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ABSTRACT 

The author’s original state-space learning 
system (based on a probabilistic performance 
measure clustered in feature space) was effective 
in optimizing parameterized linear evaluation 
functions. However, more accurate probability 
estimates would allow stabilization in cases of 
strong feature interactions. To attain this 
accuracy and stability, a second level of learning 
is added, a genetic (parallel) algorithm which 
supervises multiple activations of the original 
system. This scheme is aided by the probability 
clusters themselves. These structures are 
intermediate between the detailed performance 
statistics and the more general heuristic, and 
they estimate an absolute quantity independently 
of one another. Consequently the system allows 
both credit localization at this mediating level 
of knowledge and feature interaction at the 
derived heur istr level. Earlv experimental 
results have been encouraging. “As predicted by 
the analysis, stability is very good. 

I INTRODUCTION 

In [71 the author described a successful 
state-space learning system (PLSI). Given a set 
of features, PLSI will decide which are useful, 
and incrementally and efficiently determine the 
weight vector for the heuristic, a linear 
evaluation function. Heuristics have been 
repeatedly generated which solve the fifteen 
puzzle, and which are locally optimal in the 
weight space. This-is a new result. 

The underlying concept is a refinement of 
Doran and Michie’s C4l search oenetrance which 
measures solution density in feature space (see 
Fig. I). Derived from- repeated observations of 
this search statistic, the evolving evaluation 
function is designed not to estimate path distance 
remaining to the goal from a state A, as is often 
the case, but rather to predict the probability of 
A’s eventual solution participation. For a given 
feature space volume r , the elementary penetrance 
p(r) H, P> depends on the particular problem 
instance P and heuristic H used for solving. 
However the true penetrance ^p(r> is the ideal, 
defined for-eadth-first search of all possible 
problem intances combined. Of course - finding 
these values is infeasible, but penetrance 
learning systems (PLS’s) estimate them. 

As modelled by Buchanan et al [31 and 
exemplified in Fig. 2, a typical learning system 
(LS) comprises: 

1. An algorithm schema for some primary task, 
the performance element PE PI 

2. Some separable control structure S for the PE 

3. The critic, whose role is “[to analysel the 
current abilities of the performance element” 
PELSI, by assessment of the over all 
effectiveness of S and sometimes also by 
localization of credit within S 

4. The learning element LE, designed to improve 
S according to recomendations of the critic 

5. A blackboard on which to store S and other 
information between activations of these 
algorithms . 

In a penetrance learning system (PLS), the 
blackboard retains knowledge of the relationship 
of penetrance to feature values in a bartition of 
the- feature space, a 

I 
set of regions of various 

sizes and shapes (Figs. 1,2). Ina somewhat 
simplified form [c.f. 7,81, this cumulative region 

start 

Figure 1. Localized penetr ante discriminates. 
Developed nodes from search tree T are maDDed 
into feature space F. The whole space penetrakce 
of T is 3/6, whereas 
(e.g.1 three 

localization in F gives 
values: 

p(rl ,T) 
elementary penetrance 

= l/l, P(rq ,T) = l/2, and p(r3,T) = l/3. 
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set can be written as C = ( (r, ^p,) ) where r is 

the feature space volume and 6, is its estimated 
true penetrance. This structure C is the essence 
of heuristic knowledge for the PLS, both 
determining the control structure for the solver, 
and also being the foundation on which the 
adaptive elements build. (See [7l for details. > 

In the original system PLSl there is no 
critic; no overall measure of solver capability 
is required. Rather the learning element operates 
locally on the cumulative regions. 

The learning element of PLSl is detailed in 
[6,7,81 and briefly described in the following: 
The LE includes two major algorithms, the 
clusterer and the regresser . The clusterer 
modifies the cumulative region set C using solver 
statistics. As information accumulates over 
several iterations, the regions are incrementally 
resolved into smaller units just adequate to 
express known relationships e 
true penetrance 

In addition, the 
estimates of C are revised each 

iteration: fresh, elementary values are unbiased 
(normalized to true penetrance) , then averaged in. 
The result is an effective economy, a refinement 
of Samuel Is II91 signature tables which did not 
alter data categories automatically. Al though the 
clusterer is data-driven, its product C is 
unsusceptible to noise, because of the stochastic 
nature of the process. 

