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A drift homogenization problem revisited

MARC BRIANE AND PATRICK GÉRARD

Abstract. This paper revisits a homogenization problem studied by L. Tartar re-
lated to a tridimensional Stokes equation perturbed by a drift (related to the Cori-
olis force). Here, a scalar equation and a two-dimensional Stokes equation with

a L2-bounded oscillating drift are considered. Under higher integrability condi-
tions the Tartar approach based on the oscillations test functions method applies
and leads to a limit equation with an extra zero-order term. When the drift is only

assumed to be equi-integrable in L2, the same limit behaviour is obtained. How-
ever, the lack of integrability makes difficult the direct use of the Tartar method.
A new method in the context of homogenization theory is proposed. It is based
on a parametrix of the Laplace operator which permits to write the solution of
the equation as a solution of a fixed point problem, and to use truncated functions
even in the vector-valued case. On the other hand, two counter-examples which
induce different homogenized zero-order terms actually show the sharpness of the
equi-integrability assumption.

Mathematics Subject Classification (2010): 35B27 (primary); 76M50 (sec-
ondary).

1. Introduction

At the end of the Seventies L. Tartar developed his method based on oscillating test
functions to deal with the homogenization of PDE’s. In the particular framework of
hydrodynamics [14, 15] he studied the Stokes equation in a bounded domain ! of
R
3, perturbed by an oscillating drift term, i.e.











−"uε + curl (vε) × uε + ∇ pε = f in !

div (uε) = 0 in !

uε = 0 on ∂!,

(1.1)

where the oscillations are produced by the sequence of vector-valued functions vε

which weakly converges to some v in L3(!)3. L. Tartar proved that the limit equa-
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tion of (1.1) is the Brinkman [5] type equation











−"u + curl (v) × u + ∇ p + Mu = f in !

div (u) = 0 in !

u = 0 on ∂!,

(1.2)

where M is a positive definite symmetric matrix-valued function. More precisely,
M is defined by the convergences

(Dwλ
ε )T vε −⇀ Mλ weakly in L

3
2 (!)3, for any λ ∈ R

3, (1.3)

wherewλ
ε ∈ W 1,3(!)3 solves the Stokes equation (1.1) in which the term curl (vε)×

uε is replaced by curl (vε) × λ. Then, the convergence (1.3) combined with the
compactness of uε in L3(!)3, yields the zero-order term Mu in (1.2). In [16]
L. Tartar revisited this problem using the H-measures tool. On the other hand, the
appearance of such a strange zero-order term in homogenization was also obtained
from finely perforated domains by D. Cioranescu, F. Murat [6] for the Laplace
equation, and by G. Allaire [2] for the Stokes equation, with zero Dirichlet boundary
condition on the holes.

Since curl (vε) × uε is orthogonal to uε, the energy associated with (1.1) is
reduced to

∫

!

|Duε|
2 dx, (1.4)

and thus does not depend on the drift vε. Starting from this remark our aim is to
study two drift homogenization problems associated with the same energy (1.4),
and to specify the best integrability condition satisfied by the drift so that the Tar-
tar approach holds. The first problem is scalar and the second problem is a two-
dimensional equivalent of the Stokes problem (1.1). However, we have not suc-
ceeded in obtaining a similar result for the three-dimensional Stokes equation (1.1)
since the best integrability assumption for vε is not clear.

In Section 2, we consider the following scalar equation in a bounded open set
! of R

N ,
{

−"uε + bε · ∇uε + div (bε uε) = f in !

uε = 0 on ∂!,
(1.5)

where bε ∈ L∞(!)N is bounded in L2(!)N . We obtain three different homoge-
nization results:

In Section 2.1, assuming that the divergence of the drift bε is bounded in
W−1,q(!), with q > N , we prove (see Theorem 2.1) that the sequence uε weakly
converges in H10 (!) to the solution u of the equation

{

−"u + b · ∇u + div (b u) + µ u = f in !

u = 0 on ∂!,
(1.6)
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where µ is a nonnegative function. The proof follows the Tartar method using the
oscillating test function

wε := "−1
(

div (bε)
)

∈ H10 (!). (1.7)

Then, in Section 2.2, assuming only the equi-integrability of the sequence ∇wε

in L2(!)N (this is actually a weaker assumption than the equi-integrability of the
whole sequence bε), we obtain (see Theorem 3.1) the limit problem (1.6) with

|∇wε − ∇w|2 −⇀ µ weakly in L1(!) and µ u2 ∈ L1(!). (1.8)

It seems intricate to apply directly the Tartar method with the test functionwε, since
we cannot control the terms bε · ∇uε wε and bε · ∇wε uε. To this end, one should
consider truncations of both wε and ∇wε. To overcome this difficulty we propose a
new method, up to our knowledge, in the context of homogenization theory, based
on a parametrix of the Laplace operator. It follows that uε reads as a solution of
a fixed point problem, which allows us to estimate the sequence ∇wε · ∇uε only
using a truncation of ∇wε. The equi-integrability of ∇wε then gives the thesis.
Also assuming that b ∈ Lq(!)N , with q > N , (which ensures the uniqueness in
(1.6)) we prove the following corrector result

uε −(1+ wε − w) u −→ 0 strongly in W
1,q
loc (!), for any q ∈ [1, N ′). (1.9)

Finally, in Section 2.3, we show the sharpness of the equi-integrability condition
thanks to a counter-example in the periodic framework (see Theorem 2.6). Making
a change of functions with bε = ∇wε, equation (1.5) is shown to be equivalent to
the following equation

−"vε + µε vε = fε, with µε := |∇wε|
2, (1.10)

the solution of which has the same limit as uε. G. Dal Maso, A. Garroni [7] proved
that the class of equations of type (1.10) is stable under homogenization. Here, we
do not use this general result, but we explicit an oscillating sequence wε so that the
limit equation of (1.5), or equivalently (1.10), is

−"u + γ u = f, (1.11)

with an explicit constant γ which turns out to be < µ. Therefore, the loss of
equi-integrability for ∇wε violates the result of Section 2.2. Note that the vecto-
rial character of the drift term in equation (1.5) makes difficult the derivation of a
closure result similar to the one of [7] which is strongly based on the maximum
principle.

In Section 3, we consider the following two-dimensional equivalent of the per-
turbed Stokes problem (1.1),











−"uε + curl (vε) Juε + ∇ pε = f in !

div (uε) = 0 in !

uε = 0 on ∂!,

(1.12)
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where J is the rotation matrix of angle 90◦, and vε ∈ L∞(!)2 is bounded in
L2(!)2. Note that the weak formulation (3.4) of curl (vε) Juε contains the drift
term (Duε)

T vε, so that equation (1.12) can be also regarded as a drift problem. We
follow the same scheme as in the scalar case:

In Section 3.1, assuming that the sequence vε is bounded in L
r (!)2 with r > 2,

we show (see Theorem 3.1) that the sequence uε weakly converges in H
1
0 (!) to the

solution u of the Brinkman equation











−"u + curl (v) Ju + ∇ p + Mu = f in !

div (u) = 0 in !

u = 0 on ∂!,

(1.13)

where M is a symmetric positive definite matrix-valued function defined by the

convergence (1.3) in L
2r
r+2 (!)2.

In Section 3.2, assuming only the equi-integrability of the sequence vε in
L2(!)2, we prove (see Theorem 3.3) owing to the Tartar method that the sequence
uε weakly converges in H

1
0 (!) to the solution u of the Brinkman equation (1.13)

with similarly to (1.8),

(Dwλ
ε )T vε −⇀ Mλ weakly in L1(!)2 and Mu · u ∈ L1(!). (1.14)

The proof is based on a double parametrix method carrying on both the velocity
uε and the pressure pε. However, the proof of the last estimate of (1.14) is more
delicate than the one of (1.8), since we cannot use a comparison principle as in the
scalar case. We need to introduce a test function similar to wλ

ε but associated with

a truncation of vε. Moreover, if ! has a regular boundary, v ∈ Lr (!)2 with r > 2,
and M ∈ Lm(!)2×2 with m > 1, we get the corrector result

uε−u−Wε u−→0 strongly in W 1,1(!)2, where Wελ := wλ
ε , for λ ∈ R

2. (1.15)

Finally, in Section 3.2, we construct an oscillating sequence vε which is not equi-
integrable in L2(!)2, which leads to the limit problem (1.13) involving a matrix Ŵ

which is not symmetric and satisfies the strict inequality

Ŵλ · λ < Mλ · λ, for any λ )= 0,

which is inconsistent with the Tartar approach. This shows the sharpness of the
equi-integrability condition as in the scalar case. It would be very interesting to
find the closure of the family of problems (1.12) under the sole condition of L2-
boundedness of the sequences vε. This problem is far from being evident due to the
absence of comparison principle for such a vector-valued equation.

Notations

• The space dimension is N ≥ 2, and 2∗ :=
2N

N − 2
.
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• The conjugate exponent of p ≥ 1 is denoted by p′ :=
p

p − 1
.

• For u : R
N −→ R

N , Du :=

(

∂ui

∂x j

)

1≤i, j≤N

.

• For ) : R
N −→ R

N×N , Div ()) :=

(

N
∑

j=1

∂)i j

∂x j

)

1≤i≤N

.

• H1♯ (Y ), with Y := (0, 1)N , denotes the space of the Y -periodic functions onR
N

which belong to H1loc(R
N ).

2. A scalar equation with a drift term

Along this section ! is a bounded regular open set of R
N , with N ≥ 2, and f is a

distribution in H−1(!).

2.1. The classical case

Let q ∈ (N ,∞). Consider a sequence bε in L
∞(!)N such that

bε −⇀ b weakly in L2(!)N and div (bε) is bounded in W
−1,q(!). (2.1)

Let wε ∈ W
1,q
0 (!) be the solution of the equation (see, e.g., [9, Theorem 2.1])

"wε = div (bε) in D′(!). (2.2)

Up to a subsequence wε weakly converges in W
1,q
0 (!) to the function w solution

of
"w = div (b) in D′(!). (2.3)

We have the following result:

Theorem 2.1. The solution uε ∈ H10 (!) of the equation

−"uε + bε · ∇uε + div (bε uε) = f in D′(!), (2.4)

weakly converges in H10 (!), up to a subsequence, to a solution u ∈ H10 (!) of the

equation

−"u + b · ∇u + div (b u) + µ u = f in D′(!), (2.5)

where µ is the function defined by the convergence

|∇wε − ∇w|2 −⇀ µ weakly in L
q
2 (!). (2.6)

Remark 2.2. The uniqueness for equation (2.4) is not evident under the sole as-
sumption b ∈ L2(!)2. Assuming a stronger integrability of b we will obtain in
Theorem 2.4 the uniqueness for the limit equation.
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Proof. The proof is based on the choice of appropriate oscillating test functions as
Tartar did (see [13, Appendix], and [17]). The function wε of (2.2) will play the
role of the oscillating test function. The variational formulation of (2.4) is

∫

!

∇uε · ∇ϕ dx +

∫

!

bε · ∇uε ϕ dx −

∫

!

bε · ∇ϕ uε dx

= 〈 f,ϕ〉H−1(!),H10 (!) , ∀ϕ ∈ H10 (!).

