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Abstract

It is necessary for automated vehicles (AVs) and advanced driver assistance systems (ADASs) to have a
better understanding of the traffic environment including driving behaviors. This study aims to build a
driving behavior awareness (DBA) model that can infer driving behaviors such as lane change. In this
study, a dynamic Bayesian network DBA model is proposed, which includes three layers, namely, the
observation, hidden and behavior layer. To enhance the performance of the DBA model, the network
structure is optimized by employing a distributed genetic algorithm (GA). Using naturalistic driving data
in Beijing, the comparison between the optimized model and other non-optimized models such as the
hidden Markov model (HMM) and HMM with a mixture of Gaussian outputs (GM-HMM) indicates that
the optimized model could estimate driving behaviors earlier and more accurately.
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1. Introduction

Automated vehicles (AVs) and advanced driver as-

sistance systems (ADASs) have received extensive

research interest because they show great potential

for use in more efficient, safer, and cleaner trans-

portation systems1. It is evident that developments

in this field will increase in both quality and impor-

tance over time2. For AV and ADAS to understand

the environment, particularly in complex traffic sce-

narios, situation awareness (SA) is indispensable.

The work of SA is to perceive environmental ele-

ments, comprehend their meaning, and project their

status for the near future3,4. Driving behavior aware-

ness (DBA) is a kind of SA for the automated vehi-

cle and ADAS to have the comprehension of driv-

ing behaviors such as vehicle cut-in, stop or go, and

turning left or right at the intersection5.

DBA helps AVs and ADASs to have a better

understanding of the traffic environment in an ab-

stract aspect. Moreover, DBA such as vehicle cut-

in awareness plays a crucial role in driving strate-

gies. Taking the cut-in scenario as an example, when

a vehicle in the adjacent lane cuts in, the AV has

to be aware of the adjacent vehicles cut-in behav-

ior with the aim of changing its strategies, such as

slowing down, and changing from a car-following

model to a lane-changing model. Otherwise, the

AV may suddenly brake or cause a serious traffic

accident. In addition, in the interaction scenario,

DBA could contribute to AVs deciding whether to

slow down or go straight. Moreover, DBA models

play a significant position in current ADASs such

as lane-keeping as well as lane-departure systems.

With the development of Vehicle-to-Vehicle (V2V)

and Vehicle-to-Infrastructure (V2I) communication

technologies, vehicles could share information in-

cluding control information such as steering angle,

and braking pedal signals. This information helps a

vehicle estimate the other vehicles driving behavior

more accurately.

To date, DBA models have been researched ex-

tensively.

Machine learning is one of the common meth-

ods to gain experience and knowledge from data6-12.

The Bayesian network approach was used in this

problem, and Dagli et al. developed a cutting-in ve-

hicle recognition model with sensors available for

adaptive cruise control (ACC) systems7. Bender et

al. presented an unsupervised learning method for

converting naturalistic driving data into high-level

behaviors8. Dogan et al. compared the behavior es-

timating performance of machine learning methods

such as the support vector machine, recurrent neural

network, and feed forward neural network11. Nils-

son et al. formulated simple logic rules for intention

recognition of highway maneuvers12. These meth-

ods did not consider the influences of the historic

information.

Further, game-theoretical approaches were used

to model driving behaviors such as lane-changing

and merging behavior. Talebpour et al. presented

a model to understand and predict lane-changing be-

havior based on a game-theoretical approach that en-

dogenously accounts for the flow of information in a

connected vehicular environment13. Liu et al. mod-

eled vehicle interactions during a merging process

under an enhanced game-theoretical framework14.

The testing results showed that this framework could

predict a vehicles actions with relatively high accu-

racy. The combination of interaction-aware inten-

tion estimation with maneuver-based motion predic-

tion on the basis of supervised learning is proposed

and the motion intention is modeled by the game

theoretical approach15.

Moreover, Markov models were employed

and researched extensively to estimate driving

behaviors16. Song et al. developed the intention-

aware decision making model for an uncontrolled

intersection. In their study, two layered HMMs were

used to model driving intentions17. Using continues

hidden Markov model (CHMM), driver intention of

changing lane could be estimated in an early stage18.

