing Absorption Spectrometer for Atmospheric Chartography

(SCIAMACHY) on the Envisat satellite, the Orbiting Carbon

Observatory-2 (OCO-2) satellite, and TROPOspheric Moni-

toring Instrument (TROPOMI) on the Sentinel-5 Precursor

satellite (Frankenberg et al., 2011a, b, 2012, 2014; Joiner

et al., 2011, 2012, 2013, 2014, 2016; Guanter et al., 2012,

2015; Köhler et al., 2015, 2018). A number of upcoming

satellite missions such as FLEX (Drusch et al., 2017) and

TEMPO (Zoogman et al., 2017) will also measure SIF at

higher spatial and temporal resolution. Efforts are underway

to create a multi-decadal SIF record using different space-

borne instruments (Parazoo et al., 2019), and a few groups

have utilized machine learning techniques to create spatially

continuous SIF datasets at 0.05◦ × 0.05◦ resolution (Zhang

et al., 2018; Yu et al., 2019; Li and Xiao, 2019). Mohammed

et al. (2019) presents a detailed review of different remote-

sensing techniques for retrieving SIF from space-borne mea-

surements.

Some work has shown SIF to be a better measure of car-

bon uptake than other vegetation indices that look at canopy

“greenness”. This is, in part, because indices like the nor-

malized difference vegetation index (NDVI) are a measure

of photosynthetic capacity (Sellers, 1985), whereas SIF is

a measure of the photosynthetic activity and is coupled to

Figure 1. Land cover in California from the 2018 USDA Crop-

Scape database (USDA, 2018). Resolution has been degraded from

the native 30 m resolution to 500 m for comparison with TROPOMI

data. Coloring indicates that a land type makes up more than 50 %

of the 500 m grid cell. White lines are the locations of two tran-

sects across California for Hovmöller diagrams: 39.218◦ N (tran-

sect A) and 38.282◦ N (transect B). Black stars show the location

of six AmeriFlux sites: Bouldin Island (38.1090◦ N, 121.5350◦ W;

US-Bi2), Tonzi Ranch (38.4316◦ N, 120.9660◦ W; US-Ton), Vaira

Ranch (38.4133◦ N, 120.9507◦ W; US-Var), Twitchell Island West

Pond (38.1074◦ N, 121.6469◦ W; US-Tw1), Twitchell Island East

End (38.1030◦ N, 121.6414◦ W; US-Tw4), and Twitchell Island

East Pond (38.1072◦ N, 121.6426◦ W; US-Tw5).

the radiation regime. For example, Luus et al. (2017) showed

that the seasonal cycle of a biosphere model driven by SIF

agreed with measurements of CO2, whereas the seasonal cy-

cle from the model driven by the enhanced vegetation index

(EVI) was markedly different from the CO2 observations.

Joiner et al. (2011) showed that the seasonal cycles of SIF

and EVI agree in some regions but not others. Walther et al.

(2016) showed a decoupling of the photosynthesis and green-

ness dynamics in boreal evergreen forests by comparing SIF

and EVI to model estimates of GPP, with SIF better capturing

the seasonality of both deciduous broadleaf and evergreen

needleleaf forests. Again, this is likely due to SIF capturing

photosynthetic activity rather than photosynthetic capacity.

More recently, Magney et al. (2019a) demonstrated a mech-

anistic link between SIF and GPP over the course of a year

in a winter-dormant Northern Hemisphere conifer forest, de-

spite retaining chlorophyll through the winter. Magney et al.

(2019a) highlighted the potential for new satellite measure-

ments of SIF from TROPOMI and OCO-2 to track GPP at

coarse spatial resolution (3.5 × 7 km2).

Here, we present an oversampling and downscaling

method to obtain daily estimates of SIF at 500 m resolution.
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To our knowledge, this is the highest resolution SIF dataset

from satellite measurements. We then compare this down-

scaled 500 m SIF data to AmeriFlux sites across the state of

California to assess the relationship between SIF and GPP.

We finish by decomposing California’s spatiotemporal pat-

terns of photosynthesis and carbon uptake into the dominant

modes using empirical orthogonal functions (EOFs). Here,

we focus on California because there are a number of eddy

flux towers and it encompasses a range of diverse ecosystems

including deciduous and evergreen forests, irrigated crop-

lands, and grasslands (see Fig. 1).

2 Measurements of SIF, vegetation, and GPP

2.1 Satellite measurements of SIF from TROPOMI

TROPOMI (Veefkind et al., 2012) is a nadir-viewing imag-

ing spectrometer with bands in the UV, visible, near-infrared,

and shortwave infrared aboard the Sentinel-5 Precursor satel-

lite. The Sentinel-5 Precursor satellite was launched into low

Earth orbit on 13 October 2017 with an equatorial crossing

time of 13:30 local solar time (LST) and a 16 d orbit cy-

cle. TROPOMI has a wide swath (2600 km across track), en-

abling near-daily global coverage. The spatial resolution of

the ground pixels is 7 km along track1 and 3.5–15 km across

track (3.5 km at nadir and 15 km at the edge of the swath).

Of particular relevance here is the near-infrared band (725–

775 nm) that covers the far-red part of SIF emission and con-

tains a number of solar absorption features in the solar irradi-

ance (Fraunhofer lines), allowing for retrieval of SIF through

the change in optical depth of Fraunhofer lines. Guanter

et al. (2015) showed the potential for TROPOMI to retrieve

SIF and Köhler et al. (2018) presented the first retrievals.

