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A Drosophila protein-interaction map centered on cell-cycle regulators<p>A <it>Drosophila </it>protein-protein interaction map was constructed using the LexA system, complementing a previous map using the GAL4 system and adding many new interactions.</p>

Abstract

Background: Maps depicting binary interactions between proteins can be powerful starting points

for understanding biological systems. A proven technology for generating such maps is high-

throughput yeast two-hybrid screening. In the most extensive screen to date, a Gal4-based two-

hybrid system was used recently to detect over 20,000 interactions among Drosophila proteins.

Although these data are a valuable resource for insights into protein networks, they cover only a

fraction of the expected number of interactions.

Results: To complement the Gal4-based interaction data, we used the same set of Drosophila open

reading frames to construct arrays for a LexA-based two-hybrid system. We screened the arrays

using a novel pooled mating approach, initially focusing on proteins related to cell-cycle regulators.

We detected 1,814 reproducible interactions among 488 proteins. The map includes a large

number of novel interactions with potential biological significance. Informative regions of the map

could be highlighted by searching for paralogous interactions and by clustering proteins on the basis

of their interaction profiles. Surprisingly, only 28 interactions were found in common between the

LexA- and Gal4-based screens, even though they had similar rates of true positives.

Conclusions: The substantial number of new interactions discovered here supports the

conclusion that previous interaction mapping studies were far from complete and that many more

interactions remain to be found. Our results indicate that different two-hybrid systems and

screening approaches applied to the same proteome can generate more comprehensive datasets

with more cross-validated interactions. The cell-cycle map provides a guide for further defining

important regulatory networks in Drosophila and other organisms.
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Background
Protein-protein interactions have an essential role in a wide

variety of biological processes. A wealth of data has emerged

to show that most proteins function within networks of inter-

acting proteins, and that many of these networks have been

conserved throughout evolution. Although some of these net-

works constitute stable multi-protein complexes while others

are more dynamic, they are all built from specific binary

interactions between individual proteins. Maps depicting the

possible binary interactions among proteins can therefore

provide clues not only about the functions of individual pro-

teins but also about the structure and function of entire pro-

tein networks and biological systems.

One of the most powerful technologies used in recent years

for mapping binary protein interactions is the yeast two-

hybrid system [1]. In a yeast two-hybrid assay, the two pro-

teins to be tested for interaction are expressed with amino-

terminal fusion moieties in the yeast Saccharomyces cerevi-

siae. One protein is fused to a DNA-binding domain (BD) and

the other is fused to a transcription activation domain (AD).

An interaction between the two proteins results in activation

of reporter genes that have upstream binding sites for the BD.

To map interactions among large sets of proteins, the BD and

AD expression vectors are placed initially into different hap-

loid yeast strains of opposite mating types. Pairs of BD and

AD fused proteins can then be tested for interaction by mat-

ing the appropriate pair of yeast strains and assaying reporter

activity in the resulting diploid cells [2]. Large arrays of AD

and BD strains representing, for example, most of the pro-

teins encoded by a genome, have been constructed and used

to systematically detect binary interactions [3-6]. Most large-

scale screens have used such arrays in a library-screening

approach in which the BD strains are individually mated with

a library containing all of the AD strains pooled together.

After plating the diploids from each mating onto medium that

selects for expression of the reporters, the specific interacting

AD-fused proteins are determined by obtaining a sequence

tag from the AD vector in each colony.

High-throughput two-hybrid screens have been used to map

interactions among proteins from bacteria, viruses, yeast, and

most recently, Caenorhabditis elegans and Drosophila mela-

nogaster [4-10]. Analyses of the interaction maps generated

from these screens have shown that they are useful for pre-

dicting protein function and for elaborating biological path-

ways, but the analyses have also revealed several

shortcomings in the data [11-13]. One problem is that the

interaction maps include many false positives - interactions

that do not occur in vivo. Unfortunately, this is a common

feature of all high-throughput methods for generating inter-

action data, including affinity purification of protein com-

plexes and computational methods to predict protein

interactions [11-14]. A solution to this problem has been sug-

gested by several studies that have shown that the interac-

tions detected by two or more different high-throughput

methods are significantly enriched for true positives relative

to those detected by only one approach [11-13]. Thus it has

become clear that the most useful protein-interaction maps

will be those derived from combinations of cross-validating

datasets.

A second shortcoming of the large-scale screens has been the

high rate of false negatives, or missed interactions. This is evi-

dent from comparing the high-throughput data with refer-

ence data collected from published low-throughout studies.

Such comparisons with two-hybrid maps from yeast [13] and

C. elegans [5], for example, have shown that the high-

throughput data rarely covers more than 13% of the reference

data, implying that only about 13% of all interactions are

being detected. The finding that different large datasets show

very little overlap, despite having similar rates of true posi-

tives, supports the conclusion that high-throughput screens

are far from saturating [10,12]. For example, three separate

screening strategies were used to detect hundreds of interac-

tions among the approximately 6,000 yeast proteins, and yet

only six interactions were found in all three screens [10].

These results suggest that many more interactions might be

detected simply by performing additional screening, or by

applying different screening strategies to the same proteins.

In addition, anecdotal evidence has suggested that the use of

two-hybrid systems based on different fusion moieties may

broaden the types of protein interactions that can be detected.

In one study, for example, screens performed using the same

proteins fused to either the LexA BD or the Gal4 BD produced

only partially overlapping results, and each system detected

biologically significant interactions missed by the other [15].

Thus, the application of different two-hybrid systems and dif-

ferent screening strategies to a proteome would be expected

to provide more comprehensive datasets than would any sin-

gle screen.