(2.7)

Then, by the Lax-Milgram theorem there exists a unique solution uε of (2.7) in
H10 (!). In particular, for v ∈ W 1,∞(!), putting ϕ = v uε as test function in (2.7)
we obtain the identity

∫

!

|∇uε|
2v dx+

∫

!

∇uε·∇v uε dx−

∫

!

bε ·∇v u2ε dx=〈 f, v uε〉H−1(!),H10 (!) , (2.8)

which will be used several times. So, choosing v = 1 in (2.8) the term with bε

cancel so that we easily deduce that uε is bounded in H
1
0 (!) and weakly converges,

up to a subsequence, to a function u in H10 (!). Therefore, it follows from (2.7) the
limit variational formulation

∫

!

∇u·∇ϕ dx+

∫

!

b·∇u ϕ dx+

∫

!

ϕ dν−

∫

!

b·∇ϕ u dx=〈 f,ϕ〉H−1(!),H10 (!) , (2.9)

which holds for any ϕ ∈ W
1,q
0 (!) (due to the embedding of W

1,q
0 (!) into C(!̄)

for q > N ), where the measure ν is defined by the convergence

bε · ∇uε −⇀ b · ∇u + ν weakly-∗ inM(!). (2.10)

The limit equation associated with (2.9) is

−"u + b · ∇u + ν + div (b u) = f in D′(!). (2.11)

Now, let us determine the measure ν of (2.10). Let ϕ ∈ C∞
c (!). Putting ϕ wε as test

function in (2.7) and ϕ uε in (2.2), and taking the difference of the two equalities
we get

∫

!

∇uε · ∇ϕ wε dx −

∫

!

∇wε · ∇ϕ uε dx

= 〈 f,ϕ wε〉H−1(!),H10 (!) −

∫

!

bε · ∇uε ϕ wε dx +

∫

!

bε · ∇wε ϕ uε dx

+

∫

!

bε · ∇ϕ uε wε dx −

∫

!

bε · ∇uε ϕ dx −

∫

!

bε · ∇ϕ uε dx .

(2.12)
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Passing to the limit in (2.12) by using the strong convergence of uε in L
p(!), for

p < 2∗, and the uniform convergence of wε in C(!̄) (q > N ), we obtain

∫

!

∇u · ∇ϕ w dx −

∫

!

∇w · ∇ϕ u dx

= 〈 f,ϕ w〉H−1(!),H10 (!) −

∫

!

b · ∇u ϕ w dx −

∫

!

ϕ w dν +

∫

!

σ ϕ u dx

+

∫

!

b · ∇ϕ uw dx −

∫

!

b · ∇u ϕ dx −

∫

!

ϕ dν −

∫

!

b · ∇ϕ u dx,

(2.13)

where the measure ν is defined by (2.10) and the function σ is defined, up to a
subsequence, by the convergence

bε · ∇wε −⇀ σ weakly in L
2q
q+2 (!). (2.14)

On the other hand, putting ϕ w ∈ W
1,q
0 (!) in (2.9) and ϕ u ∈ H10 (!) in (2.3) we

have
∫

!

∇u · ∇(ϕ w) dx =〈 f,ϕ w〉H−1(!),H10 (!) −

∫

!

b · ∇u ϕ w dx −

∫

!

ϕ w dν

+

∫

!

b · ∇w ϕ u dx +

∫

!

b · ∇ϕ uw dx,
(2.15)

∫

!

∇w · ∇(ϕ u) dx =

∫

!

b · ∇u ϕ dx +

∫

!

b · ∇ϕ u dx . (2.16)

Equating the difference between (2.15) and (2.16) to the right-hand side of (2.13),
it follows that

∫

!

σ ϕ u dx −

∫

!

b · ∇w ϕ u dx −

∫

!

ϕ dν = 0, for any ϕ ∈ C∞
c (!), (2.17)

which implies that
ν = σ u − b · ∇w u in D′(!). (2.18)

It thus remains to determine the limit equation (2.5). To this end, we pass to the
limit by using ϕ wε as test function in (2.2) and the definition (2.6) of µ, and we put
ϕ w in (2.3), which yields

∫

!

(

µ + |∇w|2
)

ϕ dx+

∫

!

∇w ·∇ϕ w dx =

∫

!

σ ϕ dx+

∫

!

b ·∇ϕ w dx, (2.19)

∫

!

|∇w|2 ϕ dx +

∫

!

∇w · ∇ϕ w dx =

∫

!

b · ∇w ϕ dx +

∫

!

b · ∇ϕ w dx . (2.20)

Equating (2.19) and (2.20), we deduce that

µ = σ − b · ∇w in D′(!), (2.21)
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which combined with (2.18) implies that

ν = µ u in D′(!). (2.22)

Finally, the limit equation (2.11) and the relation (2.22) give the desired homoge-
nized equation (2.5).

Remark 2.3. It can be shown that

µ(x) =

∫

SN−1
µ (x, dξ) ξ · ξ , (2.23)

where µ denotes the matrix-valued H -measure (or micro-local defect measure) of
the sequence bε (see [16] and [8]), and S

N−1 the unit sphere of R
N .

Assumption (2.1) is actually not sharp. In the next section we replace it by the
boundedness of bε and the equi-integrability of ∇wε in L

2(!)2.

2.2. The case under an equi-integrability assumption

In this section ! is a bounded open set of R
N . Consider a sequence bε in L

∞(!)N

the Hodge decomposition of which is

bε = ∇wε + ξε, with wε ∈ H10 (!), ξε ∈ L2(!)N and div (ξε) = 0, (2.24)

such that
bε −⇀ b weakly in L2(!)N . (2.25)

Note that for a fixed ε > 0, wε ∈ W 1,p(!) and ξε ∈ L p(!)N for any p ∈ [2,∞).
But the essential point is the asymptotic behaviour of the sequences bε, ∇wε, ξε.
Our main assumption is the equi-integrability of the sequence ∇wε in L

2(!)N . By
virtue of the Vitali-Saks theorem this is equivalent to the following convergence, up
to an extraction of a subsequence,

|∇wε − ∇w|2 −⇀ µ weakly in L1(!), (2.26)

(Compare to (2.6) with q > N ).
We have the following result:

Theorem 2.4.

i) Under the equi-integrability assumption (2.26) the solution uε of (2.4) weakly
converges in H10 (!) to a solution u of the equation

−"u + b · ∇u + div (b u) + µ u = f in D′(!), (2.27)

with
∫

!

µ u2 dx ≤ 〈 f, u〉H−1(!),H10 (!) −

∫

!

|∇u|2 dx . (2.28)
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ii) Also assume that b ∈ Lq(!)N , where q > 2 if N = 2 and q = N if N > 2.
Then, we have

∫

!

|∇u|2 dx +

∫

!

µ u2 dx = 〈 f, u〉H−1(!),H10 (!), (2.29)

and there exists a unique solution u ∈ H10 (!) of equation (2.27), with µ u2 ∈

L1(!).

Moreover, for any p ∈ [1, 2) if N = 2 and p = N ′ if N > 2, we have the
corrector result

∇uε − ∇u − (∇wε − ∇w) u −→ 0 strongly in L
p

loc(!)N , (2.30)

and for any r ∈ [1, p),

uε − (1+ wε − w) u −→ 0 strongly in W
1,r
loc (!). (2.31)

Remark 2.5. No equi-integrability is required for the divergence free sequence ξε.
Actually, we can prove that the equi-integrability of the sequence bε in L

2(!)N im-
plies the equi-integrability of its two components ∇wε, ξε in L

2
loc(!)N . Therefore,

condition (2.26) is really weaker than the equi-integrability of bε.
Moreover, the equi-integrability of ∇wε in L

2(!)N is essential for deriving
the limit equation with the zero-order term µ u. When this condition is not satisfied
we can obtain a similar limit equation but with a different zero-order term (see
Section 2.3).

Proof of Theorem 2.4. The limit u of uε in H
1
0 (!) solves the equation (2.11) where

ν is defined by

bε · ∇uε − b · ∇u −⇀ ν weakly-∗ inM(!). (2.32)

We thus have

bε · ∇uε = (ξε + ∇w) · ∇uε + (∇wε − ∇w) · ∇uε −⇀ b · ∇u + ν in D′(!).

Moreover, by the Murat, Tartar div-curl lemma [11] the sequence (ξε + ∇w) · ∇uε

converges to (ξ + ∇w) · ∇u = b · ∇u. This combined with the equi-integrability
of ∇wε implies that ν is also given by the convergence

(∇wε − ∇w) · ∇uε −⇀ ν weakly in L1(!). (2.33)

The proof of Theorem 2.4. is based on a parametrix method which allows us to
express uε as a solution of a fixed point problem. As a consequence, we obtain a
strong estimate of∇uε in L

p

loc(!) for some p > 1 close to 1. However, this estimate
cannot provide directly the desired limit ν of (2.33) since p < 2. To overcome this
difficulty we consider a truncation ηkε of ∇wε which is bounded by k > 0. Then, we
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can pass to the limit as ε tends to zero in the product ηkε · ∇uε for a fixed k. Hence,
thanks to the equi-integrability of ∇wε we deduce the limit ν as k tends to infinity.

The proof is divided into four steps. In the first step we present the parametrix
method which leads to a L p-strong estimate of ∇uε. In the second step we deter-
mine the limit of the sequence ηkε · ∇uε for a fixed k > 0. In the third step we
determine the limit ν and the limit equation (2.27) together with (2.28). The fourth
step is devoted to the proof of equality (2.29) and the corrector results (2.30) and
(2.31).

First step. The parametrix method.

First, let us define a parametrix for the Laplace operator in !. To this end consider
two sequences of functions ϕn,ψn in C

∞
c (!), such that























0≤ϕn,ψn≤1 and ϕn=1 in supp (ψn) , for any n≥1,
{

n≥1 : supp(ψn) ∩ K )=Ø
}

is finite, for any compact subset K ⊂!,

∑

n≥1

ψn = 1 in !.

