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A DROP-IN beta probe for robot-assisted
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Background: Recently, a flexible DROP-IN gamma-probe was introduced for robot-assisted radioguided surgery,

using traditional low-energy SPECT-isotopes. In parallel, a novel approach to achieve sensitive radioguidance using

beta-emitting PET isotopes has been proposed. Integration of these two concepts would allow to exploit the use of

PET tracers during robot-assisted tumor-receptor-targeted. In this study, we have engineered and validated the

performance of a novel DROP-IN beta particle (DROP-INβ) detector.

Methods: Seven prostate cancer patients with PSMA-PET positive tumors received an additional intraoperative injection

of ~ 70MBq 68Ga-PSMA-11, followed by robot-assisted prostatectomy and extended pelvic lymph node dissection. The

surgical specimens from these procedures were used to validate the performance of our DROP-INβ probe prototype,

which merged a scintillating detector with a housing optimized for a 12-mm trocar and prograsp instruments.

Results: After optimization of the detector and probe housing via Monte Carlo simulations, the resulting DROP-INβ probe

prototype was tested in a robotic setting. In the ex vivo setting, the probe—positioned by the robot—was able to

identify 68Ga-PSMA-11 containing hot-spots in the surgical specimens: signal-to-background (S/B) was > 5 when

pathology confirmed that the tumor was located < 1mm below the specimen surface. 68Ga-PSMA-11 containing (and

PET positive) lymph nodes, as found in two patients, were also confirmed with the DROP-INβ probe (S/B > 3). The

rotational freedom of the DROP-IN design and the ability to manipulate the probe with the prograsp tool allowed the

surgeon to perform autonomous beta-tracing.

Conclusions: This study demonstrates the feasibility of beta-radioguided surgery in a robotic context by means of a

DROP-INβ detector. When translated to an in vivo setting in the future, this technique could provide a valuable tool in

detecting tumor remnants on the prostate surface and in confirmation of PSMA-PET positive lymph nodes.
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Background

Radioguided surgery (RGS) is an interventional nuclear

medicine technique that enables surgeons to identify,

during the surgical procedure, lesions that had been de-

tected with non-invasive preoperative imaging. Such

guidance is achieved using a combination of radioactive

tracers (i.e., radiopharmaceuticals) and intraoperative de-

tection modalities [1]. The direct correlation between

preoperative tracer mapping using, e.g., PET/CT and in-

traoperative detection, reduces the probability of missing

a lesion that had been preoperatively identified using the

imaging [2]. Applications of this approach include the

localization of metastases or primary tumor margins [3].

Nowadays, a noticeable amount of commercially avail-

able radiopharmaceuticals is used for radioguided sur-

gery [4]. Radioguidance based on low-energy (< 150 keV)

gamma ray emitting radiopharmaceuticals is most com-

monly applied for sentinel lymph node (SN) biopsy pro-

cedures using (indocyanine green-)99mTc-nanocolloid

[5], radioguided occult lesion localization (ROLL) proce-

dures using 99mTc-labeled macro-aggregates [6], radio-

guided 125I-seed localization (RSL) procedures [7], and
99mTc-PSMA-guided resection of lymph node metasta-

ses in prostate cancer patients [3]. Hence, the most fre-

quently used detection modality for intraoperative

localization is the gamma-detection probe, which pro-

vides numerical and acoustical feedback proportional to

the amount of radiopharmaceutical localized. Unique for

this modality is that it supports relatively “deep” signal

detection (i.e., tissue only provides marginal attenuation

of gamma ray emissions). Recently, the introduction of

the DROP-IN gamma (DROP-INγ) probe concept

helped to make radioguidance compatible with robotic

surgery [8–11].

For many diagnostic evaluations (e.g., PSMA), PET ra-

diopharmaceuticals are still preferred. These PET isotopes

induce both gamma ray from annihilation (i.e., 511 keV

photon) and β+ particle (i.e., positron) emissions, provid-

ing two possible detection routes that can be exploited for

radioguidance purposes. Since the intraoperative detection

of 511 keV gamma rays requires heavily collimated ap-

proaches, and thus cumbersome probes, direct detection

of β+ particle emissions has been explored [4]. Recently, a

sensitive β-probe detector-technology, appropriate for

both β− (i.e. electron) and β+ radioguided surgery was in-

troduced [12–14]. Due to intrinsic differences among the

interaction with matter of beta and gamma particles, beta

probes require a small active area and basically no colli-

mation: as a result, such β-probes can be much smaller

and lighter than γ-probes, especially when active materials

are chosen that are insensitive to the 511 keV γ-ray back-

ground [15]. Therefore, such a detector allows to exploit

the unique spatial resolution achievable with beta emis-

sion. In fact, tissue penetration of ~ 1MeV β-particles is

much smaller than that of γ-rays (~millimeters vs ~ centi-

meters) making it a unique “surface scanning” technique,

much less limited by the “shine-through” of deeper lying

tracer uptake [12]. Direct beta detection might thus be a

very effective methodology to detect tumors nearby

healthy organs characterized by elevated physiological up-

take of the radiopharmaceutical (e.g., tumor nearby

healthy prostate).