We set out to map interactions among the approximately

14,000 predicted Drosophila proteins by using two different

yeast two-hybrid systems (LexA- and Gal4-based) and differ-

ent screening strategies. Results from the screens using the

Gal4 system have already been published [6]. In that study,

Giot et al. successfully amplified 12,278 Drosophila open

reading frames (ORFs) and subcloned a majority of them into

the Gal4 BD and Gal4 AD expression vectors by recombina-

tion in yeast. They screened the arrays using a library-screen-

ing approach and detected 20,405 interactions involving

7,048 proteins. To extend these results we subcloned the

same amplified Drosophila ORFs into vectors for use in the

LexA-based two-hybrid system, and constructed arrays of BD

and AD yeast strains for high-throughput screening. Our

expectation was that maps generated with these arrays would

include interactions missed in previous screens, and would

also partially overlap the Gal4 map, providing opportunities

for cross-validation.
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Initially, we screened for interactions involving proteins that

are primarily known or suspected to be cell-cycle regulators.

We chose cell-cycle proteins as a starting point for our inter-

action map because cell-cycle regulatory systems are known

to be highly conserved in eukaryotes, and because previous

results have suggested that the cell-cycle regulatory network

is centrally located within larger cellular networks [16]. This

is most evident from examination of the large interaction

maps that have been generated for yeast proteins using yeast

two-hybrid and other methods. Within these maps there are

more interactions between proteins that are annotated with

the same function (for example, 'Pol II transcription', 'cell

polarity', 'cell-cycle control') than between proteins with dif-

ferent functions, as expected for a map depicting actual func-

tional connections between proteins. Interestingly, however,

certain functional groups have more inter-function interac-

tions than others. Proteins annotated as 'cell-cycle control', in

particular, were frequently connected to proteins from a wide

range of other functional groups, suggesting that the process

of cell-cycle control is integrated with many other cellular

processes [16]. Thus, we set out to further elaborate the cell-

cycle regulatory network by identifying new proteins that may

belong to it, and new connections to other cellular networks.

Results
Construction of an extensive protein interaction map 

centered on cell-cycle regulators by high-throughput 

two-hybrid screening

We used the same set of 12,278 amplified Drosophila full-

length ORFs from the Gal4 project [6] to generate yeast

arrays for use in a modified LexA-based two-hybrid system

(see Materials and methods). In the LexA system the BD is

LexA and the AD is B42, an 89-amino-acid domain from

Escherichia coli that fortuitously activates transcription in

yeast [17]. In the version that we used, both fusion moieties

are expressed from promoters that are repressed in glucose so

that their expression can be repressed during construction

and amplification of the arrays [18]. Previous results have

shown that this prevents the loss of genes encoding proteins

that are toxic to yeast, and that interactions involving such

proteins can be detected by inducing their expression only on

the final indicator media [18,19]. The ORFs were subcloned

into the two vectors by recombination in yeast as previously

described [3,6], and the yeast transformants were arrayed in

a 96-well format. The resulting BD and AD arrays each have

approximately 12,000 yeast strains, over 85% of which have a

full-length Drosophila ORF insert (see Materials and meth-

ods). For all strains involved in an interaction reported here,

the plasmid was isolated and the insert was sequenced to ver-

ify the identity of the ORF.

As a first step toward generating a LexA-based protein-inter-

action map, we chose 152 BD-fused proteins that were either

known or homologous to regulators of the cell cycle or DNA

damage repair (see Additional data file 2). We used all 152

proteins as 'baits' to screen the 12,000-member AD array. We

used a pooled mating approach [19] in which individual BD

bait strains are first mated with pools of 96 AD strains. For

pools that are positive with a particular BD, the correspond-

ing 96 AD strains are then mated with that BD in an array for-

mat to identify the particular interacting AD protein(s). We

had previously shown that this approach is very sensitive and

allows detection of interactions involving proteins that are

toxic to yeast or BD fused proteins that activate transcription

on their own [19]. Moreover, the final assay in this approach

is a highly reproducible one-on-one assay between an AD and

a BD strain, in which the reporter gene activities are recorded

to provide a semi-quantitative measure of the interaction.

Using this approach we detected 1,641 reproducible interac-

tions involving 93 of the bait proteins. We also performed

library screening [6] with a subset of the 152 baits that did not

activate the reporter genes on their own. This resulted in the

detection of 173 additional interactions with 57 bait proteins.

Thirty-nine interactions were found by both approaches, and

these involved 21 of the 44 BD genes active in both

approaches. There were 95 BD genes for which interaction

data was obtained by the pooled mating approach, and 59

active BD genes in the library screening approach. The aver-

age number of interactions was 18 per BD gene in the pooled

mating data, while the library screening data had an average

of only four interactions per active BD gene. The average level

of reporter activation for the 39 interactions that were

detected in both screens was significantly higher than the

average of all interactions (see Additional data file 3), sug-

gesting that the weaker interactions are more likely to be

missed by one screen or another, even though they are repro-

ducible once detected.

Altogether we detected interactions with 106 of the 152 baits,

which resulted in a protein-interaction map with 1,814 unique

interactions among the products of 488 genes (see Additional

data file 3). The map includes interactions that were already

known or that could be predicted from known orthologous or

paralogous interactions (see below). The map also includes a

large number of novel interactions, including many involving

functionally unclassified proteins.

Evaluation of the LexA-based protein interaction map

As is common with data derived from high-throughput

screens, the number of novel interactions detected was large,

making direct in vivo experimental verification impractica-

ble. Thus, we set out to assess the quality of the data by exam-

ining the topology of the interaction map, by looking for

enrichment of genes with certain functions, and by compar-

ing the LexA map with other datasets. First we examined the

topology of the interaction map, because recent studies have

shown that cellular protein networks have certain topological

features that correlate with biological function [20]. In our

interaction map, the number of interactions per protein (k)

varies over a broad range (from 1 to 84) and the distribution

of proteins with k interactions follows a power law, similar to
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previously described protein networks [6,21]. Most (98%) of

the proteins in the map are linked together into a single net-

work component by direct or indirect interactions (Figure 1a).