Specifically, Köhler et al. (2018) used a 743–758 nm re-

trieval window that is devoid of atmospheric absorption fea-

tures. TROPOMI has a spectral resolution of ∼ 0.4 nm and a

signal-to-noise ratio of ∼ 2500 in this retrieval window. The

TROPOMI SIF retrieval uses a singular value decomposition

to derive the spectral basis functions from TROPOMI data

over vegetation-free areas (e.g., oceans, ice, and deserts).

One particularly attractive feature of space-borne SIF re-

trievals is the low sensitivity to atmospheric scattering by

aerosols and clouds. Specifically, Frankenberg et al. (2012)

showed that 80 % of the emitted SIF could be retrieved in

the presence of clouds with low-to-moderate optical thick-

ness. As such, Köhler et al. (2018) filtered out pixels with

cloud fractions larger than 80 % based on Visible Infrared

Imaging Radiometer Suite (VIIRS) observations; we use this

same cloud filtering here. This weak sensitivity to clouds is

in contrast to reflectance-based measures of vegetation (e.g.,

NDVI) that can only be made in clear-sky conditions, poten-

1Along-track resolution increased to 5.6 km in August 2019

(http://www.tropomi.eu/mission-status, last access: 2 Jan-

uary 2020).

tially inducing a clear-sky bias in reflectance-based vegeta-

tion indices.

Here, we apply one additional bias correction to the

TROPOMI retrievals that was not included in Köhler et al.

(2018). We find some mostly barren regions have systemat-

ically negative SIF values, which is non-physical. This bias

is thought to be related to bright surfaces and is likely due to

the choice of training data for the spectral basis functions. We

are investigating ways to correct this globally. In the interim,

we compute a spatiotemporal bias correction bi,j,k (where

i,j are the spatial coordinates and k is the temporal coordi-

nate) such that the mean SIF for a given location over a 30 d

moving window is always positive. That is to say,

bi,j,k =

{
∣

∣si,j,k

∣

∣ , si,j,k < 0

0, 0 ≤ si,j,k
, (1)

where si,j,k is the 1-month block average for the kth day at

location i,j . This still allows for negative SIF values due to

variability and noise but will shift the mean SIF for a given

500 m grid cell to be positive. In practice, this bias correc-

tion is small, with 78 % having no bias correction at all and

90 % of the grid cells having a bias correction smaller than

0.1 mW m−2 sr−1 nm−1. The bias correction primarily im-

pacts desert regions in southeastern California (see Fig. S1

in the Supplement).

2.2 Satellite-based vegetation indices from MODIS

The MODerate Resolution Imaging Spectroradiometer

(MODIS) is an imaging spectrometer on NASA’s Terra and

Aqua satellites. Terra was launched in 2000 and Aqua was

launched in 2002; both are in Sun-synchronous orbits with

16 orbits per day. Terra and Aqua have equatorial cross-

ing times at 10:30 and 12:00 LST, respectively. Schaaf et al.

(2002) developed the nadir bidirectional reflectance distri-

bution function-adjusted reflectance (NBAR) dataset, here-

after referred to as the MODIS NBAR dataset. MODIS data

over a 16 d period from Terra and Aqua can be combined

to build a 500 m composite: MCD43A4. Here, we use the

MCD43A4.006 (v06) MODIS NBAR dataset to compute

three MODIS vegetation indices at 500 m resolution. Specif-

ically, we compute the NDVI, EVI, and near-infrared re-

flectance of vegetation index (NIRv):

NDVI =
ρNIR − ρred

ρNIR + ρred
(2)

EVI = G ·
ρNIR − ρred

ρNIR + C1ρred − C2ρblue + L
(3)

NIRv = ρNIR · NDVI, (4)

where ρNIR, ρred, and ρBlue are the reflectances in their re-

spective MODIS bands, and G, C1, C2, and L are coefficients

for the MODIS EVI algorithm (L = 1, C1 = 6, and C2 = 7.5,

G = 2.5).

www.biogeosciences.net/17/405/2020/ Biogeosciences, 17, 405–422, 2020
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2.3 GPP estimates from AmeriFlux eddy covariance

sites

AmeriFlux is a network of long-term eddy covariance sites

that launched in 1996 (Baldocchi et al., 2001). These eddy

covariance sites provide a direct measure of net ecosystem

exchange (NEE; CO2 fluxes) (Baldocchi et al., 1988) and

can be used to evaluate both bottom-up models and satellite

proxies of carbon exchange. Disentangling the CO2 fluxes

into GPP (CO2 uptake) and total ecosystem respiration (Reco;

CO2 released) generally requires making assumptions about

the temperature dependence of the respiration which can in-

duce biases in the GPP estimate (Reichstein et al., 2005).

Nevertheless, these eddy covariance sites provide the best es-

timate of site-level GPP across multiple ecosystems in Cal-

ifornia including croplands, wetlands, woody savannas, and

grasslands. Here, we use data from 11 AmeriFlux sites across

California (see Table 1) to evaluate the SIF retrievals from

TROPOMI. NEE flux partitioning at these sites was per-

formed using artificial neural networks from nighttime mea-

surements to constrain Reco (Hemes et al., 2019).

2.4 Comparison of TROPOMI SIF with MODIS

vegetation indices

Figure 2 shows a scatterplot comparison of TROPOMI SIF

and MODIS NDVI, EVI, and NIRv. The comparison is lim-

ited to coincident observations between March and August

(MAMJJA) and excludes scenes that are predominantly bar-

ren or shrubland. A few features that immediately stand out

are as follows:

1. There is a strong correspondence between EVI and

NIRv. We find a nearly linear relationship between these

two indices (r2 = 0.98).

2. All three MODIS indices are well correlated with each

other (r2 > 0.85). We do observe a weakly non-linear

relationship between NIRv and EVI or NDVI (see the

curvature in the NIRv row).