From C = 1 (r, &) 1 the feature coefficient 
vector b is determined by stepwise regression of 
log $r on the centroid of r. This is a selective 
procedure which screens features and expresses 
their relative importance . The resulting 
evaluation function H = exp(b.f) predicts true 
penetr ante. 

-- 

Rather than being confined to these linear 
combinations, features must ultimately be merged 
more flexibly if the system is to attain full 
generality (e.g. see Berliner [:ll>. In [81 
feature interaction is accommodated using 
piecewise linearity, localizing b to individual 
regions. However, handling -nonlinearities 
presents a severe problem of stability unless true 
penetrance estimates are quite reliable. To 
tackle this difficulty, the genetic model is 
applied. A genetic or reproductive plan is an 
inherently -1 scheme which canmiciently 
locate global optima. The theory was developed by 
Holland L’51, summarized and exemplified in Brindle 
[2l, and successfully incorporated in a learning 
system by Smith CIOI. 

Shown in Fig. 3, the present extension PLS2 
can be considered as a second layer LS which 
activates its performance element PLSI multiply, 
with a different control structure each time. 
Essentially PLSI operates in parallel, each 
process using an individual cumulative region set 
of the competing population. (The blackboard of 
PLS2 is the union of PLSI blackboards.) The 
critic and learning component of PLS2 make 
corn par i son s and improve the population. 
outlined in C61, PLS2 is developed below. 

Briefly 

Figure 2. Penetrance learning system PLSl. The 
simplest. control structure for a solver is a 
vector of weights for features of an evaluation 
function. The essence of PLS knowledge is a set 
of feature space penetrance regions, used to 
determine this heuristic and to accumulate 
experience. 

PLSl 

PLS2 

Figure 3. The second layer of learning. PLS? 
activates PLSl with different region sets, which 
it continually improves. 
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II THE CRITIC -- 

As explained above, the cumulative region set 
is essentially the control structure for the 
solver. In PLS2 a different region set guides 
each solver activation (Fig. 31, and a resulting 
performance statistic provides a basis of 
comparison to measwe the relative worth of each 
structure. By taking advantage of performance 
patterns across region sets, credit can be 
localized to individual regions. 

Suppose that K cumulative sets C (k) are 

available (I 5 k I K). Let each C (k) determine 
control for the solver in K separate runs, each 
attempting problem instances of difficulty d. (A 
llpresolver” decides on an appropriate value of 
solution depth d for otherwise random selection of 
training problems. > Already calculated as a 
by-product by the solver (but not used in PLSl) 
are two overall measwes of performance: the 
solution length L and number of nodes developed D; 
these are stochastic functions of C tk) and d. 
Choose some functional F of L and D (e.g. simply 
D> l Then, given a cumulative region set 

R = Clk) (k SK), define its coarse utility l~( R 1 -- 

to be F(d) / F( R, d), where F is the mean value 
of F over all K sets. Values of p will therefore 
center around one. 1-I is a typical fitness measure 
for a reproductive plan (see Section III>; 
however the critic is designed to extract more 
information than this. 

To quantify credit localization, (pairwise) 
comparison of regions is used. Consider first the 
simplification in which each cumulative region has 
a counterpart in every other parallel set; 
i.e. feature space rectangles match precisely, and 
only true penetrance estimates differ. An example 
of this situation is shown in Fig. 4. For each 
focus region R, and comparison region Q, define -- -- 
the likeness(R, Q) = 1 - (^PR- E(J) / max($R ,$, 

where ^pR and p. are the true penetrance estimates 

of R and Q. In the general case of dissimilar 
rectangles, this definition becomes asymmetric: 
Now a focus region R is compared with each 
cumulative set Q = C lk). Depending on the 
extent of it.sTntersection with R, each Q E q 
contributes to a varying degree to the overall 
penetrance similarity of Q to R. 