The network has a small-world topology [22], characterized

by a relatively short average distance between any two pro-

teins (Table 1) and highly interconnected clusters of proteins.

Removal of the most highly connected proteins from the map

does not significantly fragment the network, indicating that

A protein interaction map centered on cell cycle regulatorsFigure 1

A protein interaction map centered on cell cycle regulators. (a) The entire map includes 1,814 unique interactions (lines) among the proteins encoded by 
488 genes (circles). The map has five distinct networks; one network contains 479 (98%) of the proteins, one has three proteins, and three have two 
proteins (upper right, green circles). (b) The interconnectedness of the map does not depend strongly on the proteins with the most interactions. The 
map shown comprises data filtered to remove proteins with more than 30 interactions (k > 30), leaving 792 interactions among 343 proteins. This 
produced only one additional network, which has two proteins (green circles on the left of (b)); 97% of the proteins still belong to a single large network. 
Further deletion of proteins with k > 20 removes an additional 469 interactions, which creates only four additional small networks and leaves 85% of the 
proteins in a single network (data not shown). A high-resolution version of this figure with live links to gene information can be drawn using a program 
available at [47].

Table 1

Comparison of Drosophila protein-interaction maps generated by high-throughput yeast two-hybrid methods

LexA cell-cycle map* Gal4 proteome-wide map† Common

Interactions 1,814 20,439 28

Proteins 488 6,951 347

Proteins as BD fusions 106 3,616 46

Proteins as AD fusions 403 5,425 250

Proteins as AD and BD 21 2,090 8

Degree exponent‡ 1.72 1.91 NA

Mean path length§ 3.3 4.1 NA

*The LexA interactions are from this study, listed in Additional data file 3. †The Gal4 interactions are from Giot et al. [6]. The chance of observing 
more than two common interactions between the Gal4 map and a random network with the same topological properties as the LexA map is < 10-6 

(see Materials and methods). ‡The degree exponent and mean path length are topological properties of the networks. The degree exponent is γ in 
the equation P(k) = k-γ, where k is the degree or number of interactions per protein, and P(k) is the distribution of proteins with k interactions. §The 
mean path length is the shortest number of links between a pair of proteins, averaged over all pairs in the network.
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the interconnectivity is not simply due to the most promiscu-

ously interacting proteins (Figure 1b). In other interaction

maps generated with randomly selected baits, proteins with

related functions tend to be clustered into regions that are

more highly interconnected than is typical for the map as a

whole [5,6,16]. Moreover, interactions within more highly

interconnected regions of a protein-interaction map tend to

be enriched for true positives [6,23-25]. Thus, the overall

topology of the interaction map that we generated is consist-

ent with that of other protein networks, and in particular,

with the expectation for a network enriched for functionally

related proteins.

Next we assessed the list of proteins in the interaction map to

look for enrichment of proteins or pairs of proteins with par-

ticular functions. An interaction map with a high rate of bio-

logically relevant interactions should have a high frequency of

interactions between pairs of proteins previously thought to

be involved in the same biological process. Among the 488

proteins in the map, 153 have been annotated with a putative

biological function using the Gene Ontology (GO)

classification system [26,27]. Because we used a set of BD

fusions enriched for cell-cycle and DNA metabolic functions,

we expected to see similar enrichments in the list of interact-

ing AD fusions, as well as more interactions between genes

with these functions. Both of these expectations are borne

out. In the list of BD genes, both cell-cycle and DNA metabo-

lism functions are enriched approximately 17-fold compared

to similarly sized lists of randomly selected proteins (P <

0.00002). In the AD list, these two functions are enriched

four- and threefold, respectively (Table 2). The frequency

with which interactions occur between pairs of proteins anno-

tated for DNA metabolism is five times more than expected by

chance; similarly, cell-cycle genes interact with each other six

times more frequently than expected (P < 0.001). Thus, the

enrichment for proteins and pairs of interacting proteins

annotated with the same function suggests that many of the

novel interactions will be biologically significant. It also sug-

gests that the map will be useful for predicting the functions

of novel proteins on the basis of their connections with pro-

teins having known functions, as described for other interac-

tion maps [16,28].

Comparison of the Drosophila protein-interaction 

maps

Direct comparison of the LexA cell-cycle map with the Gal4

data revealed that only 28 interactions were found in com-

mon between the two screens (Table 1). Moreover, more than

a quarter of the proteins in the LexA map were absent from

the Gal4 proteome-wide map. Among the 106 baits that had

interactions in the LexA map, for example, 60 failed to yield

interactions in the Gal4 proteome-wide map, even though all

but six of these were successfully cloned in the Gal4 arrays [6]

(see Additional data file 6). Similarly, 46 of the 152 LexA baits

that we used failed to yield interactions from our work, yet 14

of these had interactions in the Gal4 map. Thus, the lack of

Table 2

Enrichment of the most frequently classified gene functions

Description BD genes AD Genes Same-pair interactions

Exp Rand P Ratio Exp Rand P Ratio Exp Rand P Ratio

Protein modification 30 2.92 <0.00002 10.3 21 11.12 0.00210 1.9 25 14.86 0.09916 1.7