3. There is a weaker relationship between SIF and the veg-

etation indices. Previous work has argued that NIRv

is strongly correlated with SIF (Badgley et al., 2017)

and provides a new independent approach for estimat-

ing GPP (Badgley et al., 2019).

Of the three vegetation indices examined here, we find the

strongest relationship between NIRv and SIF, but it only ex-

plains half of the variability on daily timescales (r2 = 0.52).

The agreement improves at coarser temporal scales (annual

r2 = 0.83–0.84 and monthly r2 = 0.59±0.23). It is important

to note that the native spatial resolution of the TROPOMI

observations is 3.5 km across track at nadir, whereas the

MODIS observations are 500 m across track at nadir. As

such, we are using all MODIS observations within a sin-

gle TROPOMI scene. Comparison of four methods of down-

scaling SIF with NIRv yields coefficients of determination of

r2 = 0.52–0.64; see Fig. S2).

3 Oversampling and spatial downscaling of TROPOMI

data

As mentioned above, the nominal spatial resolution of the

ground pixels from TROPOMI is 3.5 × 7 km2 at nadir. How-

ever, the wide swath from TROPOMI (2600 km across track)

often results in multiple observations per day (see Fig. 3b).

Additionally, the orientation of these swaths differs over the

16 d orbit cycle, allowing us to infer higher spatial resolu-

tion than the nominal spatial resolution. This idea has been

widely used with the space-borne OMI instrument that pre-

ceded TROPOMI (see K. Sun et al., 2018, and references

therein for a discussion of oversampling with OMI obser-

vations). However, the spatial resolution of TROPOMI is a

factor of 15 finer than OMI (3.5 × 7 km2 for TROPOMI and

14×26 km2 for OMI, both at nadir). Oversampling with OMI

often required years of observations (e.g., Zhu et al., 2014).

The wide swath and dense spatial coverage of TROPOMI al-

low us to perform biweekly oversampling.

Figure 3 shows a schematic of how the oversampling is

performed. Figure 3a shows two hypothetical swaths from

TROPOMI overlaid on a 500 m grid (same spatial resolution

as the MODIS NBAR dataset). Areas where the swaths over-

lap allow us to partition the information down to a finer spa-

tial scale. For example, the yellow pixel in swath B overlaps

with all four pixels from swath A. As such, the signal from

that pixel in swath B can be subdivided to finer spatial scales.

Each unique shade of color would correspond to unique in-

formation in Fig. 3a. Figure 3b shows the sampling density

of TROPOMI over California on a single day in June 2018;

the dark blue region indicates where two TROPOMI swaths

overlapped that day.

We find that, on average, each 500 m grid cell is within

the bounds of ∼ 0.6 TROPOMI scenes with a successful re-

trieval per day. By using biweekly oversampling (a moving

14 d window), we obtain approximately eight different swath

orientations over a 14 d period for the oversampling. These

eight swath orientations allow us to further refine our grid to

follow the schematic shown in Fig. 3. It also means that the

daily values presented here are representative of 14 d moving

averages (centered about that day).

We can take the oversampling a step further by pre-

weighting the SIF signal in a TROPOMI scene by the under-

lying vegetation fraction; we refer to this as “downscaling”.

That is to say, we assume the observed SIF from TROPOMI

in a given scene likely originates from more vegetated re-

gions within that scene. Here, we use a relative weighting for

this downscaling:

si,j = s⋆ vi,j

v
, (5)

Biogeosciences, 17, 405–422, 2020 www.biogeosciences.net/17/405/2020/
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Table 1. AmeriFlux sites used in this study.

Site ID Site name Latitude Longitude Elevation Vegetation

(◦ N) (◦ W) (m a.s.l.) typea

US-Bi1 Bouldin Island Alfalfa 38.0992 121.4993 −3 CROb

US-Bi2 Bouldin Island Corn 38.1090 121.5350 −5 CROb

US-EDN Eden Landing Ecological Reserve 37.6156 122.1140 1 WETc

US-Myb Mayberry Wetland 38.0499 121.7650 −4 WETc

US-Sne Sherman Island Restored Wetland 38.0369 121.7547 −5 GRAd

US-Ton Tonzi Ranch 38.4316 120.9660 177 WSAe

US-Tw1 Twitchell Island West Pond 38.1074 121.6469 −9 WETc

US-Tw3 Twitchell Island Alfalfa 38.1159 121.6467 −9 CROb

US-Tw4 Twitchell Island East End 38.1030 121.6414 −5 WETc

US-Tw5 Twitchell Island East Pond 38.1072 121.6426 −5 WETc

US-Var Vaira Ranch 38.4133 120.9507 129 GRAd

a Vegetation classification is based on the International Geosphere-Biosphere Programme (IGBP) classification scheme (Strahler

et al., 1999). b CRO (croplands) are lands covered with temporary crops followed by harvest and a bare soil period (e.g., single and

multiple cropping systems). Note that perennial woody crops will be classified as the appropriate forest or shrub land cover type.
c WET (permanent wetlands) are lands with a permanent mixture of water and herbaceous or woody vegetation that cover

extensive areas. The vegetation can be present in either saltwater, brackish water, or freshwater. d GRA (grasslands) are lands with

herbaceous types of cover. Tree and shrub cover is less than 10 %. e WSA (woody savannas) are lands with herbaceous and other

understory systems, and with forest canopy cover between 30 % and 60 %. The forest cover height exceeds 2 m.

where s⋆ is the retrieved SIF from TROPOMI for a single

scene, si,j is the SIF spatially downscaled to 500 m, vi,j is the

vegetation indices from MODIS that fall within the bounds

of a single scene from TROPOMI (i.e., the gray boxes within

a TROPOMI box in the left panel of Fig. 3), and v is the

mean vegetation index over a given TROPOMI scene. Us-

ing Eq. (5) with v = [1, . . .,1] returns the unweighted over-

sampling result. Following this, si,j will naturally revert to

oversampling in regions with homogeneous vegetation (as

inferred by MODIS).