(2.34)

Let E be the fundamental solution of the Laplace operator in R
N . Then, the opera-

tor P defined in D′(!) by

P(ζ ) :=
∑

n≥1

ψn E ∗ (ϕn ζ ) , for ζ ∈ D
′(!), (2.35)

is a parametrix of the Laplace operator (see [1, Chapter I], for further details) which
satisfies

P("ζ ) = ζ − K (ζ ) and "
(

P(ζ )
)

= ζ − K ′(ζ ), for ζ ∈ D
′(!), (2.36)

where K , K ′ are two C∞-kernel operators properly supported in !. Thanks to the
Calderòn-Zygmund regularity for the Laplace operator (see, e.g., [9, Theorem 2.1],
and the references therein) we also have for any p > 1, and s ∈ [0, 2] such that
s + 1

p
is not an integer,

P maps continuously D′(!) to D′(!), and W
−s,p

loc (!) to W
2−s,p
loc (!). (2.37)

Then, applying (2.36) to the solution uε of (2.4) we have

uε = P("uε) + K (uε)

= P
(

div
[

u (∇wε − ∇w)
])

+ P
(

div
[

∇wε (uε − u)
])

+ P
(

div (u∇w)
)

+ P
(

ξε · ∇uε + bε · ∇uε − f
)

+ K (uε),

(2.38)

Fix p > 1 close enough to 1 and s ∈ (N/p′, 1). Since uε − u strongly converges to
0 in Lq(!) for any q ∈ (2, 2∗), the sequence div

(

∇wε (uε −u)
)

strongly converges

to 0 in W−1,p(!), hence by (2.37) we have

P
(

div
[

∇wε (uε − u)
])

−→ 0 strongly in W
1,p
loc (!).
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Moreover, the sequence ξε ·∇uε +bε ·∇uε is bounded in L
1(!), thus inW−s,p(!)

since s > N/p′. Therefore, again by (2.37) the sequence ∇P
(

ξε · ∇uε + bε ·

∇uε − f
)

is bounded in W 1−s,p(!)N , and up to a subsequence strongly converges

in L
p

loc(!)N . Hence, since

ξε · ∇uε + bε · ∇uε −⇀ ξ · ∇u + ν + b · ∇u in D′(!),

we deduce from (2.38) the strong estimate

∇uε − ∇P
(

div
[

u (∇wε − ∇w)
])

= ∇P
(

div (u∇w) + ξ · ∇u + ν + b · ∇u − f
)

+ ∇K (u) + oL ploc(!)N (1)

= ∇P
(

ν + b · ∇u + div (b u) − f
)

+ ∇K (u) + oL ploc(!)N (1)
(

ξ · ∇u = div (u ξ)
)

,

(2.39)

where oL ploc(!)N (1) denotes a sequence which strongly converges to 0 in L
p

loc(!)N .

On the other hand, by (2.36) and (2.37) we have

∇P
(

div
[

u (∇wε − ∇w)
])

= ∇P
(

"
[

u (wε − w)
])

− ∇P
(

div
[

∇u (wε − w)
])

= ∇P
(

"
[

u (wε − w)
])

+ oL ploc(!)N (1)

= ∇
(

u (wε − w)
)

+ oL ploc(!)N (1)

= u (∇wε − ∇w) + oL ploc(!)N (1).

Therefore, this combined with (2.39) yields

∇uε − u (∇wε − ∇w) = ∇P
(

ν + b · ∇u + div (b u) − f
)

+ ∇K (u)

+ oL ploc(!)N (1).
(2.40)

Second step. Estimate of the sequence ηkε · ∇uε.

Set ηkε := ∇wε 1{|∇wε|<k}, for a positive integer k. Let us determine the limit of

ηkε · ∇uε in L
2
loc(!)N . Using a diagonal extraction, there exists a subsequence of

ε, still denoted by ε, such that ηkε weakly converges to some ηk in L∞(!)N for
any k. By the strong convergence (2.40) combined with the weak convergence of
u (∇wε − ∇w) to 0 in L p(!)N (for p close to 1) we have

ηkε · ∇uε −
(

ηkε − ηk
)

· (∇wε − ∇w) u

−⇀ ηk · ∇P
(

ν + b · ∇u + div (b u) − f
)

+ ηk · ∇K (u) weakly in L
p

loc(!).

Hence, we get that

σ k = µk u + ηk · ∇P
(

ν + b · ∇u + div (b u) − f
)

+ ηk · ∇K (u) in !, (2.41)
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where






σ k := lim
ε→0

[

ηkε · ∇uε

]

weakly in L2(!),

µk := lim
ε→0

[(

ηkε − ηk
)

· (∇wε − ∇w)

]

weakly in L2(!).
(2.42)

Third step. Determination of ν and the limit equation (2.27).

Starting from the limit equation (2.11) we have by (2.36)

u = P
(

ν + b · ∇u + div (b u) − f
)

+ K (u) in !,

hence

ηk · ∇u = ηk · ∇P
(

ν + b · ∇u + div (b u) − f
)

+ ηk · ∇K (u) in !.

Equating this with (2.41) we obtain

σ k = µk u + ηk · ∇u in !. (2.43)

Now, let us pass to the limit as k → ∞. By virtue of the equi-integrability of ∇wε

in L2(!)N and by definition (2.42) the sequence µk strongly converges in L1(!) to
the function µ of (2.26), ηk strongly converges to ∇w in L2(!)N , and σ k strongly
converges to ν + ∇w · ∇u in L1(!). Then, up to a subsequence µk converges to µ

a.e. in !, and by the Fatou lemma combined with equality (2.43) we get
∫

!

|µ u| dx ≤ lim inf
k→∞

∫

!

|µk u| dx

≤ lim inf
k→∞

∫

!

|σ k − ηk · ∇u| dx =

∫

!

|ν| dx .

(2.44)

We deduce from (2.44) and (2.43) that µ u ∈ L1(!) and

ν = µ u in !, (2.45)

which yields the limit equation (2.27).
It remains to prove the inequality of (2.28). Let v ∈ L∞(!) and t ∈ R. By

(2.26), (2.33) and (2.45) we have
∫

!

∣

∣∇uε − ∇u − (∇wε − ∇w) t v
)∣

∣

2
dx

=

∫

!

|∇uε − ∇u|2 dx + t2
∫

!

|∇wε − ∇w|2 v2 dx

− 2 t

∫

!

∇uε · (∇wε − ∇w) v dx + o(1)

= 〈 f, u〉H−1(!),H10 (!) −

∫

!

|∇u|2 dx + t2
∫

!

µv2 dx

− 2 t

∫

!

µ u v dx + o(1),

(2.46)
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hence

t2
∫

!

µv2 dx−2 t

∫

!

µ u v dx+〈 f, u〉H−1(!),H10 (!)−

∫

!

|∇u|2 dx ≥ 0, ∀ t ∈ R.

This implies that
(∫

!

µ u v dx

)2

≤

(

〈 f, u〉H−1(!),H10 (!) −

∫

!

|∇u|2 dx

)∫

!

µv2 dx . (2.47)

Let Tk , k > 0, be a function in C1(R) such that

0 ≤ T ′
k ≤ 1 and

{

Tk(t) = t if |t | ≤ k

|Tk(t)| = k + 1 if |t | ≥ k + 2.
(2.48)

Putting v = Tk(u) as test function in (2.47) and using that Tk(u)
2 ≤ u Tk(u), we

get
(∫

!

µ u Tk(u) dx

)2

≤

(

〈 f, u〉H−1(!),H10 (!) −

∫

!

|∇u|2 dx

)∫

!

µ u Tk(u) dx,

hence
∫

!

µ u Tk(u) dx ≤ 〈 f, u〉H−1(!),H10 (!) −

∫

!

|∇u|2 dx . (2.49)

Since u Tk(u) is a nondecreasing nonnegative sequence which converges to u
2 a.e.

in !, the Beppo-Levi theorem applied to (2.49) thus gives inequality (2.28).

Fourth step. Proof of equality (2.29) and of the corrector results (2.30), (2.31).

Assume that b ∈ Lq(!)N , where q > 2 if N = 2 and q = N if N > 2. Let ϕn
be a sequence in C10(R) which strongly converges to u in H10 (!) and a.e. in !, and

such that |∇ϕn| is dominated by a fixed function in L
2(!). Putting the truncation

function Tk(ϕn) (2.48) in the limit equation (2.27) we have
∫

!

∇u · ∇Tk(ϕn) dx+

∫

!

b · ∇u Tk(ϕn) dx−

∫

!

b · ∇Tk(ϕn) u dx

+

∫

!

µ u Tk(ϕn)dx

=
〈

f, Tk(ϕn)
〉

H−1(!),H10 (!)
.

Since b · ∇u, µ u ∈ L1(!) and b u ∈ L2(!)N (as a consequence of b ∈ Lq(!)N ),
we can pass to the limit as n → ∞ in the previous equality owing to the Lebesgue
dominated convergence theorem, which yields

∫

!

∇u · ∇Tk(u) dx +

∫

!

b · ∇u Tk(u) dx −

∫

!

b · ∇Tk(u) u dx

+

∫

!

µ u Tk(u) dx

=
〈

f, Tk(u)
〉

H−1(!),H10 (!)
.

(2.50)
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Then, using that |Tk(u)| ≤ |u|, 0 ≤ T ′
k(u) ≤ 1, Tk(u) strongly converges to u in

H10 (!), and that b u ∈ L2(!)N , µ u2 ∈ L1(!), and passing to the limit as k → ∞

owing to the Lebesgue dominated convergence theorem we get

∫

!

|∇u|2 dx+

∫

!

b ·∇u u dx−

∫

!

b ·∇u u dx+

∫

!

µ u2 dx = 〈 f, u〉H−1(!),H10 (!) ,

which is (2.29). Moreover, the proof of equality (2.29) with f = 0 shows that there
exists a unique solution u ∈ H10 (!) of equation (2.27), with µ u2 ∈ L1(!).

It remains to prove the corrector results. By the estimate (2.46) with v = Tk(u)

and t = 1, combined with equality (2.29) we have

lim
k→∞

lim
ε→0

(∫

!

∣

∣∇uε − ∇u − (∇wε − ∇w) Tk(u)
∣

∣

2
dx

)

= lim
k→∞

(∫

!

µ
(

u − Tk(u)
)2
dx

)

= 0.

(2.51)

On the other hand, let p ∈ [1, 2) if N = 2 and p = N ′ if N > 2, and consider an
open set ω ⋐ !. By the Hölder inequality we have

∫

ω

∣

∣∇uε − ∇u − (∇wε − ∇w) u
∣

∣

p
dx

≤ 2p−1
(∫

!

∣

∣∇uε − ∇u − (∇wε − ∇w) Tk(u)
∣

∣

p

+

∫

ω

|∇wε − ∇w|p
∣

∣u − Tk(u)
∣

∣

p
dx

)

≤ c

(∫

!

∣

∣∇uε − ∇u − (∇wε − ∇w) Tk(u)
∣

∣

2
)

p
2

+ c

(∫

ω

∣

∣u − Tk(u)
∣

∣

2p
2−p dx

)1−
p
2

≤ c

(∫

!

∣

∣∇uε − ∇u − (∇wε − ∇w) Tk(u)
∣

∣

2
)

p
2

+ c

(∫

{|u|>k}∩ω

|u|
2p
2−p dx

)1−
p
2

.

(2.52)

Since u ∈ L
2p
2−p (ω) by the Sobolev embedding, passing successively to the limits

ε → 0 and k → ∞ in (2.52) owing to convergence (2.51) we obtain the strong
convergence (2.30).

Let r ∈ [1, p). Sincewε−w strongly converges to 0 in L
2r
2−r (ω), by the Hölder

inequality the sequence (wε − w)∇u strongly converges to 0 in Lr (ω)N . Finally,
this combined with (2.30) implies the corrector result (2.31).
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2.3. A counter-example

In this section! is a regular bounded open set of R2, and Y := (−1
2 ,

1
2 )
2. For fixed

R ∈ (0, 12 ) and µ > 0, let rε ∈ (0, R) be defined by the equality

2π

ε2 |ln rε|
= µ. (2.53)

Let Wε be the Y -periodic function and wε be the εY -periodic function defined by

Wε(y) :=























ln r−ln rε

ln R−ln rε
if r := |y|∈ (rε,R)

0 si r ≤ rε

1 si r ≥ R,

y∈Y, wε(x) := Wε

( x

ε

)

, x ∈R
2.