Cell cycle 22 1.27 <0.00002 17.3 19 4.83 <0.00002 3.9 26 4.40 0.00006 5.9

DNA metabolism 14 0.79 <0.00002 17.7 6 2.99 0.03006 2.0 6 1.15 0.00860 5.2

Transcription 9 2.04 0.00002 4.4 14 7.77 0.01134 1.8 7 1.85 0.00242 3.8

Gametogenesis 9 1.49 <0.00002 6.0 13 5.69 0.00172 2.3 7 1.53 0.00072 4.6

Neurogenesis 8 1.91 0.00018 4.2 12 7.29 0.03142 1.6 14 3.75 0.00168 3.7

Cell-surface receptor-linked 
signal transduction

8 2.48 0.00088 3.2 11 9.39 0.23272 1.2 5 3.05 0.12498 1.6

DNA repair 6 0.45 <0.00002 13.4 7 1.71 0.00030 4.1 3 0.28 0.00064 10.8

Intracellular signaling cascade 6 0.65 0.00002 9.3 6 2.44 0.01036 2.5 3 0.98 0.03602 3.1

Imaginal disk development 5 0.80 0.00022 6.3 9 3.04 0.00092 3.0 3 0.45 0.00266 6.7

Average 11.7 1.48 0.00022 9.2 11.8 5.63 0.03209 2.4 9.9 3.23 0.02769 4.71

The top 10 most frequently classified BD gene functions, derived from GO biological process level 4 (see Materials and methods), are shown. The 
number of proteins or pairs of proteins in our experimental data (Exp) with each GO function is shown, alongside the average number of times the 
function would appear in a random interaction map (Rand) having the same topology and number of proteins (see Materials and methods), and the 
ratio of Exp/Rand. The functions listed are significantly enriched in the BD list, to P < 0.001, and most to P < 0.0003. Cell cycle, DNA metabolism and 
DNA repair (highlighted) are the three most proportionally enriched classifications in the BD list, These classes are also enriched for self-
associations in the interaction list, with cell cycle and DNA metabolism around six- and fivefold enriched, while DNA repair is approximately 11-fold 
more self-associated than expected by chance. Of these three, DNA metabolism is not significantly enriched in the AD gene list (P > 0.03), while the 
other two classifications are approximately fourfold enriched. A complete list of all functions and function pairs found in the interaction data is in 
Additional data file 4.
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overlap between the two datasets is partly due to their unique

abilities to detect interactions with specific proteins. Never-

theless, for the 347 proteins common to both maps, the two

screens combined to detect 1428 interactions, and yet only 28

of these were in both datasets. This indicates that the two

screens detected mostly unique interactions even among the

same set of proteins. Comparison with a set of approximately

2,000 interactions recently generated in an independent two-

hybrid screen [29] showed only three interactions in common

with our data, in part because only eight of the same bait pro-

teins were used successfully in both screens.

Although only 28 interactions were found in both the Gal4

map and our map, this rate of overlap is significantly greater

than expected by chance (p < 10-6; Table 1). To show this, we

generated 106 random networks having the same BD proteins,

total interactions and topology as the LexA map, and found

that none of these random maps shared more than two inter-

actions in common with the Gal4 map. To assess the relative

quality of the 28 common interactions we used the confidence

scores assigned to them by Giot et al. [6]. They used a statis-

tical model to assign confidence scores (from 0 to 1), such that

interactions with higher scores are more likely to be biologi-

cally relevant than those with lower scores. The average con-

fidence scores of the 28 interactions in common with our

LexA data (0.63), was higher than the average for all 20,439

Gal4 interactions (0.34), or for random samplings of 28 Gal4

interactions (0.32; P < 0.0001), indicating that the overlap of

the two datasets is significantly enriched for biologically rele-

vant interactions. Thus, the detection of interactions by both

systems could be used as an additional measure of reliability.

The surprisingly small number of common interactions, how-

ever, severely limits the opportunities for cross-validation,

and suggests that both datasets are far from comprehensive.

An alternative explanation for the small proportion of com-

mon interactions is the possible presence of a large number of

false positives in one or both datasets. The estimation of false-

positive rates is challenging, in part because it is difficult to

prove that an interaction does not occur under all in vivo con-

ditions, and also because the number of potential false posi-

tives is enormous. Nevertheless, the relative rates of false

positives between two datasets can be inferred by comparing

their estimated rates of true positives [11-13]. To compare

true-positive rates between the LexA and Gal4 datasets, we

looked for their overlap with several datasets that are thought

to be enriched for biologically relevant interactions (Table 3).

These include a reference set of published interactions involv-

ing the proteins that were used as baits in both the LexA and

Gal4 screens; interactions between the Drosophila orthologs

of interacting yeast or worm proteins (orthologous interac-

tions or 'interlogs' [30,31]); and between proteins encoded by

genes known to interact genetically, which are more likely to

physically interact than random pairs of proteins [32,33]. As

expected, the overlap with these datasets is enriched for

higher confidence interactions. The average confidence

scores for the Gal4 interactions in common with the yeast

interlogs, worm interlogs and Drosophila genetic interac-

tions are 0.63, 0.68 and 0.80, respectively, substantially

higher than the average confidence scores for all Gal4 interac-

tions (0.34). This supports the notion that these datasets are

enriched for true-positive interactions relative to randomly

selected pairs of proteins. We found that the fractions of

LexA- and Gal4-derived interactions that overlap with these

datasets are similar (Table 3). For example, 25 (1.4%) of the

1814 LexA interactions and 294 (1.4%) of the 20,439 Gal4

interactions have yeast interlogs. This suggests that the LexA

and Gal4 two-hybrid datasets have similar percentages of

true positives, and thus similar rates of false positives. They

also appear to have similar rates of false negatives, which may

be over 80% if calculation is based on the lack of overlap with

Table 3

Overlap of two-hybrid data with datasets enriched for true positives

Interactions Overlap with LexA map (N = 1,814) Overlap with Gal4 map (N = 20,439) Overlap in common