In this paper, the steering wheel angle, steering

wheel angle velocity and lateral acceleration were

used as optimal observation signals. Gadepally et al.

built a framework for estimating driving decisions at

an intersection19. Their research used HMMs to in-

fer driving decisions from filtered continuous obser-

vations near the intersection. Furthermore, dynamic

Bayesian network was widely used in driving behav-

ior estimation because of its ability to deal with time

sequential information. Ontann et al. mentioned
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the framework of the dynamic Bayesian network for

learning from observations20. Li et al. developed

a driving intention inference model by considering

past driving behavior using dynamic Bayesian net-

work theory21. In their study, the auto-regression

HMM was used to consider past behavior to infer

driving intention. Moreover, Lefvre et al. described

a probabilistic framework to estimate a drivers in-

tended maneuvers, which was applied in interaction

scenarios22. Nonetheless, most of the research was

based on a specific network structure.

The objective of this study is to build a DBA

model based on a dynamic Bayesian network23 and

distributed GA, with the aim to obtain experience

and inference knowledge from naturalistic driving

data. This DBA model includes three layers namely

the observation layer, hidden layer and behavior

layer. The network is shown in Fig. 1. The struc-

ture of the DBA network is difficult to optimize even

using the GA. In this study, distributed GA is used,

which has received considerable attention as it could

reduce the execution time and improve the searching

performance for the global optimal result, particu-

larly in large complex system40. Furthermore, the

evaluation indexes of DBA were proposed by con-

sidering the recognition start and succeed delay time

(introduced in Section 4) for estimating driving be-

havior.

Fig. 1. A DBA network composing the observation layer,

hidden layer and behavior layer. Y represents the observa-

tion parameters, X indicates the behavior parameters and M

is the hidden parameter. t reflects the time flow.

2. Dynamic Bayesian Network based DBA

Model

In this section, a DBA model is proposed on the ba-

sis of the dynamic Bayesian theory, which includes

three layers, namely the observation, hidden, and be-

havior layers. This section includes a brief review of

DBA modeling and parameter learning for a specific

network structure.

2.1. DBA modeling

Based on the dynamic Bayesian theory, the DBA

model is defined as a directed acyclic graph (DAG),

composing a prior Bayesian network B1 and a two-

slice temporal Bayes net B→ according to the first-

order Markov assumption. This is shown in Fig. 2.

The nodes in the network, representing variables

such as driving behaviors, are connected by arcs

and parameters expressed as conditional probabilis-

tic distributions.

Fig. 2. Dynamic-Bayesian-network-based DBA model.

In the network, the DBA is modeled as a stochas-

tic process using continuous observations. A set

of random variables in the networks are defined in

terms of Zt = (Xt ,Mt ,Yt), where Xt represents the

driving behavior at time t, Mt represents the hid-

den parameters in the network and Yt represents the

observation parameters at time t. Moreover, B1 is

a Bayesian network, which defines the prior P(Zt),
and B→ defines the P(Zt |Zt−1) by means of DAG.

This definition can be expressed as follows:

P(Zt |Zt−1) =
N

∏
i=1

P
(

Zi
t |Pa

(

Zi
t

))

(1)

where Zi
t is the ith node at time t and Pa(Zi

t) are the

parents of Zi
t in the graph. The parent node Pa(Zi

t)
can either be in the same time slice or in the pre-

vious time slice. In general, the property of a two-

time slice Markov works well in a variety of practi-

cal situations24.

The network in this study is defined by unrolling

the two-time slice temporal Bayesian network until
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T time slices are obtained. The resulting joint distri-

bution is expressed as follows:

P(Z1:T ) =
T

∏
t=1

N

∏
i=1

P
(

Zi
t |Pa

(

Zi
t

))

(2)

In this study, if the node Z and its parent nodes

Pa(Z) are all discrete variables, then

P(Z = i|Pa(Z) = j) = P(i, j) (3)

where P(i, j) is the probability when Z = i and

Pa(Z = j).
If the node is continuous and its parent nodes

are discrete variables, then the condition distribution

could be expressed as follows:

P(Z = z|Pa(Z) = i) = N (z; µi,Σi) (4)

where N is the Gaussian distribution, µi is the mean

of the distribution, and Σi is the cross variance.