This likeness measure, together with region 
set performance , provide veiled information 
relating Er to its accuracy. Assuming coincidence 
of true penetrance with optimal utility, R ER 
will tend to improve the performance p( R ) if R is 
accurate, and regions similar to R will be likely 
to aid their sets. Consider again Fig. 4. Each 
cumulative set Ctk) will have determined a 
heuristic for attempting training problems of 
similar difficulty, and the resulting coarse 
utilities might be as indicated. We can conclude 

that regions in set Ct2) have generally better 

estimates than those in C (1) or C13) . If, for 
each focus region R, the coarse utilities are 
plotted as a function of likeness, a peak will 
likely occur at the point of greatest accuracy, 
and if a curve is fitted to the data, the 
resulting utility at likeness = 1 will estimate 
the pure utility of R E R, rather independently of 
other regions in R . 

Various outcomes are illustrated in Fig. 5, 
in which parabolas are fitted. The first (a) 
would never occur since it suggests that regions 
from a single location of feature space in every 
cumulative set are nearly exclusively responsible 
for the overall performance of the heuristic. The 
other two diagrams are more likely: There is 
little utility attributable to a single focus 
region R (R could be quite accurate while its 
neighbours vitiate the heuristic) m Fig. 5(b) 
indicates a situation in which R is quite 
inaccurate but parallel sets typically do not 
suffer as severe a deficiency. Fig. 5(c) might 
result if all regions in the set containing R are 
fairly sound. Here competing sets are often 
poorer ; in particular many rivals of R are less 
accurate (and therefore unlike R). 

f2 

i 
@ 

(1) 

wi t 
(a) 

f t 
P 1 = 1.0 

P 2 ’ = 13 

P 3 = 0,7 

Figure 4. Different. region sets cause varying 
performance u. In this simplified picture (of 
just 3 parallel sets Cik) ) rectangles always 
match and only true penetrince estimates (shown 
inside) differ. 
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One would expect generally poor fits for most 
individual focus regions but significant knowledge 
overall, since many focus regions are assessed 
(all JK of them, with an average of J in each set 
and K sets). The precise mechanism for this 
information extraction is straightforward: 
Perform a regression, then compute the fine 
utility (R) of focus region R which cas 

2 
defined variously but similarly as plr or 

2 (K) 
1-I tr g 9 where 1-1' is the predicted utility at 

likeness = 1, r is the correlation coefficient, 
and g is some function increasing monotonically 
with argument K (population size). V = 1 
indicates uncertainty while larger or smaller 
values of V show confidence in greater or lesser 
quality. The fine utilities corresponding to 
Fig. 5 (b) and (c) are 0.7 and 1.2, respectively, 
with the simpler definition above. 

III THE REPRODUCTIVE PLAN 

To utilize this information, PLS2 
incorporates a novel version of Holland's genetic 
plan c51. A genetic algorithm uses parallel 
structures called genotypes; each determines the 
phenotype, a set of attributes characterizing an 
ZZXaiZl. The fitness of an individual is its 
performance in the mment. This measure is 
used to favow selection of successful parents for 
new so offspring, the whole popurdtion 
incrementally evolves toward greater utility. 
Theory C5l shows that knowledge about desirable 
phenotypes is advantageously stored in the 
population itself, implicitly in the surviving 
genotypes. Reproductive plans can locate global 
optima efficiently C5,lOl. 