Yeast interlogs (hub/spoke)* 67,238 23 (1.26%) 251 (1.23%) 4

Yeast interlogs (matrix)* 244,202 25 (1.38%) 294 (1.44%) 4

Worm interlogs* 37,863 3 (0.17%) 61 (0.30%) 0

Drosophila genetic† 2,751 4 (0.22%) 22 (0.11%) 1

Reference set‡ 47 8 (0.44%) 6 (.03%) 2

Ref set (common BD)§ 20 3 (0.17%) 2 (.01%) 0

*Yeast (S. cerevisiae) and worm (C. elegans) interlogs are predicted interactions between the Drosophila orthologs of interacting yeast and worm 
proteins; 'hub/spoke' and 'matrix' refer to the methods used to derive predicted binary interactions from the protein complex data (see Materials 
and methods). †Genetic interactions were obtained from Flybase [27]. ‡The Reference set includes published interactions involving any of the 106 BD 
proteins in the LexA data. §The subset of reference interactions involving proteins successfully used as BDs in both the Gal4 and LexA screens is also 
shown; no interactions from the reference set were found in both the LexA and Gal4 screens using the same BD baits. The chance of finding the 
indicated number of overlapping interactions with a random set of interactions was <10-4 for all but the LexA overlaps with worm interlogs (P < 
0.1436) or genetic interactions (P < 0.0024) (Additional data file 6).
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published interactions (Table 3). This supports the explana-

tion that the main reason for the lack of overlap between the

datasets is that neither is a comprehensive representation of

the interactome, and suggests that a large number of interac-

tions remain to be detected.

Biologically informative interactions

Further inspection of the LexA cell-cycle interaction map

revealed biologically informative interactions and additional

insights for interpreting high-throughput two-hybrid data.

For example, we expected to observe interactions between

cyclins and cyclin-dependent kinases (Cdks), which have

been shown to interact by a number of assays. Our interaction

map includes six proteins having greater than 40% sequence

identity to Cdk1 (also known as Cdc2). A map of all the inter-

actions involving these proteins reveals that they are multiply

connected with several cyclins (Figure 2). For example, all of

the known cyclins in the map interacted with at least two of

the Cdk family members. The map includes 20 interactions

between five Cdks and six known cyclins plus one uncharac-

terized protein, CG14939, which has sequence similarity to

cyclins. Only one of these interactions (Cdc2c-CycJ) is known

to occur in vivo [34], and several others are thought not to

occur in vivo (for example Cdc2-CycE [35]). Similarly, the

Gal4 interaction map has three Cdk-cyclin interactions [6],

including one known to occur in vivo (Cdk4-CycD) and two

that do not occur in vivo [35].

Thus, while some of these interactions are false positives in

the strictest sense, the data is informative nevertheless, as it

A map of the interactions involving cyclin-dependent kinases (Cdks)Figure 2

A map of the interactions involving cyclin-dependent kinases (Cdks). All the interactions involving at least one of the six Cdks (Cdc2, Cdc2c, Cdk4, Cdk5, 
Cdk7) and Eip63E (red nodes) are shown. All the Cdks except Cdk7 interacted with at least two cyclins (red text). All the cyclins interacted with at least 
two Cdks, with the exception of the novel cyclin-like protein CG14939, which only interacted with Eip63E. Other known or paralogous interactions 
include, Cdc2c-dap, Cdc2-twe, and the interactions of Cdc2 and Cdc2c with CG9790, a Cks1-like protein. Proteins are depicted according to whether 
they appear in the map only as BD fusions (squares), only as AD fusions (circles), or as both BD and AD fusions (triangles). Proteins connected to more 
than one Cdk are green. Interactions are colored if they involve proteins contacting two Cdks (red), three Cdks (blue), or five Cdks (green).
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clearly demonstrates a high incidence of paralogous interac-

tions - where pairs of interacting proteins each have paralogs,

some combinations of which also interact in vivo. Such pat-

terns are consistent with potential interactions between

members of different protein families, even though they do

not reveal the precise pair of proteins that interact in vivo.

This class of informative false positives may be common in

two-hybrid data where the interaction is assayed out of bio-

logical context. Experimentally reproducible interactions,

whether or not they occur in vivo, can be used to discover

interacting protein motifs or domains [6,36]. They can also

suggest functional relationships between protein families and

guide experiments to establish the actual in vivo interactions

and functions of specific pairs of interacting proteins.

The Cdk subgraph also illustrates that proteins with similar

interaction profiles may have related functions or structural

features. To look for other groups of proteins having similar

interaction profiles we used a hierarchical clustering algo-

rithm to cluster BD and AD fusion proteins according to their

interactions (see Materials and methods). The resulting clus-

tergram reveals several groups of proteins with similar inter-

action profiles (Figure 3). One of the most prominent clusters

(Figure 3, circled in blue) includes three related proteins

involved in ubiquitin-mediated proteolysis, SkpA, SkpB and

SkpC. Skp proteins are known to interact with F-box proteins,

which act as adaptors between ubiquitin ligases, known as

SCF (Skp-Cullin-F-box) complexes, and proteins to be tar-

geted for destruction by ubiquitin-mediated proteolysis [37].

A map of the interactions involving the Skp proteins shows a

group of 21 AD proteins that each interact with two or three of

the Skp proteins (Figure 4). This group is highly enriched for

F-box proteins, including 13 of the 15 F-box proteins in the

AD list; the other two F-box proteins interacted with only one

Skp (Figure 4). Several of the interactions in common with

the Gal4 data are also in the Skp cluster, and 12 out of 16 of

these involve proteins that interact with two or more Skp

proteins.

Thus, the Skp cluster provides another example of how pro-

teins with similar interaction profiles may be structurally or

functionally related, and how such clusters may be enriched

for biologically relevant interactions. This is consistent with

previous results showing that protein pairs often have related

functions if they have a significantly larger number of com-

mon interacting partners than expected by chance [24,38].