Finally, if the node is continuous and its parent

nodes are continuous variables, then

P(Z = z|Pa(Z) = y) = N (z;W∗y+µ,Σ) (5)

where W is the weight coefficient.

For example, in the structure of HMMs with a

mixture-of-Gaussian output (GM-HMM), shown in

Fig. 3, X and M are discrete nodes and Y represents

continuous observation information. According to

the first-order Markov assumption, the behavior pa-

rameter in time t is connected by an arc to behavior

parameter in the next time t + 1. In other words, a

behavior parameter in time t has direct influence on

the behavior parameter at the next time t +1. There-

fore, based on the structure of the GM-HMM, the

probability conditional distribution for the X and M

nodes are as follows:

P(Mt = m|Xt = i) = P(i,m) (6)

P(Yt |Xt = i,Mt = m) = N (yt |µi,m,Σi,m) (7)

Fig. 3. Structure of the GM-HMM.

In this study, the behavior estimation results are

obtained according to the historic observation infor-

mation, which can be expressed as follows:

x∗t = max
xt

P(xt |y1:t) (8)

where xt is the driving behavior at time t and x∗t rep-

resents the most likely estimating result according to

the historic observation information.

2.2. Parameter learning of a specific network

structure

Parameter learning means estimating the parameters

of the conditional probability distributions of a spe-

cific network structure. Since there are hidden nodes

in the network, this problem is considered partially

observable. In this study, we define hidden parame-

ters H = [Mt ] and observable parameters O= [Yt ,Xt ].
Therefore, in the partially observable case, the log-

likelihood is

L = ∑
n

log

(

∑
h

P(H = h,O = on)

)

(9)

where O= on are observable nodes on the data spec-

ified by the case on. Unlike fully observable case, it

is much more challenging to optimize the partially

observable case. In this study, EM theory is em-

ployed to learn from the training data. The EM al-

gorithm iterates between an expectation step (E step)

and a maximization step (M step)25. These two steps

stop repeating when convergence is reached and are

introduced as follows.

The EM algorithm uses Jensens inequality26 to

iteratively maximize.

According to Jensens inequality, for any concave

function f ,

f

(

∑
j

λ jy j

)

> ∑
j

λ j f (y j) (10)

where ∑
j

λ j = 1. Because the log function is a con-

cave function, we can write

L = ∑
n

log

(

∑
h

P(H = h,O = on)

)

(11)
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L > ∑
n

∑
h

q(h|on) log(P(H = h,O = on))−

∑
n

∑
h

q(h|on) log(q(h|on))
(12)

where q is a function that satisfies ∑
h

q(h|on) = 1 and

0 6 q(h|on)6 1.

Therefore, to maximize the low bound in the

above equation with respect to q, it can be obtained

that

q(h|on) = Pθ (h|on) (13)

The above step represents the E step. Maximiz-

ing the lower bound with respect to the free parame-

ter θ ′ is achieved by maximizing the following log-

likelihood function:

Q(θ ′|θ) =

∑
n

∑
h

P(h|on,θ) log
(

P
(

H = h,O = on|θ
′
)) (14)

This step is known as the M step. Dempster et al.

proved that if θ ′ is represented through Q(θ ′|θ) >
Q(θ |θ), one can guarantee that P(D|θ ′) > P(D|θ),
which improves the data log-likelihood25.

3. Distributed Genetic Algorithm Used to

Optimize Structures

Because optimizing the structure of the network

is a time consuming process, in this study, a dis-

tributed GA that can improve the network optimiza-

tion speed is proposed. This section includes sub-

sections namely analyzing the influence of structure

on the models performance, GA and distributed GA

used to optimize the models.