Figure 4 shows the 2018 annual mean SIF from

TROPOMI from Köhler et al. (2018) at 0.05◦ × 0.05◦ spa-

tial resolution and California’s seasonal cycle at weekly tem-

poral resolution (non-bias corrected). The middle and bot-

tom rows of Fig. 4 show the 2018 annual mean SIF and

seasonal cycle using oversampling and spatially downscaled

with NIRv from MODIS. All three show consistent large-

scale spatial patterns. We do, however, find significant differ-

ences between the results from Köhler et al. (2018) and the

oversampling or downscaling method over the San Francisco

Bay Area where the complex topography induces numerical

artifacts such as high SIF values over water. We also point

out that the Köhler et al. (2018) seasonal cycle is produced

at weekly temporal frequency, whereas we produce daily es-

timates using a 14 d moving window. The oversampling and

downscaling methods both yield consistent large-scale pat-

terns and seasonal cycles (left panels in Fig. 4). The main

impact of the MODIS-based local downscaling is a sharpen-

ing effect. This can be seen in the right column of Fig. 4.

Importantly, the gradients observed in the oversampled SIF

are also present in the downscaled SIF. The choice of which

MODIS vegetation index to use in the downscaling makes lit-

tle difference, as the r2 between the different downscaled SIF

products ranges from 0.99 to 1.00 (see Fig. S2); hereafter, we

use SIF downscaled with NIRv because, of the three vegeta-

tion indices, NIRv showed the strongest correlation to SIF

(see Fig. 2). Again, we stress that the large-scale spatiotem-

poral patterns are conserved between the oversampling and

downscaling methods, and the nuanced difference in process-

ing allows for analysis at much finer spatiotemporal scales.

That is to say that we are not inducing large-scale changes in

the spatiotemporal patterns with these different methods of

processing; those are robustly driven by the underlying SIF

retrievals.

4 Inferring GPP from SIF

Previous work has shown strong empirical relationships be-

tween SIF and GPP at coarse spatial scales (e.g., Walther

et al., 2016; Jeong et al., 2017; Parazoo et al., 2018; Zurom-

ski et al., 2018; Y. Sun et al., 2018). Magney et al. (2019a)

recently extended this SIF–GPP relationship by showing, in

a conifer forest, how both SIF and GPP are regulated by sea-

sonal changes in photoprotective pigments and how SIF is

directly related to needle physiology.

Lee et al. (2013), Guanter et al. (2014), and Y. Sun et al.

(2017) have previously argued for a linear relationship be-

tween SIF and GPP; this follows from a simple relational

analysis. From Monteith theory (Monteith, 1972), we can

write

GPP = 8CO2
αI, (6)

where 8CO2
is the light-use efficiency of CO2 assimilation, I

is the photosynthetically active radiation (PAR), and α is the

www.biogeosciences.net/17/405/2020/ Biogeosciences, 17, 405–422, 2020
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Figure 2. Comparison of MODIS vegetation indices and TROPOMI SIF from 2018 to 2019. Panels show a comparison of coincident

measurements in both space and time of NDVI, EVI, NIRv, and SIF. NDVI, EVI, and NIRv use the 500 m MODIS bidirectional reflectance

distribution function (BRDF)-corrected reflectances, and SIF is from TROPOMI. Shading indicates the density of points. Data are filtered to

only include measurements from March to August (MAMJJA). Data are further filtered to remove scenes that are more than 85 % barren or

shrubland as defined by the CropScape database. Gray histograms on the x and y axes show the distribution of values for a given set of data.

NDVI, EVI, and NIRv are unitless, and SIF has units of mW m−2 sr−1 nm−1. Figure S2 in the Supplement shows the comparison including

the SIF downscaled using local MODIS vegetation indices.

fractional absorbance of PAR. An analogous expression can

be written for SIF (Lee et al., 2013):

SIF = 8F αβI, (7)

where 8F is the light-use efficiency of SIF and β is the

probability of SIF photons escaping the canopy. Rearranging

yields

GPP =
8CO2

β8F

SIF. (8)

From Eq. (8), we can see that GPP should be proportional

to SIF. However, there are likely differences in 8CO2
/(β8F )

between ecosystems. Notably, Yang et al. (2018) argued that

SIF is more strongly correlated with the absorbed PAR (αI )

than with GPP at subdaily timescales, which implicitly points

to non-linearities in 8CO2
/(β8F ). β will be a function of

the canopy structure and likely differs between ecosystems,

although some studies have argued that reflectance measure-

ments could be used to infer β (Yang and van der Tol, 2018;

Zeng et al., 2019). Additionally, the ratio of 8CO2
to 8F will

likely be ecosystem specific due to, for example, differences

in photosynthetic pathways (C3 versus C4 plants; Liu et al.,

2017). A number of studies have found the relationship be-

tween chlorophyll fluorescence and GPP to be non-linear at

the leaf scale (e.g., Magney et al., 2017, 2019b), owing the

increased linearity at the canopy scale to averaging SIF and

GPP over many different leaf angles exposed to highly het-

erogenous light environments.
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Figure 3. Oversampling schematic. Panel (a) shows the schematic for our oversampling. Gray grid has a grid spacing of 500 m (equivalent to

the spatial resolution of the MODIS MCD43A4 product). TROPOMI ground pixels are 7 km along track and vary from 3.5 km (at nadir) to

15 km the across track. Schematic shows the spatial extent of eight hypothetical TROPOMI scenes from two swaths at 7 × 4 km2; individual

TROPOMI scenes are a different color. Swath B is rotated 40◦ relative to swath A, resulting in overlapping pixels. Panel (b) shows the

number of successful retrievals on 21 June 2018 over California plotted on a 500 m grid.