These groups of proteins are likely to be part of more exten-

sive functional clusters that could be identified by more

sophisticated topological analyses (for example [39-44].

Maps showing several other major clusters derived from the

cluster-gram are shown in Additional data file 7.

The interaction profile data is statistically confirmed by

domain-pairing data, which shows that certain pairs of

domains are found within interacting pairs of proteins more

frequently than expected by chance (Table 4). These include

the Skp domain and F-box pair, the protein kinase and cyclin

domains, and several less obvious pairings. For example, the

cyclin and kinase domains are observed to be associated with

various zinc-finger and homeodomain proteins, and the

kinase domain with a number of nucleic-acid metabolism

domains (Table 4). A similar analysis of the Gal4 data, per-

formed by Giot et al. [6], revealed a number of significant

domain pairings, including the Skp/F-box and the kinase/

cyclin pairs and several others found in the LexA dataset.

Therefore, although the number of proteins in the LexA data-

Proteins clustered by their interaction profilesFigure 3

Proteins clustered by their interaction profiles. BD fused proteins (y-axis) and AD fused proteins (x-axis) were independently clustered according to the 
similarities of their interaction profiles using a hierarchical clustering algorithm (see Materials and methods). An interaction between a BD and AD protein 
is indicated by a small colored square. The squares are colored according to the level of two-hybrid reporter activity, which is the sum of LEU2 (0-3) and 
lacZ (0-5) scores, where higher scores indicate more reporter activity (1, yellow; 5+, red). The cluster circled in blue (center) corresponds to interactions 
involving SkpA, SkpB and SkpC BD fusions, which are mapped in Figure 4. Maps of other clusters (circled in green) are shown in Additional data file 7. The 
large cluster at upper left is due primarily to AD proteins that interact with many different BD proteins. A larger version of the figure with the gene names 
indicated in the axes is in Additional data file 8.
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set is relatively small, domain associations are observed in the

data, demonstrating that a high-density interaction map,

with a high average number of interactions per protein, pro-

vides insight into patterns of domain interactions that is

equally valuable as that obtained from a proteome-wide map.

Discussion
Proteome-wide maps depicting the binary interactions

among proteins provide starting points for understanding

protein function, the structure and function of protein

complexes, and for mapping biological pathways and

regulatory networks. High-throughput approaches have

begun to generate large protein-interaction maps that have

proved useful for functional studies, but are also often

plagued by high rates of false positives and false negatives.

Several analyses have shown that the set of interactions

detected by more than one high-throughout approach is

enriched for biologically relevant interactions, suggesting

that the application of multiple screens to the same set of pro-

teins results in higher-confidence, cross-validated interac-

tions [11-13]. Such cross-validation has been limited,

however, by the lack of overlap among high-throughput data-

sets. Here we describe initial efforts to complement a recently

published Drosophila protein interaction map that was gen-

erated using the Gal4 yeast two-hybrid system [6]. We con-

structed yeast arrays for use in the LexA-based two-hybrid

system by subcloning approximately 12,000 Drosophila

ORFs, using the same PCR amplification products used in the

Gal4 project, into the LexA two-hybrid vectors. Initially, we

used a novel pooled mating approach [19] to screen one of the

12,000-member arrays with 152 bait proteins related to cell

cycle regulators. By using both a different screening approach

and a different two-hybrid system, we expected to increase

coverage and to validate some of the interactions detected by

the Gal4 screens.

The level of coverage for a high-throughput screen can be esti-

mated by determining the percentage of a reference dataset

that was detected; reference sets have been derived from pub-

A map of the interactions in the Skp clusterFigure 4

A map of the interactions in the Skp cluster. All the interactions with the BD fusions SkpA, SkpB and SkpC, are shown. Proteins (green) interacting with 
more that one Skp paralog are enriched for proteins possessing an F-box domain (red text). Other colors and shapes are as in Figure 2.
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lished low-throughput experiments, for example, which are

considered to have relatively low false-positive rates. High-

throughput two-hybrid data for yeast and C. elegans proteins

were shown to cover only about 10-13% of the corresponding

reference datasets [5,10,13]. Two factors may contribute to

this lack of coverage. First, some interactions cannot be

detected using the yeast two-hybrid system, even though they

could be detected in low-throughput studies using other

methods. Examples include interactions that depend on cer-

tain post-translational modifications, that require a free

amino terminus or that involve membrane proteins. Second,

high-throughput yeast two-hybrid screens often fail to test all

possible combinations of interactions; in other words, the

screens are not saturating or complete.

Although the relative contribution of these two factors is dif-

ficult to estimate, results from screens to map interactions

among yeast proteins suggest that the major reason for the

lack of coverage is that the screens are incomplete. Complete

screens would identify all interactions that could possibly be

detected by a given method; ideally therefore, two complete

screens using the same method would identify all the same

interactions. However, the rate of overlap among the different

yeast proteome screens is low, even though they used very

similar two-hybrid systems. Moreover, the overlap between

screens is not significantly greater than the rate at which they

overlap any reference set [4,10]. This is true even when only

higher-confidence interactions are considered; for example,

two large interaction screens of yeast proteins detected 39%

and 65% of a higher-confidence dataset, respectively, but only

11% of the reference set was detected by both screens [12].

These results indicate that the lack of coverage in high-

throughput two-hybrid data is largely due to incomplete

screening, and that significantly larger datasets than those

currently available will be needed before different datasets

can be used to cross-validate interactions.