In an effort to explore the use of the widely available

PET radiopharmaceutical [68Ga]Ga-PSMA-11 (68Ga-la-

beled Glu-urea-Lys (Ahx)-HBED-CC) for robot-assisted

radioguided surgery purposes, we have developed a

DROP-IN beta (DROP-INβ) probe that exploits both the

high beta detection efficiency and the compactness of

such a detector [12] with the maneuverability of the

DROP-IN concept [11] (see Fig.1). In this paper, we

present its engineering together with its first

characterization on ex vivo surgical specimens (i.e., pros-

tate and lymph nodes) of PSMA-PET positive patients

that received an additional dose of [68Ga]Ga-PSMA-11

during surgery.

Methods

DROP-INβ probe development

The β-detection probe used in this study was based on a

cylindrical scintillator (6 mm diameter and 3mm height)

made of mono-crystalline para-terphenyl (doped with 0,

1% in mass of (E,E)-1,4-Diphenyl-1,3-butadiene) [15].

Being a non-hygroscopic organic scintillator with high

light yield (~ 140% of anthracene) and low density (1.23

g/cm3), this material provides a high sensitivity to β par-

ticles and elevated transparency to photons (e.g., the

511 keV γ rays as induced by PET radiopharmaceuti-

cals). To improve light collection from the scintillator,

the detector was surrounded with a 2-mm-thick white

diffusing Delrin ring and covered in front with two 4 μm

layers of a reflective aluminized-Mylar film. The light

tightness of this assembly was achieved by adding an ex-

ternal black poly-vinyl-chloride ring of 2 mm, covered

on the front by a 15-μm layer of aluminum. Light collec-

tion efficiency was maximized using a 3 × 3mm2 silicon

photomultiplier (SiPM C-series 30035, SensL Ltd.). After

a first Monte Carlo-based study of such a probe in a

Ga-PSMA context [16], a dedicated laboratory

characterization has been performed. A detection effi-

ciency of ~ 90% for 68Ga β particles and ~ 2.5% for 511

keV γ rays has been found [17].

The β detector was placed at the tip of the DROP-IN

probe housing. Similarly to the previously optimized

DROP-INγ probe [11], a 45° angle grip was incorporated

at the end of longitudinal axis of the probe, tailored to

the ProGrasp Forceps (Intuitive Surgical Inc.), an instru-

ment that is often used during a prostatectomy and

lymph node dissection. Maintaining its compatibility
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with the da Vinci (Intuitive Surgical Inc.) apparatus, this

ensured the maneuverability needed to fully exploit the

specificity of beta-RGS. In fact, differently from gamma

probes, beta detection requires the probe to have full ac-

cess to the surface to be examined, due to the significant

signal attenuation in tissue.

The housing was printed using acrylonitril-butadieen-

styreen plastics and a Dimension Elite 3D printer (Stra-

tasys Ltd.). Final dimensions of the whole probe were a

length of 55 mm and a diameter of 12 mm, due to the

available detector prototype. In the future, however, this

diameter could be reduced (e.g., to 8 mm) if necessary.

Portable electronics based on an Arduino Due

(Arduino AG) equipped with a custom analog shield

providing signal conditioning and trigger logic were

used for the readout [18]. Sampling time was 1 s. At

the end of the chain, the output in terms of counts

per second (CPS) was displayed on a tablet, via wire-

less connection.

Optimization of the DROP-INβ probe design

In order to optimize the design of the β-probe, a dedi-

cated Monte Carlo simulation was performed in Geant4

[19]. In this simulation, the whole detector was recon-

structed, and all physical processes of interest were

taken into account to effectively reproduce particle scat-

tering, absorption, energy deposition, and secondary par-

ticles generation. These simulations indicated that a

cavity behind the β particle detector would result in a

lower noise-background: additional layers of material

could in fact promote β+ to γ conversion close to the

detector, creating noise-background (Fig. 1b). This de-

sign concept yielded a light-weight probe construction

(Fig. 1a), mostly transparent to 511 keV γ-induced noise.