Figure 5 compares the TROPOMI SIF retrievals to obser-

vations from AmeriFlux sites across California (see Table 1

and Fig. 1 for the locations). The gray dots in Fig. 5 are all of

the AmeriFlux GPP estimates and the black dots are those be-

tween 13:00 and 14:00 PST, similar to the TROPOMI over-

pass time (equatorial overpass time is 13:30 LST at nadir).

This overpass time is fortuitous in that it generally coincides

with the daily maximum in GPP at the AmeriFlux sites. The

green dots are the actual TROPOMI SIF retrievals at that lo-

cation that have the scene-specific relative weighting from

the MODIS NIRv (Eq. 5). No temporal smoothing has been

applied in Fig. 5. We find a strong correspondence between

SIF and GPP across four different ecosystems. The top left

panel shows that SIF clearly captures the onset of photosyn-

thesis as well as the punctuated seasonal cycle of GPP in

a corn field (US-Bi2) with r2 = 0.79. We also observe the

gradual increase in GPP and abrupt decline at a woody sa-

vanna site (US-Ton) and grassland site (US-Var) with r2 =

0.40 and r2 = 0.59, respectively. The relatively high variabil-

ity in SIF at US-Ton and US-Var from July to December (1σ

spread of 0.33 mW m−2 sr−1 nm−1) contrasts the low vari-

ability during the dormant period at US-Bi2 and is likely as-

sociated with bright surfaces (implying a higher retrieval un-

certainty), quantifying the upper range of anticipatable noise.

The bottom row of Fig. 5 shows a comparison of TROPOMI

SIF with GPP from three different wetland sites on Twitchell

Island in the Sacramento–San Joaquin River Delta; we gen-

erally find a strong correspondence between TROPOMI SIF

and the three wetland sites (r2 = 0.42, 0.42, and 0.30 for US-

Tw1, US-Tw4, and US-Tw5). The inter-site differences in

GPP within a single ecosystem are larger than the SIF–GPP

differences, indicating some fine-scale heterogeneity that is

likely not being captured here. In any case, the reasonable

agreement with the GPP at the wetland sites is encouraging

because standing water can often bias reflectance-based in-

dices, particularly in the NIR (Gamon et al., 2013).

From this SIF–GPP comparison in Fig. 5, we

infer a SIF–GPP scaling factor of 18.5 ± 4.9

[(µmol m−2 s−1) (mW m−2 sr−1 nm−1)−1] across the

six sites in Fig. 5 (range of scaling factors is 13–25;

see Fig. S3). Our comparison of TROPOMI SIF with

GPP from AmeriFlux sites in California indicates larger

inter-ecosystem differences in the SIF–GPP relationship

than intra-ecosystem differences, lending credence to this

universal scaling factor. However, there are two important

caveats: (1) we do not have an eddy covariance site in an

evergreen forest, which is a major limitation, as much of

California is dominated by evergreen forests, and (2) we are

not directly measuring GPP with SIF. As such, we refer to

this SIF-estimated GPP as

GPP∗
:= 18.5 · SIF. (9)

This single scaling from Eq. (9) seems to be a reasonable re-

lation given the available information, with the caveat that

there could be differences between ecosystems that are un-

accounted for. To reiterate, there is a clear correspondence

between the observed SIF and GPP estimated for the differ-

ent AmeriFlux sites (see Fig. 5) but we have a limited number

of AmeriFlux sites in California that do not cover all ecosys-

tems. As such, we do not report GPP here and have included

an asterisk to highlight the caveats with the relationship pre-
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Figure 4. The 2018 annual mean photosynthesis. Top row shows the 2018 annual mean TROPOMI SIF from Köhler et al. (2018), and the

inset shows the seasonal cycle (0.05◦ × 0.05◦ spatial resolution and weekly temporal resolution, respectively). Middle row uses the same

TROPOMI SIF data but oversampled to 500 m spatial resolution and daily temporal resolution. The bottom row uses an NIRv-weighted local

downscaling to 500 m spatial resolution. Left column shows all of California, USA, and right column shows the San Francisco Bay Area in

detail. The dashed black line in the left column indicates the domain of the right column.
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Figure 5. AmeriFlux GPP and TROPOMI SIF at six sites in California. Left axes (black) show GPP from AmeriFlux and right axes (green)

show SIF values from TROPOMI that have been downscaled with NIRv. Light gray dots show all of the GPP measurements from the Amer-

iFlux site and black dots indicate GPP measurements between 13:00 and 14:00 PST (TROPOMI equatorial overpass is 13:30 LST). Green

circles show the TROPOMI SIF observations at the AmeriFlux sites after applying the scene-specific relative weighting from the MODIS

NIRv. The AmeriFlux sites used are Bouldin Island (US-Bi2; 38.1090◦ N, 121.5350◦ W), Tonzi Ranch (US-Ton; 38.4316◦ N, 120.9660◦ W),

Vaira Ranch (US-Var; 38.4133◦ N, 120.9507◦ W), Twitchell Island West Pond (US-Tw1; 38.1074◦ N, 121.6469◦ W), Twitchell Island East

End (US-Tw4; 38.1030◦ N, 121.6414◦ W), and Twitchell Island East Pond (US-Tw5; 38.1072◦ N, 121.6426◦ W). CO2 flux measurements

and comparisons for other sites listed in Table 1 are shown in Figs. S3 and S4.

sented here. Future work to obtain a more robust SIF–GPP

relationship covering more ecosystems is warranted.