The rates of coverage and completeness from our high-

throughput two-hybrid screening with Drosophila proteins

are consistent with those for the yeast proteins. We used the

LexA system to detect 1,814 reproducible interactions to com-

plement the 20,439 interactions previously detected in a

proteome-wide screen using the Gal4 system [6]. The overlap

between the LexA and Gal4 screens is less than 2% of each

dataset, whereas their overlap with a reference set was 17%

and 14%, respectively, and only 2% of the reference set was

detected by both screens (Table 2). Taken together, these

results suggest that, like the yeast interaction data, both Dro-

sophila datasets are far from complete and that many more

interactions could be detected by additional two-hybrid

screening.

The actual number of interactions that might be detected by

complete two-hybrid screening might be roughly estimated

from the partially overlapping datasets, as was performed for

accurate estimation of the number of genes in the human

genome [45,46]. In this approach, the overlap of two subsets,

given that one subset is a homogeneous random sample of the

whole, is sufficient to estimate the size of the whole. To make

such an estimate with high-throughput two-hybrid data,

however, it is necessary to first filter out false positives, as

they are mostly different for the two datasets, as suggested by

the fact that the nonoverlapping data has a lower rate of true

positives than the overlapping data. Giot et al. estimated that

Table 4

Domain pair enrichment

AD domain BD domain Domain pairings

Name Exp Rand Fold P Name Exp Rand Fold P Exp Rand Fold P

Cyclin 8 0.5 16 <0.00002 Protein kinase 30 1.7 18 <0.00002 38 0.6 60 <0.00002

F-box 17 1.2 15 <0.00002 Skp1 4 0.1 75 <0.00002 34 0.3 123 <0.00002

F-box 17 1.2 15 <0.00002 Skp1_POZ 4 0.1 65 <0.00002 34 0.3 123 <0.00002

Homeobox 9 2.9 3 0.00080 Protein kinase 30 1.7 18 <0.00002 33 3.7 9 0.00002

Extensin_2 20 11.0 2 0.00316 Protein kinase 30 1.7 18 <0.00002 33 14.0 2 0.01536

Cyclin_C 4 0.3 15 <0.00002 Protein kinase 30 1.7 18 <0.00002 26 0.3 76 <0.00002

Drf_FH1 11 4.3 3 0.00128 Protein kinase 30 1.7 18 <0.00002 19 5.5 3 0.01278

Cyclin 8 0.5 16 <0.00002 RIO1 11 0.3 39 <0.00002 19 0.3 59 <0.00002

Rrm 12 4.3 3 0.00032 Protein kinase 30 1.7 18 <0.00002 18 5.5 3 0.01692

The top 10 domain pairs observed in the interaction list are shown. As expected from interaction profiles (see text), cyclin and protein kinase 
domains are significantly associated, as are F-box and Skp domains. RIO1 is a recently described kinase domain [62] while the Extensin_2 domain is a 
proline-rich sequence. Drf_FH1 is the Diaphanous-related formin domain, a low-complexity 12-residue repeat found in proteins involved with 
cytoskeletal dynamics and the Rho-family GTPases [63], and the Rrm is an RNA-recognition motif. There are also additional associations between 
protein kinase domains and nucleic acid metabolism domains (see Additional data file 5). These data demonstrate the capacity of relatively small sets 
of proteins to generate high-confidence domain associations. A complete list of all domains and domain pairs found in the interaction data is in 
Additional data file 5.
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at least 11% of the Gal4 interactions are likely to be biologi-

cally relevant, based on the prediction accuracy of their statis-

tical model [6]. We found by comparison with other datasets

that the rates of true positives are not substantially different

between the LexA and Gal4 data (Table 3). Thus, if we use 11%

as the minimal rate of true positives in each dataset, we obtain

200 true interactions from the LexA screen and 2,248 from

the Gal4 screens. If we further assume that all of the 28 com-

mon interactions are true positives, we can estimate that

complete screens should be able to detect around 16,000 true

positive interactions (200 × 2,248/28). If each screening

approach has a false-positive rate of 89%, then around

150,000 interactions from each approach would be required

in order to create complete, cross-validating datasets, where

the overlap would be comprised of true positives. This esti-

mate is highly sensitive to both the frequency of true positives

in the two datasets, and the number of positives in the overlap

between the datasets; for example, if true-positive frequency

is underestimated by only twofold, there will be four times as

many interactions.

False-positive interactions have been classified as technical

or biological [5]. A technical false positive is an artifact of the

particular interaction assay, and the two proteins involved do

not actually interact under any setting. A biological false pos-

itive is one in which the two proteins genuinely and reproduc-

ibly interact in a particular assay, but the interaction does not

take place in a biological setting; for example, the interacting

proteins may never be temporally or spatially co-localized in

vivo. Using the approach described here, the interactions are

shown to be reproducible during the one-on-one two-hybrid

assays that are used to record reporter activity scores,

suggesting that we have minimized the frequency of technical

false positives.

We suggest that the biological false positives might be further

classified as informative and non-informative. Informative

false positives are interactions that do not occur in vivo, but

that nevertheless have some biological basis for being

detected and are potentially useful for guiding future experi-

ments. In our data, for example, the Cdk and Skp proteins

each interact with a different group of targets, which in turn

interact with multiple Cdk or Skp proteins. From this data

alone, we would accurately predict that Cdk proteins interact

with cyclins, and that Skp proteins interact with F-box pro-

teins, even though only some of the specific combinations are

true in vivo partners. Similarly, from analysis of domain pairs

in the LexA dataset, other patterns are evident, such as home-

obox domains being associated with both protein kinase and

cyclin domains (Table 4). Additional information or experi-

mentation would be needed to determine which of the specific

paralogous interactions function in vivo. Co-affinity

purification, for example, might be used to directly test all

possible pairs of paralogous interactions implied by the two-

hybrid map. Alternatively, the genes encoding each possible

pair of proteins could be examined for correlated expression

patterns, for example, to suggest more likely pairs or to

exclude pairs that are not coexpressed.