3.1. Influence of structure on the models

performance

The structure of the network includes the intra-slice

and inter-slice connectivities, which are represented

by B1 and B→, respectively. Different structures of

the network perform differently in order to under-

stand the driving behavior.

In this study, different intra, and inter-slice con-

nectivities, and the parameters of hidden nodes to-

gether can lead to different networks with different

performance. For example, in Fig. 3, if the param-

eter M is 1, then it equals the HMM. The inference

results of GM-HMM, whose parameter M is defined

as 3 for comparison, and HMM are shown in Fig. 4.

In both models, there is a right and left lane change

case. It is obvious that GM-HMM is much better

than HMM with the same input data sequences be-

cause the GM-HMM model can estimate the behav-

iors earlier than the HMM model (The performance

evaluation will be introduced in Section 4). There-

fore, optimization of the network structure is signif-

icant in the DBA model.

Since the optimization of the network structure

is a non-linear problem, the GA is employed in this

study. In addition, this algorithm is time consum-

ing because of the EM algorithm; therefore, a dis-

tributed GA is employed. These algorithms will be

introduced in the next two parts in this section.

3.2. Genetic algorithm to optimize the models

The term GA was first employed by Holland27. Now

research into GAs is flourishing and goes much

further than the original GA of Holland. A GA

is a global search approach that mimics biological

evolution28. GAs have several significant differ-

ences from other traditional optimization methods29.

For example, it searches a population of points in

parallel and not from a single point. Moreover, GAs

do not require detailed knowledge about the problem

but only the level of corresponding fitness according

to the objective functions.

GAs are iterative toward to better solutions by

applying the principle of fittest survival. Just as

in natural selection, a new set of individuals will

be created by a sequence of natural gene genera-

tions such as mating, mutation, selection according

to their fitness level on the basis of problem domain,

and recombination30-31.

3.2.1. The problem description

In this study, a GA is used to optimize the network

structure. We assume that the structure of the net-

work is a discrete search space χ , and the optimal
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Figure 4: The estimation result comparison for two different models (HMM and GM-HMM) in two cases (right

and left lane change case).

function can be shown as follows:

f : χ 7→ R (15)

where f is the objective function. Therefore, the

problem is to find an optimal x as follows:

min
s∈χ

f (16)

where s is a decision vector that refers to a kind of

the network structure. f is a function to evaluate the

performance of a specific network to estimate driv-

ing behaviors.

3.2.2. The search space representation of networks

A network structure can be represented as an indi-

vidual x, which conveys the DAG structure as well

as the parameter in the hidden layer. The networks

compose as two parts (B1,B→) as shown in Fig. 2;

therefore, the individual x includes three parts as fol-

lows:

x = [g1,g2,g3] (17)

in which g1 represents the graph structure of B1,g2

represents the structure of the two-slice temporal

Bayes net B→, and g3 represents the parameter of

the hidden layer Mt .

By considering the features of DAG24, g1 is de-

fined as three binary strings:

g1 = [b1,b2,b3] (18)

in which b1 represents whether there is an arc from

node X1 to node M1 in B1. In another words, if

b1 = 1, then the behavior node X1 influences hidden

node M1. On the contrary, there are no influential

arcs. In the same way, b2 indicates whether there

is a connection from node X1 to node Y1 in B1 and

b3 indicates whether there is an arc from node M1

to node Y1 in B1. For example, in Fig. 2, the graph

structure of B1 can be expressed as [1,1,1].
g2, which represents the influential relationships

for a two-slice temporal Bayes net B→, can be de-

fined by nine binary strings:

g2 = [b4,b5,b6,b7,b8,b9,b10,b11,b12] (19)
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where [b4,b5,b6] reflects the connections of X1 to

nodes X2, M2, and Y2, and [b7,b8,b9] reflects the

connections of M1 to nodes X2, M2, and Y2. More-

over, [b10,b11,b12] reflects the connections of Y1 to

nodes X2, M2, and Y2. Therefore, in Fig. 2, the struc-

ture of the two-slice temporal Bayes net B→ can be

represented by [1,1,0,0,0,1,0,0,1].
g3, the gene of the hidden layer parameter, is de-

fined as four binary strings in this study:

g3 = [b13,b14,b15,b16] (20)