(2.54)
Note that by (2.53) we have

1

ε2

∫

Y

|∇Wε|
2 dy =

2π

ε2 ln (R/rε)
−→
ε→0

µ. (2.55)

We then consider the drift bε defined by

bε(x) := ∇wε(x) =
1

ε
∇Wε

( x

ε

)

, for x ∈ R
2. (2.56)

Taking into account (2.53) it is easy to check that

wε −⇀ 1 weakly in H1(!) and weakly-∗ in L∞(!). (2.57)

Let f be a non-zero function in L2(!). We study the asymptotic behavior of the
equation (2.4) with the drift bε of (2.56), i.e.

−"uε + ∇wε · ∇uε + div (∇wε uε) = f in D′(!). (2.58)

We have the following result:

Theorem 2.6. The solution uε of (2.58) weakly converges in H
1
0 (!) to the solution

u of the equation

−"u + γ u = f in D′(!), where γ :=
3
(

e2 − 1
)

4
(

e2 + 1
) µ < µ. (2.59)

Remark 2.7. Using the periodicity we can check that the sequence |bε|
2 = |∇wε|

2

converges in the weak-∗ sense of measures on ! – but not weakly in L1(!) – to
the constant µ defined by (2.53). Theorem 2.6 can thus be regarded as a counter-
example to the statement of Theorem 2.4 without the equi-integrability assumption
on the drift bε in L

2(!)2. Indeed, the conclusion of Theorem 2.4 would give a limit
equation (2.59), with γ = µ.
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Proof of Theorem 2.6. The proof is divided into two steps. In the first step we con-
struct an oscillating test function zε which solves equation (2.64) below. In the
second step we determine the limit equation (2.59).

First step. Construction of an oscillating test function.

Denote by Qr the disk of radius r centered at the origin. Consider the unique
solution Zε in H

1(QR) of the equation










−
1

ε2
"Zε +

1

ε2
|∇Wε|

2 Zε =
1QR

|QR|
in QR

∂Zε

∂n
= 0 on ∂QR .

(2.60)

The function Zε is radial and can be computed explicitly. Using the Laplace opera-
tor in polar coordinates and |∇Wε|

2 = α2ε r
−2 1QR\Q̄rε

, we get

Zε(r)=















−
ε2

4πR2
r2 + cε if r ∈(0, rε]

aε r
αε +bε r

−αε +
ε2

πR2
(

α2ε −3
) r2 if r ∈(rε, R],

where αε :=
1

ln(R/rε)
.

(2.61)

The constants aε, bε, cε are determined owing to the boundary condition on ∂QR

and to the transmission conditions on ∂Qrε , i.e.

Z ′
ε(R) = 0 and Zε(r

+
ε ) = Zε(r

−
ε ), Z ′

ε(r
+
ε ) = Z ′

ε(r
−
ε ). (2.62)

We extend Zε by the constant value Zε(R) in Y \ Q̄R , and by Y -periodicity in
the whole space R

2. The Y -periodic extension is still denoted by Zε. An explicit
computation combined with (2.53) yields

Zε −→ Z̄ :=
4
(

e2 + 1
)

3
(

e2 − 1
)

1

µ
strongly in H1♯ (Y ). (2.63)

As a consequence of (2.60), (2.61) the rescaled function zε(x) := Zε(
x
ε
) is solution

of the equation

−"zε + |∇wε|
2 zε = χ

♯
QR

( x

ε

)

in D′(R2), (2.64)

where χ
♯
QR
is the Y -periodic function agreeing with

1QR
|QR | in the period cell Y . More-

over, the following convergences hold

zε −⇀ Z̄ weakly in H1(!) and χ
♯
QR

( x

ε

)

−⇀ 1 weakly-∗ in L∞(!), (2.65)

where the constant Z̄ is defined by (2.63).
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Second step. Determination of the limit equation (2.59).

Define the function vε := e1−wε uε. Then, equation (2.58) is equivalent to

−"vε + |∇wε|
2 vε = e1−wε f in D′(!). (2.66)

G. Dal Maso, A. Garroni [7] proved that this class of equations is stable under
homogenization. In the present case, the use of the oscillating test function zε will
allow us to obtain the limit equation (2.59).

On the one hand, choosing v = wε in (2.8) we get

∫

!

|∇wε|
2 u2ε dx−

∫

!

∇wε·∇uε uε dx =

∫

!

|∇uε|
2wε dx−

∫

!

f wε uε dx≤c, (2.67)

since uε is bounded in H
1
0 (!) and 0 ≤ wε ≤ 1. Then, by the Cauchy-Schwarz

inequality we have

∫

!

|∇wε|
2 u2ε dx ≤ c + c

(∫

!

|∇uε|
2 dx

)
1
2
(∫

!

|∇wε|
2 u2ε dx

)
1
2

≤ c + c′
(∫

!

|∇wε|
2 u2ε dx

)
1
2

,

(2.68)

hence uε∇wε is bounded in L
2(!)2. This combined with convergence (2.57) im-

plies that vε weakly converges to u in H
1
0 (!).

On the other hand, for ϕ ∈ C∞
c (!), putting the functions ϕ zε in (2.66) and

ϕ vε in (2.64), taking the difference of the two equalities, and passing to the limit
owing to convergences (2.65) we obtain the equality

∫

!

∇u · ∇ϕ Z̄ dx +

∫

!

ϕ u dx =

∫

!

f ϕ Z̄ dx, for any ϕ ∈ C∞
c (!). (2.69)

which is the variational formulation of equation (2.59), with γ = Z̄−1.

3. A Stokes equation with a drift term

3.1. The classical case

In [14, 15] L. Tartar noted that the nonlinear term of the three-dimensional Navier-
Stokes equation for the divergence free velocity u reads as

(u · ∇) u = Div (u ⊗ u) = curl (u) × u + ∇

(

1
2 |u|2

)

. (3.1)

This led him to study the perturbed Stokes equation

−"u + curl (v) × u + ∇ p = f, (3.2)
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where a given vector-valued function v replaced the velocity u of the Navier-Stokes
equation. The equivalent of transformation (3.1) in two-dimension is

Div (u ⊗ u) = curl (u) Ju + ∇

(

1
2 |u|2

)

,

where curl (u) := ∂1u2 − ∂2u1 and J :=

(

0 −1
1 0

)

.
(3.3)

More generally equality (3.3) extends for any divergence free functions u, v to the
following one

curl (v) Ju = Div (v ⊗ u) + (Du)T v − ∇ (v · u) . (3.4)

Similarly to (3.2) this leads us to the two-dimensional perturbed Stokes equation

−"u + curl (v) Ju + ∇ p = f. (3.5)

Let ! be a bounded domain of R
2. Let vε be a sequence in L

∞(!)2 and let f be a
distribution in H−1(!)2. Consider the perturbed Stokes equation











−"uε + curl (vε) Juε + ∇ pε = f in !

div (uε) = 0 in !

uε = 0 on ∂!.

(3.6)

In the three-dimensional case where curl (vε) × uε replaces curl (vε) Juε, L. Tartar
[15] derived a Stokes equation with a Brinkman law under the assumption that vε is
bounded in L3(!)3 (see Introduction). Mimicking the Tartar approach in dimension
two we can derive a similar homogenized equation using the test function wλ

ε , for

λ ∈ R
2, solution of the Stokes equation











−"wλ
ε + Div

(

(vε − v) ⊗ λ
)

+ ∇qλ
ε = 0 in !

div
(

wλ
ε

)

= 0 in !

wλ
ε = 0 on ∂!.

(3.7)

Then, we have the following result:

Theorem 3.1. Assume that vε is bounded in L
r (!)2, with r > 2. Then, the solution

uε of (3.6) weakly converges in H
1
0 (!) to the solution u of the Brinkman equation











−"u + curl (v) Ju + ∇ p + Mu = f in !

div (u) = 0 in !

u = 0 on ∂!,

(3.8)

where M is the positive definite symmetric matrix-valued function defined by

{

(Dwλ
ε )T vε −⇀ Mλ weakly in L

2r
2+r (!)2 and in L

r
2
loc(!)2

Dwλ
ε · Dwµ

ε −⇀ Mλ · µ weakly-∗ inM(!)2 and in L
r
2
loc(!)2,

for λ, µ∈R
2.

(3.9)
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Moreover, the zero-order term of (3.8) is given by the convergences







(Duε)
T (vε − v) −⇀ Mu weakly in L

2r
2+r (!)2

Duε : Dwλ
ε −⇀ Mu · λ weakly-∗ inM(!) and in L

2r
2+r

loc (!)2.
(3.10)

Proof. By the representation formula (3.4) we have

curl (vε) Juε = (Duε)
T vε + Div (vε ⊗ uε) − ∇ (vε · uε) . (3.11)

Hence, the variational formulation of (3.6) reads as

∫

!

Duε :Dϕ dx+

∫

!

(Duε)
T vε ·ϕ dx−

∫

!

(vε⊗ uε) :Dϕ dx=〈 f,uε〉H−1(!)2,H10 (!)2,

for any ϕ ∈ H10 (!)2, div (ϕ) = 0.
(3.12)

By the Lax-Milgram theorem there exists a unique divergence free function uε ∈

H10 (!)2 solution of (3.12). Then, putting the velocity uε as test function in (3.12)
it follows that

∫

!

|Duε|
2 dx = 〈 f, uε〉H−1(!)2,H10 (!)2 , (3.13)

which implies that uε is bounded in H
1
0 (!)2. Let ω be a regular domain of !.

Applying (3.12) to divergence free functions in H10 (ω)2, there exists a unique pε

in L2(ω)/R such that equation (3.6) holds in D′(ω)2. Moreover, by (3.11) and the
boundedness of vε in L

r (!)2 the sequence ∇ pε is bounded in H
−1(ω)2. Hence,

due to the regularity of ω the sequence pε is bounded in L
2(ω). Then, consider-

ing an exhaustive sequence of regular domains the union of which is !, we can
construct in ! a pressure pε which is bounded in L

2
loc(!). Therefore, up to a sub-

sequence the following convergences hold

{

uε −⇀ u weakly in H10 (!)2

pε −⇀ p weakly in L2loc(!)/R,
(3.14)

Now, in view of (3.11) it is enough to determine the limit of the term (Duε)
T vε.

By the regularity results for the Stokes equation (see, e.g., [10] Theorem 2, p. 67)
the sequences wλ

ε and q
λ
ε satisfy

{

wλ
ε −⇀ 0 weakly in H1(!)2 and in W 1,r

loc (!)2

qλ
ε −⇀ 0 weakly in L2(!)/R and in Lrloc(!)/R.

(3.15)

which imply convergence (3.9). Let ϕ ∈ C∞
c (!). Following the Tartar method we

put ϕ wλ
ε in equation (3.6) and ϕ uε in equation (3.7). Then, from the representation
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(3.11), the convergences (3.14), (3.15) and the boundedness of vε in L
r (!) we

deduce that














∫

!

Duε : Dwλ
ε ϕ dx −

∫

!

(vε ⊗ uε) : Dwλ
ε ϕ dx=o(1)

∫

!