In the design of an artificial genotype, one 
issue is whether to use many loci (variables) with 
few alleles (values), or vicZYirsa. To allow 
greanptability, binary alleles are generally 
chosen, although this can cause problems [2, 
pp. 24-26, 44-471. This issue dissolves in PLS2: 
First, population variance is aided by the 
learning element of PLSI, so the alleles need not 
be binary. Instead the allele set is the 
continuous interval co, 11, representing true 
penetrance. Secondly, the loci of a PLS2 genotype 
correspond to feature space coordinates; however 
they are compressed into unordered volumes, and 
their number depends on current knowledge 
refinement. The genotype is the cumulative region 
set. 

Since regions estimate true penetrance, and 
only within their own boundaries, these ltloc-ilt are 
independent, thus precluding another problem: 
inefficiency due to loci interaction C2, p. 1701. 
The consequent phenotype, the feature coefficient 
vector, can still be nonlinear (when a high order 
model is used-this vector is regionalized -- 
see C81). 

0 
-tb) ’ + ’ 

Figure 5. Credit localization. Examinination of 
region similarity (abscissa) across multiple 
cumulative sets allows extraction of patterns in 
performance (ordinate). 

To optimize the population, a reproductive 
plan includes algorithms for parent selection and 
offspring generation. Parent selection is 
natural: Each individual has an associated 
fitness measure such as the coarse utility of 
Section II. This simply defines a probability 
distribution for candidates so that successful 
parents are favoured. The fitness measure is 
normally a property of the individual as a whole; 
typical applications do not admit localization of 
credit since loci usually interact. However the 
PLS2 genotype -- the cumulative region set -- 
allows the assignment of fine utility (Section 
II). 

The genotypes of a population are both 
repositories of knowledge and also sources of 
subtle variation for exploration. To achieve 
balance in this mutual role, offspring generation 
typically adopts biological operators such as 
mutation (unarv> and crossover (binary or 
bisexual). In contrast, PLS2 is K-sexual (where K 
is population size); all regions are merged into 
a a single set before selection. Moreover, 
alleles (true penetrance estimates) are untouched 
(it is the lower level learning element PLSl which 
alters these); regions are simply chosen 
stochastically as loci/alleles according to their 
fine utility. To create reasonable offspring 
region sets, the utility of every candidate region 
(its probability of selection) is continually 
adjusted to account for the current feature space 
cover V defined by the regions so far selected 
(candidates are less useful if they overlap much 
of V). This formation of a new set halts when a V 
is attained which is close to the maximum. Hence 
a new individual arises which has a high 
likelihood of penetrance accuracy. K' genotypes 
are created in this manner to replace all of the 
old popuY.ation. 
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IV PRELIMINARY RESULTS AND CONCLUSIONS __I__- REFERENCES 

The second layer system PLS2 has been 
programmed and testing has begun. In particular, 
comparisons are being made with the already 
successful PLSI [71. Perhaps the most obvious 
improvement is in terms of stability. Whereas 
PLSI is sensitive to various run parameters and 
appropriate training problems, PLS2 overcomes any 
abnormalities by immediately dismissing aberrant 
information. Additional time costs appear small. 
Investigations are continuing to discover the 
effects of varying system parameters such as 
population size, and in particular to determine 
the ability of PLS2 using more highly interacting 
features, which PLSI cannot handle alone. 

In summary, PLS2 is promising from several 
viewpoints: As support for PLSl, PLS2 improves 
region accuracy and stability, important for 
feature interaction [81. As a genetic algorithm, 
PLS2 seems especially efficient because of the 
independence and flexibility of individual loci 
(regions). These characteristics avoid typical 
problems which can degrade efficiency, and also 
aid credit localization which usually improves it. 
Despite the absence of explicit genetic operators, 
the ability to discover global optima may be 
retained since PLSI already provides (controlled) 
population variance. Finally, as a scheme for 
knowledge accumulation, PLS2 benefits from 
information layering. A mediating structure, the 
cumulative feature space region set (storing 
conditional probability of success in task 
performance), allows both credit localization and 
variable interaction: The elements of this set, 
the regions, are independent of one another, but 
determine the task heuristic which can incorporate 
feature nonlinearities. 
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