For example, the individual of HMM defined by

a dynamic Bayesian network24 can be represented

by the following equation:

xHMM = [1,0,1,1,0,0,0,0,0,0,0,0,0,0,0,1] (21)

As a result, there is a mapping from the individ-

ual x to the structure of the network s. Therefore, x

could be given by the search space:

m : x 7→ s (22)

A population is formed by individuals of the net-

works that evolve by a set of actions such as selec-

tion, gene mating, recombination and gene muting.

According to GA theory, the population can evolve

into an optimal result, which means an optimized

network structure. The evolution actions can be de-

fined by the following equation:

X⃗ (n) = T
(

X⃗ (n−1)
)

n > 1 (23)

where X⃗(n) means the nth evolving population of

the algorithm for n > 1 and

T = Tm ∗Tc ∗Ts (24)

where Tm is the mutation operator, Tc is the crossover

operator, and Ts represents the selection operator.

Therefore, the GA can be represented as

X⃗ (n) = Tm∗Tc∗Ts

(

X⃗ (n−1)
)

n > 1 (25)

However, this is a time consuming process be-

cause of EM algorithm at each alteration. In the fol-

lowing section, a distributed GA will be introduced,

which could enhance the optimization speed based

on the distributed algorithm.

3.3. Distributed genetic algorithm for

optimization

In this section, a distributed GA for optimizing the

network is proposed. A distributed system is defined

as one in which the components from networked

computers communicate and coordinate their ac-

tions by passing messages32. Distributed systems

are widely used in web searches, online games,

power system networks, etc. Furthermore, dis-

tributed systems have several advantages including

being more reliable, more responsible, and less time

consuming. These advantages were observed even

when some distributed GAs were executed on a sin-

gle processor33.

Several items influence the performance of the

distributed GA, such as the number of demes, deme

size, distributed topology of migration connection,

migration intervals, migration rate, and other gen-

eral genetic parameters. Several distributed topolo-

gies are widely used, as shown in Fig. 5. Master-

slave is a simple model, which can evolve in a global

way. In other distributed genetic topologies such

as (b) and (c) in Fig. 5, good results will quickly

migrate to all the demes with a dense connectivity.

If the distributed genetic topologies are connected

sparsely, the nodes will be more isolated and vari-

able solutions will appear. In this study, a coarse

grain and master-slave model is employed as the ge-

netic topology which is a hybrid topology33. Here

the individuals can migrate between directly adja-

cent demes as in Fig. 5 (c). Better individuals will

be chosen as the better migrants replace the worse

ones. More information about the influential items

of GAs can be found in Cant-Paz35.

...

Master

Slaves

Workers

(a) (b) (c)

Master

Slaves

Master

Slaves

Master

Slaves

Master

Slaves

Fig. 5. The connection topologies of some distributed ge-

netic algorithm ((a) is a master-slave model, (b) is a fine

grain model and (c) is a hybrid named coarse grain and

master-slave model).
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As a result, in the distributed GA for optimizing

the networks, EM is used to learn the parameters in a

specific network and the distributed GA is also em-

ployed to optimize the structure of the network. The

algorithm can be briefly observed in Fig. 6.

DBANetworks(t)

EM Algorithm

Cost Function

Stop condition

Optimal 

Results

Yes

D
is

tr
ib

u
te

d
 G

e
n

e
ti

c
 A

lg
o

ri
th

m

Selection

Recommbina

tion

Mutation

t+1

Initial Start

t=0

No

Fig. 6. The DBA model based on the dynamic Bayesian

network and distributed genetic algorithm.