5 Timing and spatial patterns of photosynthesis in

California

Figure 6a shows the SIF-derived seasonal cycle of photosyn-

thesis in California. One of the most prominent features is the

apparent double peak in the seasonal cycle. This double peak

is present in both 2018 and 2019 with similar timing of the

maxima. The first peak occurs in April and the second peak

occurs in June. Interestingly, the trough between these peaks

occurs near the annual maximum in PAR (red line in Fig. 6d).

This begs the following question: what is driving this double

peak in the seasonality of California’s photosynthesis?

We can use the CropScape database (see Fig. 1) to de-

termine the ecosystems driving the spatiotemporal patterns

in the TROPOMI SIF data, as it provides land cover clas-

sifications across the state of California at 30 m spatial res-

olution. However, a notable limitation of the classifications

from the CropScape data is the lack of discrimination for

non-cropland areas. For example, grasslands and pastures are

combined into a single land type that seems to also include

regions that would typically be defined as oak savanna and

chaparral. In lieu of a better sub-kilometer land cover dataset,

we use the classifications from the CropScape database for

this work.

Figure 6a shows a breakdown of the regions contributing

to the statewide SIF signal based on the land cover data from

the CropScape database. We find the California grasslands

and pastures (a single classification that also includes cha-

parral and oak savanna) have a single peak that coincides

with the first statewide peak in April; this is consistent with

the seasonal cycle at California grassland sites in the Ameri-

Flux network (Fig. 5) that show a unimodal peak in the spring

that ends in May. Figure 6e and e′ show the mean spatial pat-

tern in April 2018 and 2019, respectively, where we see that
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Figure 6. Seasonal cycle of photosynthesis in California. Panel (a) shows the statewide mean SIF (black line) at 13:30 PST from Novem-

ber 2017 to November 2019 broken down by the contributions coming from cropland (yellow), evergreen forests (green), grasslands or

pastures (purple), and other (gray). Rice is included in cropland here. Land types are taken from the 2018 CropScape database shown in

Fig. 1. The right axis shows the estimated GPP∗ based on comparison with AmeriFlux sites in California. Panel (b) shows the percentage

of SIF coming from cropland (yellow). Vertical bars indicate the time periods with corresponding spatial plots in panels (e)–(g′). Panel (c)

shows the vegetation indices (NDVI, EVI, and NIRv) from MODIS over the same time period. Panel (d) shows clear-sky PAR over California

at 13:00 PST (dashed red line), surface PAR estimated from the ERA-Interim reanalysis (thin red line), and cumulative precipitation over the

water year from the Global Precipitation Measurement (GPM) satellite (blue). Panels (e)–(g′) show the spatial patterns of SIF for the time

periods indicated in (b).

the April peak coincides with a statewide increase in SIF.

There are a few pertinent hotspots in grasslands or pastures

during this April peak. Notably, California’s Central Valley

and surrounding hills exhibit a strong photosynthesis sig-

nal in April. The valley to the east of Bodega Bay (38.3◦ N,

122.9◦ W) appears as a large hotspot in both 2018 and 2019.

This region lies on transect B in Fig. 1, and the seasonal cycle

is shown in more detail in Fig. 7.

The second peak in June shows a dominant contribution

from evergreen forests (Fig. 6a). This can also be seen in

the spatial patterns from Fig. 6f and f′ where the evergreen

forests in Northern California exhibit a strong SIF signal.

California’s Central Valley can be clearly distinguished, as

the surrounding hills have dried out (predominantly oak sa-

vanna and chaparral). The observed photosynthesis from the

Central Valley is maintained by heavily irrigated cropland

throughout the valley.

The yellow line in Fig. 6b indicates the fraction of SIF

in California that comes from cropland. We see the largest

relative contribution occurring in the fall. However, this is

primarily because all other ecosystems have gone dormant

(see Fig. 6g) as opposed to an increase in photosynthetic ac-

tivity from cropland. The only region that shows an increase

in photosynthesis is the rice fields in the Sacramento Valley

(the valley surrounding Sutter Buttes at 39.1◦ N, 121.5◦ W)

in Northern California. The rice fields show a SIF signal in

excess of 2.5 mW m−2 sr−1 nm−1 during the fall (GPP∗ in

excess of 45 µmol m−2 s−1).

Both 2018 and 2019 show a double peak in the seasonal

cycle; however, the onset of the grassland-driven peak dif-

Biogeosciences, 17, 405–422, 2020 www.biogeosciences.net/17/405/2020/



A. J. Turner et al.: Seasonality of photosynthesis in California 415

Figure 7. Hovmöller diagrams for three transects across California. Panels show Hovmöller diagrams from February 2018 to November 2019

for the two transects shown in Fig. 1. Bottom bar indicates the dominant land type with coloring from Fig. 1: green is evergreen forest, purple

is grassland/pasture, cyan is rice, yellow is cropland (excluding rice), blue is shrubland, and gray is other.

Figure 8. Difference between 2019 and 2018. Panel (a) shows the difference between the mean SIF in April 2019 and 2018. Panels (b) and

(c) are the same as (a) but for June and fall (20 July–31 August), respectively. Red indicates higher SIF in 2019; blue indicates higher SIF in

2018.

fers substantially between the two years. This difference is

likely driven by the increased precipitation in 2019 (blue line

in Fig. 6d). There was 50 % more precipitation in 2019 com-

pared to 2018, and the precipitation occurred earlier in the

water year. By mid-February 2019, there was more precip-

itation than the annual total from 2018. This early precipi-

tation allowed for an earlier and longer growing season for

the grasses. Figure 8 shows the difference in spatial patterns

between 2019 and 2018. In general, we find reasonable con-

sistency between the two years in April and June but sub-

stantial differences in the fall. We find a factor of 2 increase

in statewide SIF between fall 2018 and 2019. This increase

from 2018 to 2019 is exhibited across all ecosystems. This is,

again, likely due to the increased precipitation in 2019 com-

pared to 2018. The MODIS vegetation indices show negli-

gible differences between fall 2019 and 2018 (see Figs. S6
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and S7). Most of the major differences in April and June are

due to ecosystem disturbances such as fires. The 2018 North-

ern California fires are a striking example of that (three large

negative anomalies in Fig. 8b); the impact of these fires is

currently the focus of forthcoming work. An additional fea-

ture that stands out is the positive SIF anomaly in Southern

California; this increase in 2019 is due to the low rainfall the

previous year.