Dwλ
ε : Duε ϕ dx −

∫

!

(

(vε−v) ⊗ λ
)

: Duε ϕ dx=o(1),

for any ϕ∈C∞
c (!),

hence
{

Duε : Dwλ
ε − (Dwλ

ε )T vε · uε −⇀ 0

(Duε)
T (vε − v) · λ − (Dwλ

ε )T vε · uε −⇀ 0
in D′(!). (3.16)

By virtue of the strong convergence of uε in any L
s(!)2 space for s ∈ (1,∞), con-

vergences (3.16) and (3.9) imply (3.10). This combined with (3.11) yields finally
the limit problem (3.8).

Remark 3.2. It can be shown that

M(x) =

∫

S1

[

tr (µ (x, dξ)) − µ (x, dξ) ξ · ξ
]

ξ ⊗ ξ (3.17)

where µ is the matrix-valued H -measure of the sequence vε (see [16,17]).

The case where vε is only bounded in L
2(!)2 is much more delicate. On

the one hand, under additional assumptions we will extend the Tartar result when
vε is bounded and equi-integrable in L

2(!)2. On the other hand, we will give an
example of a sequence vε for which the homogenized Brinkman equation is not the
one obtained by the Tartar procedure.

3.2. The case under an equi-integrability condition

In this section we make the following weaker assumption on the drift,

vε −⇀ v weakly in L2(!)2 and vε is equi-integrable in L
2(!)2. (3.18)

Then, we have the following extension of Theorem 3.1:

Theorem 3.3.

i) Under the equi-integrability assumption (3.18) the solution uε of (2.4) weakly
converges in H10 (!) to the solution u of equation (3.8) with

∫

!

Mu · u dx ≤ 〈 f, u〉H−1(!)2,H10 (!)2 −

∫

!

|Du|2 dx, (3.19)

where M is the positive definite symmetric matrix-valued function defined by

{

(Dwλ
ε )T vε −⇀ Mλ weakly in L1(!)2

Dwλ
ε : Dwµ

ε −⇀ Mλ · µ weakly-∗ inM(!)2,
for λ, µ ∈ R

2. (3.20)
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ii) Also assume that ! has a Lipschitz boundary, v ∈ Lr (!)2, with r > 2, and
M ∈ Lm(!)2×2, with m > 1. Then, we have the equality

∫

!

|Du|2 dx +

∫

!

Mu · u dx = 〈 f, u〉H−1(!)2,H10 (!)2 , (3.21)

and there exists a unique solution u ∈ H10 (!)2 of equation (3.8), with Mu · u ∈

L1(!).

Moreover, we have the corrector result

uε − u − Wε u −→ 0 strongly in W 1,1(!)2, (3.22)

where Wε is the matrix-valued function defined by

Wε λ := wλ
ε , for λ ∈ R

2. (3.23)

Remark 3.4. Contrary to Theorem 2.4, in the part ii) of Theorem 3.3 we need to
assume a higher integrability for the matrix-valued M . Indeed, we cannot apply a
truncation principle on Mu · u. Moreover, the regularity of ! is necessary to obtain
the density of the smooth divergence free functions in the space of the divergence
free functions of H10 (!)2.

Proof of Theorem 3.3. As in the proof of Theorem 3.3 the sequence uε is bounded
in H10 (!)2, and thus in any Ls(!)2 space. Then, in view of (3.11) and (3.6) together

with the boundedness of uε and vε the sequence ∇ pε is bounded in L
1(!)2 +

W−1,r (!)2 for any r ∈ (1, 2). Hence, thanks to the embedding of L1loc(!) into

W
−σ,r
loc (!) for any r > 1 and σ > 2/r ′, the sequence pε is bounded in L

r
loc(!)/R

for any r ∈ (1, 2). Therefore, up to a subsequence we have the convergences

{

uε −⇀ u weakly in H10 (!)2

pε −⇀ p weakly in Lrloc(!)/R, for any r ∈ (1, 2).
(3.24)

The problem is to determine the vector-valued distribution ν defined by

curl (vε) Juε − curl (v) Ju −⇀ ν in D′(!)2. (3.25)

Taking into account the representation formula (3.11) and the equi-integrability of
vε in L

2(!)2, ν is actually in L1(!)2, and is given by

(Duε)
T (vε − v) −⇀ ν weakly in L1(!)2, (3.26)

so that u is solution of the equation

−"u + ν + curl (v) Ju + ∇ p = f in D′(!). (3.27)

From now on the proof follows the same scheme as the one of Theorem 2.4 using a
representation of the velocity and the pressure owing to the parametrix P of (2.35).



22 MARC BRIANE AND PATRICK GÉRARD

The proof is divided into five steps. The first step deals with a double parametrix
method for both uε and pε, which allows us to derive a strong approximation of
Duε. In the second step we compute the limit σ

k of the sequence (Duε)
T vkε , where

vkε is a truncation of vε for a fixed k > 0. In the third step we obtain the limit
equation (3.8). In the fourth step we prove inequality (3.19). The fifth step is
devoted to the proof of equality (3.21) and the corrector result (3.22).

First step. The double parametrix method.

Consider the parametrix P (2.35) for the Laplace operator. Abusively we denote by
" the vector-valued Laplace operator as well as by P the associated vector-valued
parametrix each component of which is defined by (2.35). Taking the divergence of
equation (3.6) we have

"pε = div ( f ) − div
(

curl (vε) Juε

)

in !,

hence by (2.36)

pε = P
(

div ( f ) − div
[

curl (vε) Juε

])

+ K (pε) in !. (3.28)

Substituting pε by the right-hand side of (3.28) in (3.6) it follows that

"uε =curl (vε) Juε−∇P
(

div
[

curl (vε) Juε

])

+∇P
(

div ( f )
)

− f+∇K (pε) in !,

hence again by (2.36) we have in !

uε = P
(

curl (vε) Juε − ∇P
(

div
[

curl (vε) Juε

]))

+ P
(

∇P
(

div ( f )
)

− f
)

+ L(uε, pε),
(3.29)

where L is a C∞-kernel operator acting on the pair (uε, pε). Using the representa-
tion (3.11) of curl (vε) Juε, and setting

gε := Div
(

(vε − v) ⊗ uε

)

− ∇
(

(vε − v) · uε

)

, (3.30)

we get

uε = P
(

(Duε)
T vε + gε − ∇P

(

div
[

(Duε)
T vε + gε

]

))

+ F(uε, pε), (3.31)

where

F(ζ,θ) := P
(

Div (v⊗ζ )−∇(v · ζ )− f −∇P
(

div
[

Div (v⊗ζ )−∇(v · ζ )− f
]))

+ L(ζ, θ).

(3.32)
Note that by (2.37) we have

F(uε, pε) −→ F(u, p) strongly in W 1,r
loc (!), for any r ∈ (1, 2).
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Moreover, by (3.26) the sequence (Duε)
T vε weakly converges to ν + (Du)T v in

L1(!)2 which is compactly embedded in W−1,r
loc (!)2 for any r ∈ (1, 2). Hence,

as in the first step of the proof of Theorem 2.4, from (3.31) and the two previous
convergences we deduce, for any r ∈ (1, 2), the strong convergence

uε − P
(

gε − ∇P
(

div (gε)
))

−→ P
(

ν + (Du)T v − ∇P
(

div
[

ν + (Du)T v
])

)

+ F(u, p) strongly in W 1,r
loc (!)2.

(3.33)

Second step. Determination of the limit σ k of (Duε)
T vkε .

Fix r ∈ (1, 2) such that (3.33) holds. Set

zε := P
(

gε − ∇P
(

div (gε)
))

and qε := P
(

div (gε)
)

. (3.34)

In view of (3.30) the sequence gε weakly converges to 0 in W
−1,r (!)2, hence by

(2.37) we have

zε −⇀ 0 weakly in W 1,r
loc (!)2 and qε −⇀ 0 weakly in Lrloc(!)/R. (3.35)

Moreover, by (2.36) we have

"zε = gε − ∇qε − K ′(gε) and "qε = div (gε) − K ′(qε) in !, (3.36)

hence

"
(

div (zε)
)

= K ′(qε) − div
(

K ′(gε)
)

−→ 0 strongly in Lrloc(!)2, say.

This combined with the first convergence of (3.35) and (2.37) yields

div (zε) −→ 0 strongly in W 2,r
loc (!)2. (3.37)

On the other hand, set vkε := vε 1{|vε|<k}, for a positive integer k. Up to a subse-

quence of ε still denoted by ε, vkε weakly converges to some function vk in L2(!)2

for any k. Consider for λ ∈ R
2, the solutions wλ,k

ε and qλ,k
ε of the Stokes problem











−"wλ,k
ε + Div

(

(vkε − vk) ⊗ λ
)

+ ∇qλ,k
ε = 0 in !

div
(

wλ,k
ε

)

= 0 in !

wλ,k
ε = 0 on ∂!

(3.38)

which consists in an approximation of equation (3.7). By the regularity results for
the Stokes equation (see, e.g., [10]) we have

{

wλ,k
ε −⇀ 0 weakly in W 1,s

loc (!)2

qλ,k
ε −⇀ 0 weakly in Lsloc(!)/R,

for any s ∈ (1,∞). (3.39)
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Take s := r ′ and choose good oscillating test functions as Tartar did (see [13,
Appendix]). Let ϕ ∈ C∞

c (!). Putting ϕ wλ,k
ε in the first equation of (3.36) and

ϕ zε in equation (3.38), and using the definition (3.30) of gε and the convergences
(3.35), (3.37), (3.39) we have

(Dzε)
T (vkε − vk) · λ −

(

Dwλ,k
ε

)T
(vε − v) · uε −⇀ 0 weakly in D′(!)2.

Hence, since Dzε weakly converges to 0 in L
r (!)2×2, we deduce that

(Dzε)
T vkε −⇀ Mku weakly in D′(!)2, (3.40)

where the matrix-valued function Mk is defined by

(

Dwλ,k
ε

)T
vε −⇀ Mk λ weakly in Lsloc(!)2, for any s ∈ [1, 2). (3.41)

Now, we are able to determine the limit σ k of the sequence (Duε)
T vkε in L

2(!)2.
With the definition (3.34) of zε the strong convergence (3.33) implies that

(Duε)
T vkε − (Dzε)

T vkε −⇀
[

DP
(

ν+(Du)T v −∇P
(

div
[

ν + (Du)T v
]

))]T

vk

+
(

DF(u, p)
)T

vk weakly in Lrloc(!)2.

This combined with (3.40) thus yields

σ k = Mku +
[

DP
(

ν + (Du)T v − ∇P
(

div
[

ν + (Du)T v
]

))]T

vk

+
(

DF(u, p)
)T

vk .

(3.42)

Third step. Determination of the limit equation (3.8).

The function u solves the equation (3.27) which, by (3.4) and similarly to (3.31),
can read as

u = P
(

ν + (Du)T v − ∇P
(

div
[

ν + (Du)T v
]

))

+ F(u, p).

This implies that

(Du)T vk =
[

DP
(

ν + (Du)T v −∇P
(

div
[

ν + (Du)T v
]

))]T

vk+
(

DF(u, p)
)T

vk .