4. Application in Lane-change Scenarios

In this study, the DBA model based on the dy-

namic Bayesian network and the distributed GA is

applied to estimate the behaviors in vehicle lane-

change scenarios. In addition, with V2V and V2I

communication technologies, the traffic information

can be shared. Then, the driving behavior of the

around vehicles can be estimated using this mod-

eling framework. This section first introduces the

data collection. Then, the model based on the dy-

namic Bayesian network and distributed GA is used

to learn the optimized solution to infer vehicle be-

haviors. Finally, the results are compared and ana-

lyzed.

4.1. Data collection

In this study, the estimating knowledge of the DBA

model was learned from the naturalistic driving data.

The database used in this research is for driving be-

haviors namely left and right lane-change and lane

keeping. This scenario is shown in Fig. 7.

Vehicle for Driving 

Behavior Awareness

Right Lane-change

Lane Keeping

Left Lane-changeVehicle One

Vehicle One

Fig. 7. The vehicle lane-change scenario (including three

lanes, and driving behavior in the middle lane was esti-

mated).

The data collection experiment was conducted in

Beijing, which included highways, ring road, air-

port express and normal city roads, shown in Fig.

8. The data collection includes approximately 18

km of road. Running information could be obtained

by Controller Area Network (CAN), cameras and

the LIDAR equipped on the data collecting vehicle.

Running information, including the vehicles steer-

ing angle over time was stored. The data collec-

tion frequency was 100Hz. Fifty drivers that were

asked to drive naturally and maintain their own driv-

ing styles.

Fig. 8. The data collection route. The data collection road

is approximately 18 km, including highways, ring road, air-

port express and normal city roads.

From the collected data, the three behaviors men-

tioned above were labeled manually using the label-

ing graphical user interface (GUI) shown in Fig. 9.

The information from LIDAR and cameras is dis-

played and the time serial information including the

steering angle, lateral velocity and so on is repre-

sented by different color curves. These help deter-

mine the start and the end point of the lane-change

case during the manual labeling process. The label-

ing procedures are as follows. Firstly, use the LI-

International Journal of Computational Intelligence Systems, Vol. 11 (2018) 469–482
___________________________________________________________________________________________________________

476



DAR map and images to mark the rough position

of the lane-change case. Then, check and make

sure that the velocity at the starting point should

be greater than 30 km/h and the duration for lane-

change should be lower than 8 s. Finally, the steer-

ing angle as well as lateral velocity are applied to la-

bel an accurate lane-change start and end time. Gen-

erally, the initial time of a cosine or sine curve is set

to be the start time, and the first peak is set to be the

end time36.

In this experiment, the detailed information

about the database is introduced in Table 1. In this

study, six hundred and thirty episodes were collected

for the lane-change scenario, and four hundred and

twenty-seven episodes chosen randomly from the

database are applied as training cases and one hun-

dred and eighty three as testing cases37.

Table 1. Detailed information about the database.

Labeled Behavior Number Gender

Right Lane-change 180
Male

Female

61%

39%

Lane Keeping 210
Male

Female

71%

29%

Left Lane-change 240
Male

Female

55%

45%

4.2. Evaluation index and cost function

In this subsection, evaluation indexes are proposed

and defined, which can be used to evaluate the esti-

mating performance and build the cost function for

the distributed GA.

Definition 1. Correct recognition is defined when

the correct estimation is made with 90% or higher

probability and incorrect recognition is defined

when a wrong estimation is made with 90% or

higher probability. From Fig. 10, the result for the

right lane-change behavior is a correct recognition.

Definition 2. Recognition succeed delay time,

tsucceed, is defined as the time delay in the recogni-

tion succeed point, whereby, the recognition succeed

point is defined to be the first point that the proba-

bility of the expected behavior estimation is equal or

above 90% (t0.9). Recognition succeed delay time

can be expressed as follows:

tsucceed = t0.9 − tlabel (26)

where tlabel is the real start point of the behavior, la-

beled manually. If tlabel = 0, then tsucceed = t0.9. As

shown in Fig. 10, tsucceed = t0.9 = 0.19s. In other

words, the recognition succeed delay time is 0.19s.