Interestingly, none of the MODIS vegetation indices

(NDVI, EVI, or NIRv) show this double peak in photosyn-

thesis (Fig. 6c). The seasonal cycles from the three vegeta-

tion indices show a greening that starts in mid-winter (begins

in December 2018) and increases roughly linearly to a peak

in April. All three vegetation indices maintain that peak un-

til July when they show a roughly linear decline through the

fall. The seasonal cycle of the three MODIS vegetation in-

dices bears a strong similarity to the clear-sky PAR seasonal

cycle. This difference between SIF and the MODIS vegeta-

tion indices may be due to a clear-sky bias, as the reflectance-

based vegetation indices (NDVI, EVI, and NIRv) can only

be made under clear-sky conditions, whereas SIF can be re-

trieved in the presence of some clouds and aerosols (Franken-

berg et al., 2011b). This is inferred by the decline in PAR

during May 2018 and May 2019 (Fig. 6d) that corresponds

to a decline in SIF. This highlights one of the differences be-

tween SIF and the MODIS vegetation indices: the vegetation

indices are reflectance-based products, whereas SIF is a flu-

orescence signal emitted during photosynthesis and is thus

coupled to the radiation regime. This again gets back to the

idea that SIF is measuring photosynthetic activity, whereas

the MODIS indices are measuring photosynthetic capacity.

Several ecophysiological reasons could also explain the

SIF detection of a double peak feature, whereas MODIS veg-

etation indices do not. Nearly 11 % of the state of California

consists of the California oak savanna (many in the foothills

of coastal mountains and the Sierras; Tyler et al., 2006). Over

the course of the season, these ecosystems operate as an ever-

green ecosystem, whereby understory grass is photosynthet-

ically active during the winter months, while trees (primarily

oak species) reach extremely high values of maximum car-

boxylation capacity (Vcmax) during the spring when water is

plentiful, and then retain their leaves throughout the summer

in a highly photoprotective state (i.e., US-Ton; Xu and Bal-

docchi, 2003). Spatially, we observe increased SIF values in

oak savanna as well as chaparral ecosystems (also present on

coastal and Sierra foothills) in the early spring when avail-

able soil moisture is at a maximum (Xu and Baldocchi, 2004;

Xu et al., 2004). As these ecosystems enter the hot, dry sum-

mers, increases in sustained non-photochemical quenching

and decreases in photochemistry result in decreased fluo-

rescence while still appearing “green” to MODIS vegeta-

tion indices. Meanwhile, snow is melting rapidly at higher

elevations, making water available for many of the needle-

leaf evergreen species in the Sierras and coastal ranges; then

the water resources become depleted and temperatures cool,

prompting these evergreen species to go back into a photo-

protective state, resulting in a short, photosynthetically ac-

tive growing season that has been shown to be more well

characterized by SIF from GOME-2 than MODIS NDVI and

EVI (Zuromski et al., 2018). Future work comparing SIF

and MODIS indices with measured PAR at AmeriFlux sites

would be useful in further evaluating the role of radiation and

physiology in the double peak feature.

Figure 7 shows a Hovmöller diagram for two transects

across Northern California (see Fig. 1 for the location of the

transects). Transect A in Fig. 7 shows the short but strong

SIF signal from the rice fields. The timing of the SIF sig-

nal from the rice fields agrees with the growing cycle for

rice in California. Rice in the Sacramento Valley is typically

planted in mid-to-late May; the fields are then flooded and

harvested in mid-to-late September (University of Califor-

nia at Davis, 2018). This observation of the rice fields is en-

couraging because we are observing photosynthesis in the

presence of standing water, which can often bias reflectance-

based indices in the NIR (Gamon et al., 2013). In both 2018

and 2019, we observe the onset of photosynthesis at the rice

fields in the first few days of June and a rapid decline at

the end of September. Transect B begins in the valley to the

east of Bodega Bay (location of the grassland hotspot) and

crosses the Central Valley. This grassland hotspot is present

from April through May of both 2018 and 2019. The valley

near Bodega Bay is dominated by pastures; however, it is cur-

rently unclear why this particular region exhibits a stronger

SIF signal than other pastures in California. The persistent

strong signal in 2018 and 2019 might make it an interesting

site for study with an eddy covariance site in the future.

6 Dominant “modes” of variability in California’s

photosynthesis

Section 5 discussed the spatiotemporal patterns for differ-

ent regions and ecosystems; here, we present an alternative

method of characterizing the dominant modes of spatiotem-

poral variability in photosynthesis using EOFs and their as-

sociated principal components (PCs). EOFs are a matrix fac-

torization that are commonly used to identify structure in

a spatial dataset and yield a finite number of modes. These

modes compactly represent the data and are often interpreted

as physical modes of the system.