Therefore, equating the previous equation with (3.42) yields

σ k = (Du)T vk + Mku in !. (3.43)

It remains to pass to the limit as k tends to infinity. Due to the equi-integrability
of vε in L

2(!)2 and by convergence (3.26) the sequence σ k strongly converges to
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ν + (Du)T v in L1(!). On the other hand, putting the function wλ,k
ε − wλ

ε both in
equations (3.7) and (3.38) we get the equality

∫

!

∣

∣Dwλ,k
ε − Dwλ

ε

∣

∣

2
dx =

∫

!

(

Dwλ,k
ε − Dwλ

ε

)T
(vkε − vε − vk + v) · λ dx,

which, again by the equi-integrability of vε, yields

lim
k→∞

sup
ε>0

(∫

!

∣

∣Dwλ,k
ε − Dwλ

ε

∣

∣

2
dx

)

= 0. (3.44)

Estimate (3.44) implies that the sequence Mk defined by (3.41) strongly converges
in L1(!)2×2 to the matrix-valued function M defined by (3.20). In particular, up to
a subsequence Mk converges to M a.e. in !. Then, by the Fatou lemma combined
with (3.43) and the strong convergences of σ k in L1(!)2 and vk in L

2(!)2, we get
that the function Mu belongs to L1(!)2. Finally, passing to the limit in (3.43) we
obtain the equality

ν = Mu in !,

which gives the limit equation (3.8).

Fourth step. Proof of inequality (3.19).

Similarly to (3.23) letW k
ε , k > 0, be the matrix-valued function defined byW k

ε λ :=

wλ,k
ε , where wλ,k

ε solves (3.38). We simply denote wi,k
ε when λ = ei := (2− i, i −

1), for i = 1, 2. Let ϕ ∈ C1c (!)2, and let t ∈ R. Using (3.13) we have

∫

!

∣

∣

∣Duε − Du − t D(W k
ε ϕ)

∣

∣

∣

2
dx = 〈 f, u〉H−1(!)2,H10 (!)2 −

∫

!

|Du|2 dx

− 2 t

∫

!

Duε : D(W k
ε ϕ) dx

+ t2
∫

!

∣

∣

∣D(W k
ε ϕ)

∣

∣

∣

2
dx + o(1).

(3.45)

Moreover, similarly to the second convergences of (3.9) and (3.10), we have for
i, j = 1, 2,

{

Duε : Dwi,k
ε −⇀ Mku · ei

Dwi,k
ε · Dw j,k

ε −⇀ M̂kei · e j ,
weakly in Lsloc(!), for any s ∈ [1, 2), (3.46)

where (compare to the definition (3.41) of Mk) the matrix-valued M̂k is defined by

(

Dwi,k
ε

)T
vkε −⇀ M̂k ei weakly in L2(!)2. (3.47)
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Then, from convergences (3.39) and (3.46) we deduce that

∫

!

Duε : D(W k
ε ϕ)dx=

2
∑

i=1

∫

!

Duε : Dwi,k
ε ϕi dx + o(1) −→

ε→0

∫

!

Mku · ϕ dx,

∫

!

∣

∣

∣D(W k
ε ϕ)

∣

∣

∣

2
dx=

2
∑

i, j=1

∫

!

Dwi,k
ε : Dw j,k

ε ϕi ϕ j dx+ o(1) −→
ε→0

∫

!

M̂kϕ · ϕ dx .

This combined with (3.45) implies that

∫

!

∣

∣

∣Duε − Du − t D(W k
ε ϕ)

∣

∣

∣

2
dx = 〈 f, u〉H−1(!)2,H10 (!)2 −

∫

!

|Du|2 dx

− 2 t

∫

!

Mku · ϕ dx

+ t2
∫

!

M̂kϕ · ϕ dx + o(1).

(3.48)

Therefore, we have for any t ∈ R,

t2
∫

!

M̂kϕ · ϕ dx − 2 t

∫

!

Mku · ϕ dx + 〈 f, u〉H−1(!)2,H10 (!)2 −

∫

!

|Du|2 dx ≥ 0,

hence

(∫

!

Mku · ϕ dx

)2

≤

(

〈 f, u〉H−1(!)2,H10 (!)2 −

∫

!

|Du|2 dx

)∫

!

M̂kϕ·ϕ dx . (3.49)

Let δ > 0, and let ω be an open set such that ω ⋐ !. Since by (3.41) and (3.47) Mk

and M̂k belong to Ls(ω)2×2 for s ∈ [1, 2), putting in (3.49) strong approximations

ϕ of 1ω u
1+δ |u| in L

2s′(!)2, we get

(∫

ω

Mku · u

1+ δ |u|
dx

)2

≤

(

〈 f, u〉H−1(!)2,H10 (!)2 −

∫

!

|Du|2 dx

)∫

ω

M̂ku · u

(1+ δ |u|)2
dx

≤

(

〈 f, u〉H−1(!)2,H10 (!)2 −

∫

!

|Du|2 dx

)∫

!

M̂ku · u

(1+ δ |u|)2
dx,

which by the arbitrariness of ω yields the inequality

(∫

!

Mku · u

1+δ |u|
dx

)2

≤

(

〈 f, u〉H−1(!)2,H10 (!)2−

∫

!

|Du|2 dx

)∫

!

M̂ku · u

(1+δ |u|)2
dx .

(3.50)
Recall that, by virtue of the equi-integrability of vε in L

2(!)2, the sequences Mk

and M̂k strongly converge to M in L1(!)2×2, thus converge, up to a subsequence
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of k, a.e. in ! and in a dominated way. Therefore, passing to the limit as k → ∞

owing to the Fatou lemma for the left-hand side of (3.50) and owing to the Lebesgue
dominated convergence theorem for the right-hand side of (3.50), it follows that

(∫

!

Mu · u

1+δ |u|
dx

)2

≤

(

〈 f, u〉H−1(!)2,H10 (!)2−

∫

!

|Du|2 dx

)∫

!

Mu · u

(1+δ |u|)2
dx<∞,

which implies the inequality

∫

!

Mu · u

1+ δ |u|
dx ≤ 〈 f, u〉H−1(!)2,H10 (!)2 −

∫

!

|Du|2 dx . (3.51)

Finally, applying the Fatou lemma in (3.51) as δ → 0 we obtain the desired in-
equality (3.19).

Fifth step. Proof of equality (3.21) and of the corrector result (3.22).

Assume that ! has a Lipschitz boundary, v ∈ Lr (!)N , with r > 2, and M ∈

Lm(!)2×2, with m > 1. Let ϕ be a divergence free function in C∞
c (!)2. Putting

ϕ as test function in the limit Stokes equation (3.8) and using the representation
formula (3.4) we have

∫

!

Du : Dϕ dx+

∫

!

(Du)T v · ϕ dx −

∫

!

(v ⊗ u) : Dϕ dx +

∫

!

Mu · ϕ dx

= 〈 f, u〉H−1(!)2,H10 (!)2 .

(3.52)

Due to the regularity of ! the set of divergence free functions is known to be dense
in the space of divergence free functions in H10 (!)2 (see, e.g., [18]). Moreover, by
the higher integrability of v and M the mapping

ϕ 3−→

∫

!

(Du)T v · ϕ dx −

∫

!

(v ⊗ u) : Dϕ dx +

∫

!

Mu · ϕ dx

is continuous in H10 (!)2. Therefore, considering in (3.52) a divergence free strong

approximation ϕ of u in H10 (!)2 we get

∫

!

|Du|2 dx +

∫

!

(Du)T v · u dx −

∫

!

(v ⊗ u) : Du dx +

∫

!

Mu · u dx

= 〈 f, u〉H−1(!)2,H10 (!)2 ,

which is (3.21). This equality clearly implies the uniqueness of a solution u ∈

H10 (!)2 of (3.8), with Mu · u ∈ L1(!).
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It remains to prove the corrector result (3.22). Let ϕ ∈ C∞
c (!). Applying

successively the triangle inequality and the Cauchy-Schwarz inequality we have

∫

!

∣

∣Duε − Du − D(Wε u)
∣

∣ dx

≤

∫

!

∣

∣Duε − Du − D(Wε ϕ)
∣

∣ dx +

∫

!

∣

∣D
(

Wε (u − ϕ)
)∣

∣ dx

≤

∫

!

∣

∣Duε−Du−D(Wε ϕ)
∣

∣ dx +

∫

!

|DWε| |u − ϕ| dx +

∫

!

|Wε| |Du−Dϕ| dx

≤

∫

!

∣

∣Duε − Du − D(Wε ϕ)
∣

∣ dx + c ‖Wε‖H1(!)2×2 ‖u − ϕ‖H10 (!)2 ,

hence by the boundedness of Wε in H
1
0 (!)2×2,

∫

!

∣

∣Duε −Du−D(Wε u)
∣

∣ dx ≤

∫

!

∣

∣Duε −Du−D(Wε ϕ)
∣

∣ dx+c ‖u−ϕ‖H10 (!)2 .

(3.53)
On the other hand, proceeding as in fourth step owing to the second convergences
of (3.20) and (3.10) (which hold in the weak-∗ sense of measures on !) we get
similarly to (3.48) the equality

∫

!

∣

∣Duε − Du − D(Wε ϕ)
∣

∣

2
dx = 〈 f, u〉H−1(!)2,H10 (!)2 −

∫

!

|Du|2 dx

− 2

∫

!

Mu · ϕ dx +

∫

!

M ϕ · ϕ dx + o(1).

Hence, taking into account equality (3.21) and using the Hölder inequality com-
bined with the embedding of H10 (!) in any Ls(!) space, it follows that

∫

!

∣

∣Duε − Du − D(Wε ϕ)
∣

∣

2
dx =

∫

!

M (u − ϕ) · (u − ϕ) dx + o(1)

≤ c ‖M‖Lm(!)2×2 ‖u − ϕ‖2
H10 (!)2

+ o(1).
(3.54)

Therefore, by (3.53) and (3.54) we obtain the inequality

lim sup
ε→0

∫

!

∣

∣Duε −Du−D(Wε u)
∣

∣ dx ≤ c ‖u−ϕ‖H10 (!)2 , for any ϕ ∈ C∞
c (!)2,

(3.55)
which implies the desired convergence (3.22) and concludes the proof of Theo-
rem 3.3.

As in the scalar case we show in the next section that the equi-integrability
condition is crucial to derive the limit Brinkman equation (3.8) with the matrix-
valued function M introduced by L. Tartar [15, 17].
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3.3. A counter-example

Let ! be a regular bounded domain of R
2. For ε > 0, let ωε be the intersection of

! with the periodic lattice of disks of center 2ε κ , κ ∈ Z
2, and of radius ε rε such

that
4π

ε2 | ln rε|
−→
ε→0

γ ∈ (0,∞). (3.56)

This geometry was used by Cioranescu, Murat [6] for the Laplace equation and by
Allaire [2] for the Stokes equation, in order to derive a “strange term” of zero-order
from the homogenization of the Dirichlet boundary conditions on the small disks.

In the square Y := (−1, 1)2, let Q be the disk centered at the origin and of
radius 1, and let Qrε be the disk of same center and of radius rε with measure

|Qrε | = π r2ε . Then, for f ∈ H−1(!)2, we consider the Stokes equation















−"uε +
1ωε

|Qrε |
Juε + ∇ pε = f in !

div (uε) = 0 in !

uε = 0 on ∂!.