Definition 3. Recognition start delay time, tstart,

is defined as the time delay of the recognition start

point, whereby, the recognition start point is defined

to be the first point that the probability of the ex-

pected behavior estimation is equal or above 20%

(t0.2). Recognition start delay time can be expressed

as follows:

tstart = t0.2 − tlabel (27)

where tlabel is the real start point of the behavior, la-

beled manually. If tlabel = 0, then tstart = t0.2. As

shown in Fig. 10, tstart = t0.2 = 0.16s. In other

words, the recognition start delay time is 0.16 s.

0 20 40 60 80 100 120 140
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

time(10ms)

p
ro

b
a

b
ili

ty

Right Lane−change

 

 

Lane Keeping

Right Lane−change

Left Lane−change

Fig. 10. A case of the right lane-change estimation result.

Time = 0 is the vehicle’s right lane-change starting point

which is labeled manually, so tlabel = 0.
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Fig. 11. Estimating result of the first model.
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Figure 9: The labeling GUI. The left area displays the real time LIDAR map and images of the surrounding

traffic environment. The top-right area shows the CAN data curves.
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Fig. 12. Estimating result of the second model.

The purpose of defining this evaluation index,

recognition start delay time, is to solve the condition

in Fig. 11 and Fig. 12. In the two figures, the two

models estimate the case of right lane-change behav-

ior correctly (Definition 1) and almost at the same

time (Definition 2). However, the time at which

these two models start the estimation is different.

Obviously, the second model starts to recognize ear-

lier. In other words, the recognition start delay time

of the second model is smaller.

The evaluation indexes defined above are used to

evaluate a specific case of estimation. The indexes

of recognition start delay time as well as recogni-

tion succeed delay time could reflect the sensibility

or response of the models to the related behavior.

Moreover, the evaluation indexes are crucial for AVs

to make decisions based on the estimating models.

The recognition start and succeed delay time for es-

timating driving behavior could influence the time

to make decisions. In addition, the overall perfor-

mance of the models can be verified and comprised

using the average recognition start delay time, aver-

age recognition succeed delay time, correct recogni-

tion rate and incorrect recognition rate.

In this study, the cost function for the distributed

GA is defined on the basis of evaluation indexes rep-

resented in the following equations:

f (s) = λ1

n

∑
i=1

δ (i)+λ2

n

∑
i=1

tsucceed

T
+λ3

n

∑
i=1

tstart

T

(28)

δ (i) =

{

1, the ith case is incorrectly

0, the ith case is correctly
(29)

where i is the ith case for estimating the performance

of the model, T is the time during the case, s rep-

resents a specific structure of the network, and n
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is the number of the estimating cases. Moreover,

λi(i = 1,2,3) is the weight of each evaluation index.

In this study, it is defined that λi = 1(i = 1,2,3).

λ1

n

∑
i=1

δ (i) represents the cost of incorrect recogni-

tion, λ2

n

∑
i=1

tsucceed

T
represents the cost of the recogni-

tion succeed delay, and λ3

n

∑
i=1

tstart

T
represents the cost

of the recognition start delay. The training process

using the training database is on the basis of the fit-

ness function to evolve38.

4.3. Learning results

In this study, the configuration of the distributed GA

is determined empirically38. Generally,the more in-

dividuals the population involves, the more chances

to get the more superior results. However, more

individuals lead to heavier computation cost and

longer time of evolutions. The maximum genera-

tion represents the total iterations, which could be

determined when the fitness remains constant or de-

crease a little as iteration generation increases39.

According to the common settings of the GA or

distributed GA, the parameters of the GA could

be determined33-34,38. The maximum generation is

500, crossover probability is 0.8, mutation rate is

0.01, number of master demographics is 10, and size

of each master demographics includes 30 individu-

als. The migration rate is 0.3 and the migration inter-

val is 5 generations. All the demographics run on 10

desktop computers, each of which has 3 GHz CPU

and has 4 processor cores with 8 GB RAM.