First ex vivo probe evaluation

Patient selection

In total, 7 patients with primary diagnosed locally (ad-

vanced) high-risk prostate cancer were included (see

Fig. 1 DROP-INβ probe design. a Schematic representation of the probe components. b Example of one of the Monte Carlo simulations

optimizing β-particle detection and γ-photon transparency. c Overview of the probe application setup, showing its high maneuverability
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Table 1). Inclusion criteria consisted of a primary tumor

≥ 2 cm (based on MRI) with a minimal average PSMA

tracer uptake of 1.7 kBq/mL (based on PSMA PET/CT).

These patients were mostly redirected to our clinical in-

stitute for prostate cancer treatment; initial diagnostics

was performed at the referring hospital. Therefore, based

on local availability and preferences, diagnostic PSMA-

PET/CT was performed with 18F-DCFPyl. This should

however provide comparable uptake as 6[68Ga]Ga-

PSMA-11 [20]. SUVmean measurements were performed

by manually defining a volume of interest in the prostate

tumor, using OsiriX medical imaging software (Pixmeo

SARL). All patients were scheduled for a robot-assisted

radical prostatectomy and extended pelvic lymph node

dissection. In order to minimize radioactive exposure to

both patient and medical personnel, a limited dose of ~

70MBq (median 68, IQR 63.5–82) [68Ga]Ga-PSMA-11

for radioguidance was intravenously administered in the

operating room (OR), after docking the da Vinci robot.

The study was approved by the local ethics committee

(NL66218.031.18, trial NL8256 at trialregister.nl) and all

patients provided a written informed consent.

Probe countings

At the end of the surgical procedure, roughly 2.5 h

after injection (median 150 min; IQR 120–172.5), the

surgical specimens (prostate and lymph node packages

if present) were rinsed with saline and scanned using

the DROP-INβ probe mounted on a da Vinci robot

using the ProGrasp forceps instrument. Rinsing of the

ex vivo specimens was performed to remove possible

urine contamination, since [68Ga]Ga-PSMA-11is

known to undergo renal clearance [20]. For prostate

samples, “signal” was defined as the highest counting

area, as confirmed with preoperative imaging informa-

tion. The “background” was defined as the area

nearby the “signal” where the counting rate dropped

to the plateau value that was found in the rest of the

sample (thus representing tracer uptake in the healthy

prostate tissue). For lymph node samples, the “signal”

was acquired on the lymph node itself, and

“background” on the surrounding tissue (i.e., fat tissue

and negative lymph nodes).

Pathology

Following analysis, all specimens were sent to pathology

for assessment using standard histopathological proce-

dures [21]. Additionally, distances between the tumor

and the inked specimen borders were measured at

marked locations.

Monitoring of radioactive exposure in the operating room

To investigate the feasibility of radioguided surgery

using [68Ga]Ga-PSMA-11, radiation safety was consid-

ered an important topic. Therefore, radiation dose, as re-

ceived by the operating room staff, was carefully

monitored [22]. The surgeon (located behind the robotic

console), the scrub nurse (located next to the patient in

the sterile field), the assisting nurse (moving around the

operating room, outside the sterile field), the anesthetist

(located at the head of the patient, outside the sterile

field), and the researcher (located > 1m away from the

patient, outside the sterile field) all had their own elec-

tronic radiation dosimeter (MGPInstruments DMC

2000; Mirion Technologies, Ltd.).

Results

Probe usage

The developed DROP-INβ probe easily fitted through

standard 12mm trocars and pick-up of the probe was fa-

cile using the standard da Vinci instruments of the sur-

gical robot. Being a tethered design, probe

maneuverability allowed for positioning with 6 degrees

of freedom, as inherited from the ProGrasp forceps, with

an effective scanning range of 0–140o around the tip of

the instrument. Scanning with the probe could be per-

formed autonomously from the surgical robotic console,

not requiring the help of an assistant.

Ex vivo probe evaluation

The seven included patients displayed clear PSMA-PET

positive primary tumors (see Table 1), with a SUVmean

Table 1 Preoperative patient characteristics

Pt # Age PSA (ng/mL) Gleason score Prostate volume on MRI (cc) Tumor stage SUVmean in primary
tumor focus on PET

SUVmean positive LNs on PET

1 71 4.4 4 + 4 = 8 30 cT2aN0M0 13.8 N.A.

2 57 5.3 4 + 4 = 8 55 cT1cN0M0 3.3 N.A.

3 73 8.3 4 + 5 = 9 76 cT3aN1M0 17.8 5.6 (ExR), 3.1 (ObR)

4 66 2.7 4 + 4 = 8 47 cT3bN0M0 4.1 N.A.