Figure 9 shows the first two EOFs and their associated PCs

for the TROPOMI SIF data over California; the correspond-

ing eigenvalue spectrum can be seen in Fig. S5. The first two

EOFs corroborate the findings from Sect. 5 and, taken to-

gether, explain 84 % of the variability in the TROPOMI SIF

data:

– EOF 1: the mean signal and

– EOF 2: the double peak.
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Figure 9. EOFs and PCs for TROPOMI SIF over California. Panels show the first two EOFs and PCs. EOFs are unit length (sum of the squares

is equal to 1) and computed using unnormalized SIF spatially downscaled with NIRv. Time series show the corresponding PC (blue line)

from February 2018 to November 2019. The length of the PC is equal to the corresponding eigenvalue and has units of mW m−2 sr−1 nm−1.

The text in the figure lists the percent of variance explained by that EOF. Figure S5 shows the corresponding eigenvalue spectrum for the

TROPOMI SIF data over California.

The first EOF (Fig. 9a) represents the mean signal and

explains 74 % of the variability in the TROPOMI SIF data.

From the spatial pattern, we can see that it includes most

of the biomass in California and is strongly correlated to

the statewide mean SIF: r2 = 0.99. The associated principal

component bears a strong similarity to the statewide mean

SIF seasonal cycle (Fig. 6a). This finding is not entirely

surprising because we are using unnormalized SIF data for

the matrix factorization. This means that the most important

mode of variability is the mean signal and that the following

EOFs are anomalies relative to the mean signal.

The second EOF (Fig. 9b) represents the double peak in

the timing of California’s photosynthesis. This EOF com-

bines the signal from the grasslands (positive phase of

EOF 2) and the evergreen forests (negative phase of EOF 2).

We find EOF 2 to be positively correlated with the grass-

land fraction from the CropScape database (r = 0.55) and

negatively correlated with the evergreen forests (r = −0.37).

There is also a negative correlation with the rice fields (r =

−0.32). The associated principle component serves to am-

plify the seasonal cycle from EOF 1 in grasslands during

April and amplify the forest peak in June. This is because

the red region (grasslands) in Fig. 9b will contribute a posi-

tive anomaly in April and a negative anomaly in June. Con-

versely, the blue region (evergreen forests and rice) will con-

tribute a negative anomaly in April and a positive anomaly

in June. This EOF arises because the grasslands and forests

are both spatially separated and out of phase with each other,

allowing the matrix factorization to place them into a single

EOF that represents the processes driving the double peak in

the timing of California’s photosynthesis.

It should be noted that the EOF patterns found here are

unlikely to be true “physical modes” (see, for example, Mon-

ahan et al., 2009). That is to say, we would not necessarily ex-

pect the response to a perturbation to follow patterns shown

in Fig. 9. EOF 2 is a good example of this because it seems

unlikely that the grasslands and forests will exhibit opposing

responses to a forcing. Grasslands and forests are combined

into a single EOF simply because there is little loss of infor-

mation by combining them due to the spatial separation and

phase offset. This is not to argue against the utility of EOFs.

EOFs are a useful method for identifying structure in geo-

physical datasets, as evidenced here by their identification of

the double peak in the timing of California’s photosynthesis.

7 Conclusions

We present an oversampling and downscaling method to pro-

duce daily estimates of SIF, a proxy for photosynthetic ac-

tivity, at 500 m spatial resolution from TROPOMI. To our

knowledge, this is the highest spatial resolution SIF dataset

from satellite measurements. We find a double peak in the

seasonality of photosynthesis in California during 2018 and

2019, a feature that is not present in the MODIS vegetation
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indices (NDVI, EVI, or NIRv). Analysis of the spatial and

temporal patterns of the SIF data indicates that the double

peak is due to two ecosystems that are out of phase with each

other: woody grasslands (e.g., grasslands, chaparral, and oak

savanna) and evergreen forests.

Our work applies methods developed for previous satellite

retrievals (oversampling) and uses estimates of subgrid-scale

vegetation (downscaling) to produce daily 500 m spatial res-

olution SIF from TROPOMI over California. We use a 14 d

moving window to produce this estimate. The oversampling

method results in a smooth spatial field and removes artifacts

due to complex topography and the wide TROPOMI swath.

The downscaling method further refines the high-resolution

spatial patterns by bringing in a priori information on the sub-

grid vegetation patterns. The oversampling and downscaling

methods do not alter the large-scale spatiotemporal patterns,

as they conserve the SIF signal over a single scene.

TROPOMI SIF data and MODIS vegetation indices are

reasonably consistent at annual timescales over Califor-

nia but show weaker relationships at daily and monthly

timescales. This implies that TROPOMI SIF is providing

some information that is distinct from the MODIS vegeta-

tion indices. TROPOMI SIF data show a strong correspon-

dence with half-hourly estimates of GPP at multiple Amer-

iFlux sites across different ecosystems including cropland,

grassland, savanna, and wetlands. We find a linear relation-

ship between SIF and GPP that is largely invariant across

ecosystems with an intercept that is not significantly differ-

ent from zero. As such, we use SIF as an estimate of GPP∗

with the caveat that some ecosystems are not represented in

our California analysis.

The double peak in the seasonality of California’s photo-

synthesis observed by TROPOMI SIF is due to two ecosys-

tems that are out of phase with each other: grasses show a

maximum in April and evergreen forests peak in June. An

EOF analysis corroborates the phase offset and spatial pat-

terns driving the double peak. The EOF analysis also indi-

cates that two spatiotemporal patterns explain 84 % of the

variability in the TROPOMI SIF data.

The results shown here are promising for obtaining global

near-daily GPP at sub-kilometer spatial scales using satellite

measurements. This, in turn, may prove helpful in addressing

long-standing questions regarding the mechanisms and loca-

tions driving carbon uptake in the Northern Hemisphere. It

would also allow us to monitor climate change impacts on

vulnerable ecosystems at local to global scales.
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