(3.57)

Note that, in view of the definition of ωε, we have |ωε| ≈ |!| |Qrε |. Moreover, if

zε ∈ H10 (!) is the solution of the Laplace equation

"zε =
1ωε

|Qrε |
in D′(!), (3.58)

we have
1ωε

|Qrε |
= curl (vε) in D′(!), where vε := J∇zε. (3.59)

Hence, the Stokes problem (3.57) is of the same type as (3.6). On the other hand,
using successively the Cauchy-Schwarz inequality and the estimate (3.67) below
combined with (3.56) we have

∫

!

|∇zε|
2 dx = −

|ωε|

|Qrε |

∫

ωε

zε dx ≤
|ωε|

|Qrε |

(∫

ωε

z2ε dx

)
1
2

≤ c ‖∇zε‖L2(!)2,

which implies that zε is bounded in H
1
0 (!). Therefore, the sequence vε is bounded

in L2(!)2. Moreover, since by periodicity the sequence
1ωε

|Qrε | converges weakly-∗

to 14 inM(!), we get

vε −⇀ v weakly in L2(!)2, with curl (v) =
1

4
in D′(!). (3.60)

On the other hand, it is not difficult to check that vε is not equi-integrable in L
2(!)2.

In fact, the following result shows that Theorem 3.3 does not hold for this particular
sequence vε:
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Theorem 3.5. The sequence uε weakly converges in H
1
0 (!)2 to the solution u of

the Brinkman equation















−"u +
1

4
Ju + ∇ p + Ŵu = f in !

div (u) = 0 in !

u = 0 on ∂!,

(3.61)

where the extra zero-order term Ŵu is given by

(

1ωε

|Qrε |
−
1

4

)

Juε −⇀ Ŵu weakly-∗ inM(!)2, (3.62)

and Ŵ is the constant matrix defined by

Ŵ :=
1

4
(

γ 2 + 1
) (γ I − J ) . (3.63)

Moreover, the matrix obtained from convergence (3.20) according to the Tartar
approach is given by

M =
1

4 γ
I. (3.64)

Remark 3.6. The matrix Ŵ of the Brinkman equation (3.61) is not symmetric con-
trary to the matrix M arising in the Tartar approach. Moreover, we have

Ŵu · u < Mu · u if u )= 0.

The gap between the two previous energies (which are the energies dissipated by
viscosity according to [14]) is due to the loss of equi-integrability of the sequence
vε defined by (3.59). Therefore, the equi-integrability of vε can be regarded as the
best condition to ensure the result of Theorem 3.3.

Remark 3.7. It is worth to mention that the pathology displayed in Theorem 3.5 is
not due to the absence of correctors. Indeed, with the oscillating sequences v1ε , v

2
ε

defined by (3.68), (3.69) below, the following corrector result holds:

Proposition 3.8. Assume that u ∈ W 1,r (!)2 for some r > 2. Then, we have

uε − u − v1 v1ε − v2 v2ε −→ 0 strongly in H1(!),

where v = (v1, v2) :=
1

γ 2 + 1
(− u1 + γ u2,− u2 − γ u1) .

(3.65)

Remark 3.9. If the right-hand side f belongs to W−1,r (!)2 for some r > 2, then
using the regularity results for the Stokes equation (see, e.g., [10]) the solution u
of the Stokes equation (3.61) belongs to W 1,r (!)2. This provides a quite general
condition under which the strong convergence (3.65) holds.
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The proof of Theorem 3.5 is partially based on the properties of the test func-
tions v1ε , v

2
ε defined by (3.68), (3.69) below, and introduced by Allaire [2]. They

were also used in [5] to derive a homogenized Brinkman type equation but, contrary
to (3.6), from a Stokes equation without zero-order term. More precisely, in [2] the
velocity is assumed to be zero in the set ωε. In [5] the viscosity is assumed to be
very high in cylinders of section ωε, which leads to a three-dimensional nonlocal
Brinkman equation. In the perturbed Stokes equation (3.57) a highly oscillating
zero-order term is concentrated on ωε.

On the one hand, the sets Qrε and ωε satisfy the following estimates:

Lemma 3.10. There exists a constant C > 0 such that

∀ V ∈ H1(Y ),

∣

∣

∣

∣

∣

∫

Qrε

V dy −

∫

Y

V dy

∣

∣

∣

∣

∣

≤ C
√

| ln rε| ‖∇V‖L2(Y )2, (3.66)

∀ v ∈ H10 (!),

∫

ωε

|v|2 dx ≤ C
(

1+ ε2| ln rε|
)

‖∇v‖2
L2(!)2

. (3.67)

Proof. Estimate (3.66) can be easily proved using the polar coordinates. Estimate
(3.67) is an immediate consequence of the Lemma 3 of [12], and can also be de-
duced from (3.66).

On the other hand, consider the εY -periodic functions viε and p
i
ε, for i = 1, 2,

defined by

viε(x) := V i
ε

( x

ε

)

, piε(x) :=
1

ε
P iε

( x

ε

)

, for x ∈ R
2, (3.68)

where V i
ε ∈ H1# (Y ) are P iε ∈ L2(Y ) are the Y -periodic functions defined by

V i
ε :=

{

ei in Qrε

0 in Y \ Q,
P iε = 0 in Qrε ∪ (Y \ Q) ,

∫

Y

P iε dy = 0, (3.69)

which solve the Stokes equation

−"V i
ε + ∇P iε = 0 in Qrε \ Q̄. (3.70)

Moreover, the sequences V i
ε and P

i
ε satisfy the following estimates:

Lemma 3.11. There exists a constant C > 0 such that







‖V i
ε ‖L2(Y )2 + ‖DV i

ε ‖2
L2(Y )2×2

+ ‖P iε‖
2
L2(Y )

≤
C

| ln rε|
‖V i

ε ‖L∞(Y )2 ≤ C,

(3.71)
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and for any function V ∈ H1(Y ),

∣

∣

∣

∣

∣

∫

Y

DV i
ε : DV dy −

∫

Y

P iε div (V ) dy − γ iε ei ·

(

∫

Qrε

V −

∫

Y\Q

V

)∣

∣

∣

∣

∣

≤
C

| ln rε|
‖DV‖L2(Y )2×2,

(3.72)

where −
∫

denotes the average value and

γ iε ≈
ε→0

4π

| ln rε|
. (3.73)

Proof. Estimate (3.71) can be proved using the polar coordinates (see also [2]).
Estimate (3.72) is a straightforward consequence of the Lemma 3.3 of [4] (with a
refinement for the right-hand side of the inequality).

Proof of Theorem 3.5. The proof is divided into two steps. In the first step we de-
termine the homogenized Brinkman equation (3.61). The second step is devoted to
the computation of the matrix M defined in the Tartar approach.

First step. Determination of the homogenized equation.

Using uε as test function we have

∫

!

|Duε|
2 = 〈 f, uε〉H−1(!)2,H10 (!)2 ≤ c ‖ f ‖H−1(!)2 ‖Duε‖L2(!)2×2 ,

which implies that uε is bounded in H
1
0 (!)2. On the other hand, let ϕ ∈ C∞

c (!)

with zero !-average. There exists (see, e.g., [3]) a vector-valued function 9 ∈

C∞
c (!)2 such that

div (9) = ϕ in ! and ‖9‖H10 (!)2 ≤ c ‖ϕ‖L2(!) ,

where the constant c is independent of ϕ, 9. Using 9 as test function in equation
(3.57) and applying successively the Cauchy-Schwarz inequality, estimates (3.67)
and (3.56) we get

∣

∣

∣

∣

∫

!

pε ϕ dx

∣

∣

∣

∣

≤

∣

∣

∣〈 f,9〉H−1(!)2,H10 (!)2

∣

∣

∣ +

∣

∣

∣

∣

∫

!

Duε : D9

∣

∣

∣

∣

+

∣

∣

∣

∣

∫

!

1ωε

|Qrε |
Juε · 9

∣

∣

∣

∣

≤ c ‖D9‖L2(!)2×2 + c

(∫

ωε

|uε|
2

)
1
2
(∫

ωε

|9|2
)
1
2

≤ c ‖D9‖L2(!)2×2 + c ε2 | ln rε| ‖Duε‖L2(!)2×2 ‖D9‖L2(!)2×2

≤ c ‖ϕ‖L2(!).
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This combined with the regularity of ! implies that pε is bounded in L
2(!)/R.

Therefore, up to a subsequence the following convergences hold
{

uε −⇀ u weakly in H10 (!)2

pε −⇀ p weakly in L2(!)/R.
(3.74)

Now, we have to determine the limit of the sequence
1ωε

|Qrε | Juε. On the one hand,

re-scaling inequality (3.72) we obtain that the functions viε and piε, i = 1, 2, of

(3.68) and any function v ∈ H10 (!)2 satisfy the inequality

∣

∣

∣

∣

∫

!

Dviε : Dv −

∫

!

piε div (v) −
γ iε

ε2
ei ·

(∫

!

1ωε

|Qrε |
v −

∫

!

1Y\Q

|Y \ Q|

( x

ε

)

v

)∣

∣

∣

∣

≤
c

ε | ln rε|
‖Dv‖L2(!)2×2 .

(3.75)
Moreover, by (3.71) and (3.56) the following convergences hold

{

viε −⇀ 0 weakly in H1(!)2

piε −⇀ 0 weakly in L2(!)/R.
(3.76)

Then, applying inequality (3.75) with v = ϕ uε, ϕ ∈ C∞
c (!), we deduce from

(3.73) and (3.56) that
∫

!

Dviε : Duε ϕ − (γ + o(1)) ei ·

(∫

!

1ωε

|Qrε |
ϕ uε −

∫

!

1

4
ϕ u

)

= o(1). (3.77)

On the other hand, putting ϕ viε as test function in (3.57), using that v
i
ε = ei in ωε

and the convergences (3.76), (3.74), we have
∫

!

Duε : Dviε ϕ +

∫

!

1ωε

|Qrε |
Juε · ei ϕ = o(1). (3.78)

Denote

ν := lim
ε→0

1ωε

|Qrε |
Juε weakly-∗ inM(!)2,

where the limit holds up to a subsequence by virtue of the estimate (3.67) combined
with the Cauchy-Schwarz inequality. Then, equating (3.77) and (3.78) and passing
to the limit we get for i = 1, 2,

∫

!

ϕ ei · ν = γ

∫

!

ϕ ei · Jν +
γ

4

∫

!

ϕ ei · u, for any ϕ ∈ C∞
c (!),

which implies the equality ν = γ Jν +
γ

4
u. Hence, we deduce the convergence

1ωε

|Qrε |
Juε −⇀ ν =

γ

4
(I−γ J )−1 u=

γ

4 (γ 2+1)
(I+γ J ) u weakly-∗ inM(!)2.

(3.79)
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Therefore, passing to the limit in (3.57) with (3.79) we obtain the homogenized
equation

−"u +
1

4
Ju + ∇ p +

1

4 (γ 2 + 1)
(γ I − J ) u = f in D′(!), (3.80)

which yields the desired Brinkman equation (3.61) with the matrix Ŵ of (3.63).