5 63 6.4 4 + 5 = 9 41 cT2cN0M0 11.7 N.A.

6 55 9.3 4 + 4 = 8 28 cT2bN0M1 14.7 N.A.

7 48 4.4 4 + 5 = 9 62 cT3bN1M0 13.3 4.8 (ObL), 3.5 (ExR)

Pt # patient number, N.A. not applicable, LNs lymph nodes, ExR external iliac right, ObR obturator right, ObL obturator left
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in the tumor > 3. Additionally, two patients had PSMA-

PET positive lesions, suspected for lymph node metasta-

ses (see Fig. 2 and Table 1).

Figure 3 illustrates usage of the DROP-IN beta probe

on surgical specimens using the da Vinci robot. Table 2

shows a summary of the collected data. In general, probe

background measurements without any tissue (i.e., “dark

counts”) were in the order of 0–2 CPS, while uncovered

tumor areas, cleaved if necessary, provided count rates

between 130 and 250 CPS. Due to its normal (i.e., de-

fault) PSMA expression levels, healthy prostate tissue

yielded ~ 5–45 CPS. The primary tumor in patients 1, 3,

5, 6, and 7 provided a maximum S/B (signal to back-

ground ratio) > 5, displaying a maximum count rate of

~ 247 CPS on the surface of the excised prostate speci-

men. At pathology, only patients 1 and 7 harbored true

positive resections margins (i.e., tumor cells were found

in the inked borders of the prostate at pathology). How-

ever, in patients 3, 5, and 6, tumor was found within 1

mm of the resection margin, confirming a superficial

tumor location. The maximum S/B measured for the

prostate specimens in patients 2 and 4 was much lower,

< 2.5. In these cases, pathology indicated that the tumor

was located > 1.5 mm below the specimen margin, indi-

cating a negative surgical margin. This occurrence,

together with their smaller SUVmean with respect to

other cases, ended up limiting as expected the possibility

of beta-tracing.

Interestingly, patients 3 and 7 both harbored 2 lymph

nodes each that were positive on preoperative PSMA-

PET. Using the DROP-INβ probe, these lymph nodes

also showed elevated tracer uptake with respect to the

other lymph nodes and surrounding fat tissue: S/B > 3.

At pathology, metastasis was only found in three of

these lymph nodes, suggesting a false-positive PSMA up-

take in one lymph node. In this limited group of PET

positive lymph nodes, the smallest metastasis the probe

was capable to detect had a 7-mm diameter (SUVmean of

5.6 on preoperative PSMA-PET, time between injection

and measurement 3 h). All PET negative lymph nodes

that were excised and analyzed yielded the same count-

ing rates as nearby background tissue.

Monitoring of radioactive exposure in the operating

room

The average radiation dose per surgery performed, as

measured for the operating room staff, was 0.005 mSv

for the surgeon, 0.016 mSv for the scrub nurse, 0.002

mSv for the assisting nurse, 0.001 mSv for the

anesthetist, and 0.001 mSv for the researcher. Taking in

Fig. 2 Preoperative tumor mapping using PSMA-PET. a Example of total body PET maximum intensity projection with tumor focus in prostate (blue,

upwards arrow) and lymph node metastasis (green, downwards arrow). b PET/CT slice of the same patient illustrating a clear tumor focus within the

prostate (blue arrow; SUVmean = 17.8). c PET/CT slice of the same patient displaying a lymph node metastasis (green arrow; SUVmean = 5.6)
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to account the guidelines from the International Com-

mission on Radiological Protection [23], this would

mean that the surgeon would be allowed to perform 200

of such [68Ga]Ga-PSMA-11 guided procedures a year,

while the scrub nurse would be limited to 62 procedures

a year.

Discussion

In this study, the first steps are made towards integra-

tion of beta radioguided surgery within the robot-

assisted setting. Using the DROP-IN concept, the sur-

geon has full control of probe placement, yielding auton-

omy and great maneuverability during radioguidance

[8–11]. Direct beta detection provides, thanks to its spe-

cificity and sensitivity, a useful way to probe prostate

margins and suspect lymph nodes.

This initial ex vivo validation of the DROP-INβ probe

concept showed a high signal to background (> 5) for tu-

mors located < 1mm from the resected surface, suggest-

ing that the technique has the potential to support

robotic surface scanning of primary tumor margins in

prostate cancer. Even more precise characterization of

the possible lesion depth with respect to the surgical

margin might be possible with future developments in

the underlying detection software algorithms [24]. In

addition, confirming PSMA-positive lymph nodes (S/B

> 3), the DROP-INβ probe concept might also support

the intraoperative identification of metastatic lymph

nodes.