The optimized structure of the network is rep-

resented in Fig. 13. The parameter of the hid-

den node is 7. The given network structure means

that the node in the behavior layer influences the

hidden and observation nodes, and the hidden node

has an impact on the observation node in the intra-

slice Bayesian net. Furthermore, in the inter-slice

Bayesian net, the behavior node at time t − 1 influ-

ences the behavior node at time t, and the hidden

node at time t − 1 impacts the behavior and the ob-

servation nodes at time t.

Fig. 13. The optimized structure of the network.

The average cost value with respect to the gener-

ation is shown in Fig. 14.

Fig. 14. The cost value evaluation with generations.

4.4. Result comparison and analysis

In order to evaluate the estimation performance of

the optimized network, this section compares the

estimating results between the optimized networks

with HMM and GM-HMM models, which were in-

troduced in the previous sections. This comparison

includes the analysis of specific cases and an aver-

age performance comparison.

First, two cases for right lane-change and left

lane-change behaviors chosen randomly in the

database for testing are evaluated using different

models. With the same input information, the es-

timating results are shown in Fig. 15 and Table

2. In this figure, it can be concluded that the three

models infer correctly in these two cases but their

recognition succeed delay time and recognition start

delay time are different. In both cases, the opti-

mized model has the least recognition succeed delay

time and recognition start delay time, which means

that the optimized model has the best performance

among the three models.

The estimating results of the testing database

compared with HMM and GM-HMM are shown in
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Figure 15: Estimating results of two cases in the database. One is left lane-change case and the other one is right

lane-change. And they are estimated by three different models, namely, HMM, GM-HMM, and the optimized

model.

Table 2: Detailed information about the estimating results of two lane-change cases.

Recognition Result
Recognition Succeed

Delay Time(s)

Recognition Start

Delay Time(s)

HMM
GM-

HMM

Optimal

Model
HMM

GM-

HMM

Optimal

Model
HMM

GM-

HMM

Optimal

Model

Right Lane-

change case
Right Right Right 0.50 0.27 0.26 0.48 0.25 0.13

Left Lane-

change case
Right Right Right 0.55 0.26 0.25 0.48 0.24 0.22

Table 3: The average estimating performance analysis of the three models (RLC represents right lane-change,

LLC represents left lane-change, and LK represents lane keeping).

Recognition Result (%)
Average Recognition Succeed

Delay Time(s)

Average Recognition Start

Delay Time(s)

RLC LLC LK RLC LLC RLC LLC

HMM 69 70 87 0.13 0.35 0.12 0.32

GM-HMM 94 87 88 0.10 0.29 0.09 0.27

Optimized

Model
96 94 90 0.10 0.28 0.07 0.26
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Table 4. In the vehicle lane-change scenario, the op-

timal models average recognition rate is 93%. The

average recognition succeed delay time is 0.19s and

the average recognition start delay time is 0.17s.

5. Conclusions and Contributions

In this study, the DBA model based on a dynamic

Bayesian network and distributed GA was built to

estimate the behavior of vehicles in different traf-

fic scenarios. There are three layers in the net-

work, namely the observation, hidden, and behav-

ior layer. The EM algorithm was employed to learn

the parameters of a specific structure of the network.

In order to optimize the structure efficiently, a dis-

tributed GA was designed using the hybrid coarse

grain and master-slave topology. Then the proposed

DBA model was applied in the vehicle lane-change

scenario to estimate driving behaviors namely right

lane-change, left lane-change and lane keeping. The

performance evaluation index and cost function for

a specific structure of the network were designed.

In the vehicle lane-change scenario using the opti-

mized model, the average recognition rate was 93%,

the average recognition succeed delay time is 0.19 s

and the average recognition start delay time is 0.17

s. Moreover, the estimating result of the optimized

model was compared with other common models

namely the HMM and GM-HMM. The comparison

proved that the inference performance of the opti-

mized model was much better than the two models.

An optimized structure for the DBA network was

found to estimate the driving behavior, which is cru-

cial for AVs to make decisions, particularly in com-

plex traffic scenarios. In the future work, more infor-

mation and the relationships between multiple vehi-

cles will be included to improve the performance of

DBA network proposed in this study.
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