Second step. Derivation of the matrix M .

Let λ ∈ R
2. Consider the solutions Wλ

♯,ε ∈ H1♯ (Y ) (the set of the Y -periodic

functions in H1loc(R
2)) and Qλ

♯,ε ∈ L2♯(Y )/R of the perturbed Stokes problem







































−"Wλ
♯,ε + ε

(

1Qrε

|Qrε |
−
1

4

)

Jλ + ∇Qλ
♯,ε = 0 in R

2

div
(

Wλ
♯,ε

)

= 0 in R
2

Wλ
♯,ε is Y -periodic

∫

Y

Wλ
♯,ε = 0.

(3.81)

Note that the first equation of (3.81) is equivalent to the variational formulation in
the torus,

∀ V ∈H1♯ (Y ),

∫

Y

DWλ
♯,ε : DV dy+ε

(

∫

Qrε

V −

∫

Y

V

)

·Jλ−

∫

Y

Qλ
♯,ε div (V ) dy=0.

(3.82)
Hence, the re-scaled functions wλ

♯,ε and q
λ
♯,ε defined by

wλ
♯,ε(x) := εWλ

♯,ε

( x

ε

)

and qλ
♯,ε(x) := Qλ

♯,ε

( x

ε

)

, for x ∈ !, (3.83)

are εY -periodic solutions of the problem











−"wλ
♯,ε +

(

1Qrε

|Qrε |

( x

ε

)

−
1

4

)

Jλ + ∇qλ
♯,ε = 0 in R

2

div
(

wλ
♯,ε

)

= 0 in R
2.

(3.84)

First of all, let us determine a priori estimates satisfied by the sequences Wλ
♯,ε, w

λ
♯,ε,

Qλ
♯,ε, and q

λ
♯,ε. Putting W

λ
♯,ε as test function in equation (3.82) we have

∫

Y

∣

∣DWλ
♯,ε

∣

∣

2
dy + ε

∫

Qrε

Jλ · Wλ
♯,ε dy = 0, (3.85)
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hence by the estimates (3.66) of Lemma 3.10 and (3.56)

∥

∥DWλ
♯,ε

∥

∥

2

L2(Y )2×2
= ε

∣

∣

∣

∣

∣

∫

Qrε

Wλ
♯,ε dy

∣

∣

∣

∣

∣

≤ C ε
√

| ln rε|
∥

∥DWλ
♯,ε

∥

∥

L2(Y )2×2

≤ c
∥

∥DWλ
♯,ε

∥

∥

L2(Y )2×2
.

Therefore, Wλ
♯,ε is bounded in H

1
♯ (Y )2, and there exists a constant vector W̄λ ∈ R

2

such that up to a subsequence we have

lim
ε→0

(

ε

∫

Qrε

Wλ
♯,ε dy

)

= W̄λ. (3.86)

On the other hand, let ϕ ∈ C∞
♯ (Y ) with zero Y -average. There exists 9 ∈ C∞

♯ (Y )2

with zero Y -average such that

div (9) = ϕ in R
2 and ‖9‖L2(Y )2×2 ≤ c ‖ϕ‖L2(Y ),

where c is a constant independent of ϕ, 9. Putting 9 as test function in (3.82) we
have by (3.66) and (3.56)

∣

∣

∣

∣

∫

Y

Qλ
♯,ε ϕ dy

∣

∣

∣

∣

≤

∣

∣

∣

∣

∫

Y

DWλ
♯,ε : D9 dy

∣

∣

∣

∣

+ ε

∣

∣

∣

∣

∣

∫

Qrε

9 dy

∣

∣

∣

∣

∣

≤ c ‖D9‖L2(Y )2×2 + c ε
√

| ln rε| ‖D9‖L2(Y )2×2

≤ c ‖D9‖L2(Y )2×2 ≤ c ‖ϕ‖L2(Y ),

hence Qλ
♯,ε is bounded in L

2
♯(Y )/R. From the boundedness and the Y -periodicity

of Wλ
♯,ε and Q

λ
♯,ε we thus deduce that the sequences wλ

♯,ε and q
λ
♯,ε of (3.83) satisfy

the convergences
{

wλ
♯,ε −⇀ 0 weakly in H1(!)2

qλ
♯,ε −⇀ 0 weakly in L2(!)/R.

(3.87)

Now, let us check that the periodic function wλ
♯,ε of (3.84) gives the same matrix

M (3.20) as the function wλ
ε of (3.7) which satisfies a Dirichlet boundary condition.

Since M is symmetric, this is equivalent to prove that for any λ ∈ R
2,

(Dwλ
♯,ε)

T vε · λ − (Dwλ
ε )T vε · λ −⇀ 0 in D′(!), (3.88)

where vε is defined by (3.59). Let ϕ ∈ C∞
c (!). Putting ϕ wλ

♯,ε in the equation

(3.7) satisfied by wλ
ε and ϕ wλ

ε in the equation (3.84) satisfied by wλ
♯,ε, and using
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the convergences (3.87) satisfied by wλ
♯,ε, q

λ
♯,ε as well as the similar ones satisfied

by wλ
ε , q

λ
ε , we get














∫

!

Dwλ
ε : Dwλ

♯,ε ϕ −

∫

!

curl (vε) Jw
λ
♯,ε · λϕ −→

ε→0
0

∫

!

Dwλ
♯,ε : Dwλ

ε ϕ −

∫

!

curl (vε) Jw
λ
ε · λϕ −→

ε→0
0.

(3.89)

Moreover, by the representation formula (3.11) we have

{

curl (vε) Jw
λ
♯,ε − (Dwλ

♯,ε)
T vε −⇀ 0

curl (vε) Jw
λ
ε − (Dwλ

ε )T vε −⇀ 0
in D′(!)2. (3.90)

Therefore, combining (3.89) and (3.90) we obtain the desired convergence (3.88).

It remains to determine the matrix M . On the one side puttingwλ
♯,ε as test func-

tion in (3.84) and using the convergences (3.88), (3.20), and on the other side using
the εY -periodicity of wλ

♯,ε (3.83), we get similarly to (3.9) and up to a subsequence

∣

∣Dwλ
♯,ε

∣

∣

2
−⇀ Mλ·λ and

∣

∣Dwλ
♯,ε

∣

∣

2
−⇀ lim

ε→0

(∫

Y

∣

∣DWλ
♯,ε

∣

∣

2
dy

)

weakly-∗ inM(!).

(3.91)
This combined with (3.85) and (3.86) gives

Mλ · λ =
1

4
J W̄λ · λ. (3.92)

Let us compute the constant vector W̄λ. To this end, putting the divergence free
function Wλ

♯,ε in the inequality (3.72) satisfied by V
i
ε , i = 1, 2, and taking into

account the estimates (3.71), (3.56) and the boundedness of Wλ
♯,ε in H

1(Y )2, we

have
∫

Y

DV i
ε : DWλ

♯,ε dy = γ iε ei ·

(

∫

Qrε

Wλ
♯,ε dy

)

+ o(ε). (3.93)

Moreover, putting the divergence free function V i
ε in (3.82) with V

i
ε = ei in Qrε ,

we get

∫

Y

DWλ
♯,ε : DV i

ε dy = − ε

(

∫

Qrε

V i
ε −

∫

Y

V i
ε

)

· Jλ = ε Jei · λ + o(ε), (3.94)

since by (3.71) V i
ε strongly converges to zero in L

2(Y )2. The estimates (3.93) and
(3.94) divided by ε together with (3.86), (3.73) and (3.56) imply that

γ ei · W̄λ = Jei · λ or equivalently W̄λ = −
1

γ
Jλ. (3.95)

This combined with (3.92) yields the value (3.20) of the symmetric matrix M .
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Proof of Proposition 3.8. Let v = (v1, v2) ∈ W 1,r (!)2. Considering the functions
viε, i = 1, 2, which are defined by (3.68) and satisfy the convergences (3.76), we
have

Eε :=

∫

!

∣

∣

∣Duε − Du − v1 Dv1ε − v2 Dv2ε

∣

∣

∣

2
dx

=

∫

!

|Duε|
2 dx −

∫

!

|Du|2 dx +

∫

!

(

v21 |Dv1ε |
2 + v22 |Dv2ε |

2
)

dx

− 2

∫

!

(

v1 Duε : Dv1ε + v2 Duε : Dv2ε

)

dx + o(1).

(3.96)

Putting uε in equation (3.57) and u in equation (3.61) we get
∫

!

|Duε|
2 dx −

∫

!

|Du|2 dx= 〈 f, u〉H−1(!)2,H10 (!)2 −

∫

!

|Du|2 dx+ o(1)

=

∫

!

Ŵu · u dx + o(1)

=
γ

4 (γ 2 + 1)

∫

!

|u|2 dx + o(1).

(3.97)

Moreover, putting V i
ε in estimate (3.72) together with V

i
ε = ei in Qrε , (3.71), (3.73),

(3.56), and using the εY -periodicity of Dviε, we get

|Dviε|
2 −⇀ lim

ε→0

(

1

ε2

∫

Y

|DV i
ε |2 dy

)

=
γ

4
weakly-∗ inM(!̄),

hence since vi ∈ C(!̄),
∫

!

(

v21 |Dv1ε |
2 + v22 |Dv2ε |

2
)

dx =
γ

4

∫

!

|v|2 dx + o(1). (3.98)

Estimates (3.96), (3.97) and (3.98) thus imply that

Eε =
γ

4 (γ 2 + 1)

∫

!

|u|2 dx +
γ

4

∫

!

|v|2 dx

− 2

∫

!

(

v1 Duε : Dv1ε + v2 Duε : Dv2ε

)

dx + o(1).

(3.99)

On the other hand, applying the estimate (3.75) with the function v = vi uε, i =
1, 2, and using the convergences (3.76), (3.73), (3.56) and (3.79), we obtain
∫

!

Dviε : Duε vi dx=

∫

!

Dviε : D(vi uε) dx + o(1)

=
γ iε

ε2
ei ·

(∫

!

1ωε

|Qrε |
uεvi dx−

∫

!

1Y\Q

|Y \ Q|

( x

ε

)

uεvidx

)

+o(1)

=
γ 2

4 (γ 2+1)

∫

!

ei · (γ I− J ) u vi dx −
γ

4

∫

!

ui vi dx + o(1).
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This combined with (3.99) yields

Eε =
γ

4 (γ 2 + 1)

∫

!

|u|2 dx +
γ

4

∫

!

|v|2 dx

+
γ

2 (γ 2 + 1)

∫

!

u · v dx +
γ 2

2 (γ 2 + 1)

∫

!

Ju · v dx + o(1).

(3.100)

Putting the function

v := −
1

γ 2 + 1
(I + γ J ) u

in (3.100) we get

Eε =

∫

!

∣

∣

∣Duε − Du − v1 Dv1ε − v2 Dv2ε

∣

∣

∣

2
dx −→

ε→0
0. (3.101)

Finally, since the sequences viε strongly converge to zero in L
2r
r−2 (!)2 by (3.76) and

u ∈ W 1,r (!)2, the strong convergence (3.65) is a straightforward consequence of
(3.101).
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