Compared to the previously reported use of a DROP-

INγ probe in combination with the tracer [99Tc]Tc-

PSMA-I&S (i.e., salvage procedures for lymphatic

Fig. 3 DROP-INβ probe evaluation in relation to pathology. a Overview of the robot-assisted OR setup. b Example of robot-assisted beta-tracing

with the DROP-INβ probe on the surface of a resected prostate sample. c Histopathology slide displaying tumor spread within the prostate with

respect to the specimen surface. d Example of robot-assisted beta-tracing on the surface of a resected lymph node package. e Histopathology

slide showing tumor spread within a PSMA-PET positive lymph node
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metastases) [10], the use of a DROP-INβ probe in com-

bination with [68Ga]Ga-PSMA-11 possesses some

unique advantages. First of all, this approach supports

the use of more widely available PET tracers. Secondly,

the limited tissue penetration of β particles (only a few

millimeters) allows for an accurate surface scanning of

the primary tumor margins [12], thus highlighting pos-

sible tumor localizations on the prostate surface. Indeed,

in the current study, beta radiation was severely attenu-

ated when > 1.5 mm of healthy tissue was located be-

tween the surface of the prostate specimen and the

pathological tumor margins. In this sense, β-tracing

benefits from similar positive features as fluorescence

imaging [25], i.e., no ‘shine-through’ of neighboring or

deeper lying tracer uptake and a superior spatial reso-

lution [12, 26]. These features are essential when the

extra-capsular spread of PSMA-overexpressing tumor

lesions is pursued in a prostate with (significant) de-

fault PSMA expression [27]. Consequently, β-tracing

could provide a superior means for margin assess-

ment during, e.g., nerve sparing surgery [28, 29]. Al-

ternative to investigated beta-radiation detection for

tumor margin assessment on the prostate surface,

fully matured ex vivo technologies are available (e.g.,

NeuroSAFE [30]) and alternative β-emission-based

imaging technologies are being explored (e.g., Ceren-

kov [22]). Future research, and in particular random-

ized trials, will have to show which technology is

superior, or if different technologies can work in

synergy.

Potential limitations of the proposed [68Ga]Ga-PSMA-

11-guided surgery concept are the radiation dose for the

surgical staff (currently limited to about 62 procedures a

year) and the contamination of the prostate margins by

tracer containing urine. The DROP-INβ probes ability to

detect lesions using < 70MBq doses helps limit the expos-

ure of the surgical staff. It is worth highlighting in particular

that injecting the radiotracer directly in the operating room

allowed ex vivo examination after ~ 2.5 × t1/2 (3 h, t1/2 = 68

m). Hence future in vivo application, e.g., 1 h p.i., would

allow an even lower activity to be used to achieve a similar

detection sensitivity, namely of the order of 40MBq. Re-

garding the urine contamination of the samples, as stated

previously, the accumulation of PSMA tracers in healthy

organs and in particular urine may yield background signals

that complicate intraoperative margin detection [20]. How-

ever, the direct detection of beta particles performed with a

detector substantially transparent to gamma rays, as sug-

gested in this paper, should drastically reduce the impact of

such a background; only the signal originating from a few

millimeters around the detector should be detected (i.e.,

thus only a small urine layer must be considered [24, 31]).

Nonetheless, acknowledgement of this effect by radiochem-

ists [32, 33] and the reduced renal clearance of for example

[18F]F-PSMA tracers [34, 35] may in the future help to

overcome these issues. In addition, the influence of renal

clearance might also be overcome by using β-emitting iso-

topes that have a longer half-life, allowing the tumor resec-

tion to take place after all renal clearance of non-bound

tracer is realized, e.g. using alternative PET isotopes such as
64Cu (t1/2 = 12.7 hours), or even theranostic isotopes such

as 67Cu (t1/2 = 2.5 days), 90Y (t1/2 = 2.66 days), or 177Lu (t1/2
= 6.6 days) [36, 37].

Conclusion

In this study, we presented the integration of two recent

developments in RGS: a high efficiency beta detector

and a flexible DROP-IN probe housing compatible with

robot-assisted surgery. The first prototype of DROP-INβ

probe has been successfully validated on ex vivo samples

of prostate tumors with [68Ga]Ga-PSMA-11, being able

to detect all PET positive resected specimens, with a

smallest detected dimension in this data sample of 7

mm. Probe maneuverability was found to be the same of

the DROP-INγ concept, which has already demonstrated

its efficacy in in vivo tests. This DROP-INβ probe could

thus help exploit the growing amount of disease specific

PET tracers and may help provide a new powerful tool

to perform tumor margin evaluation and confirm meta-

static spread.
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