Conclusions
We used high-throughput screening to detect 1,814 protein

interactions involving many proteins with cell-cycle and

related functions. The resulting interaction map is similar in

quality to other large interaction maps and is predominated

by previously unidentified interactions. The majority of the

proteins in the map have not been assigned a biological func-

tion, and the map provides a first clue about the potential

functions of these proteins by connecting them with

characterized proteins or pathways. High-throughput inter-

action data such as this should allow researchers to quickly

identify possible patterns of protein interactions for use in

selecting additional functional assays to perform on their

gene(s) of interest. This narrows down the number of poten-

tial assays necessary to establish function for a given gene

from hundreds to just a handful; conversely, when studying a

specific function, such as the cell cycle, interaction data can

identify which few genes, selected from thousands, may have

a role in the process. Just as the sequencing of various

genomes has not allowed unambiguous ascription of biologi-

cal function to the majority of the identified genes, mapping

of an interactome by high-throughput methods does not

allow final assignment of interaction capacity or of higher

functionality to a protein. This requires additional experi-

ments, guided by these and other high-throughput data. The

results presented here show that extending and combining

different two-hybrid datasets will allow further refinement of

the selection of functional analyses to be performed for each

protein of the proteome.

Materials and methods
Plasmids and strains

Yeast two-hybrid vectors used are related to those originally

described for the LexA system [17]. The vector for expressing

amino-terminal LexA DNA-binding domain (BD) fusions was

pHZ5-NRT, which expresses fusions from the regulated

MAL62 promoter [18]. The vector for expressing amino-ter-

minal activation domain (AD) fusions from the GAL1 pro-

moter was pJZ4-NRT, which was constructed from pJG4-5

[17] by replacing the ADH1 terminator with the CYC1 termi-

nator and inserting the 5' and 3' recombination tags (5RT1

and 3RT1 [18]) into the cloning site downstream from the AD

coding region. Construction details can be found in Addi-

tional data file 1. Maps and sequences are available at [47].

Yeast (S. cerevisiae) strain RFY231 (MAT trp1::hisG his3

ura3-1 leu2::3Lexop-LEU2) and RFY206 (Mata his3∆200

leu2-3 lys2∆201 ura3-52 trp1∆::hisG) were previously

described [2,48]. RFY206 containing the lacZ reporter plas-

mid pSH18-34 [49] is referred to here as strain Y309.
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Yeast two-hybrid arrays

Two yeast arrays were constructed by homologous recombi-

nation (gap repair) in yeast [3]. We began with the 13,393

unique PCR products, which were generated using gene-spe-

cific primer pairs corresponding to the predicted Drosophila

ORFs, from ATG to stop codon, described in Giot et al. [6].

For the AD array, we co-transformed RFY231 with each PCR

product along with pJZ4-NRT that had been linearized with

EcoRI and BamHI, and selected recombinants on glucose

minimal media lacking tryptophan. Five colonies from each

transformation were picked and combined into a well of a 96-

well plate. For the BD array, we co-transformed Y309 with

each PCR product along with pHZ5-NRT that had been line-

arized with EcoRI and BamHI, and selected recombinants on

glucose minimal medium lacking histidine and uracil. BD

clones used in the screens and AD clones showing positive

interactions were sequenced to verify the ORF identities. See

Additional data files for details.

Two-hybrid screening

The BD fused proteins used as baits in our screens are listed

in Additional data file 2. The AD array was screened using a

two-phase pooled mating approach [19]. First, pools contain-

ing the 96 AD strains from each plate in the AD array were

constructed by scraping strains grown on agar plates, dispers-

ing in 15% glycerol, and aliquoting into a 96-well format; the

142 pools, representing approximately 13,000 AD strains,

were arrayed on two 96-well plates. In the first phase, individ-

ual BD strains were mated with the 142 AD pools by

dispensing 5-µl volumes of each culture onto YPD plates

using a Biomek FX robot (Beckman Coulter). After 2 days

growth at 30°C, yeast were replicated to medium selective for

diploids, which have the AD, BD and lacZ reporter plasmids,

and containing both galactose and maltose to induce expres-

sion of the AD and BD fusions, respectively. The plates also

lacked leucine to assay for expression of the LEU2 reporter,

and contained X-Gal (40 µg/ml) to assay for expression of

lacZ. These plates were photographed after 5 days at 30°C

and interactions were scored as described [19]. In the second

phase of screening, single BD strains were mated with the

appropriate panel(s) of 93 AD strains corresponding to the

pools that were positive in the first phase. The LEU2 and lacZ

reporters were assayed on separate plates: growth on plates

lacking leucine was scored from 0 (no growth) to 3 (heavy

growth); the extent of blue on the X-Gal plates was scored

from 0 (white) to 5 (dark blue). After re-testing interactions

(see Additional data files) the AD plasmids from interacting

AD strains were rescued in bacteria and clones were

sequenced to verify insert identity. Cloned plasmids were

then reintroduced into RFY231 and used in all possible com-

binations of one-on-one mating operations with the appro-

priate BD strains to repeat the interaction assay a third time.

The same set of BDs was also used to screen a pool of all

approximately 13,000 AD strains using a library screening

approach as described in the Additional data files. All interac-

tion data from both screens are listed in Additional data file 3

and are also available at [47,50] and at IntAct [51] in the Pro-

teomics Standards Initiative - Molecular Interactions (PSI-

MI) standard exchange format [52].

Data analysis

The interaction profiles for the BD fused proteins and AD

fused proteins were independently clustered and are plotted

in Figure 3 using Genespring software (Silicon Genetics). Pro-

tein-interaction map graphs in Figures 1, 2 and 4 and Addi-

tional data file 7 were drawn with a program developed by

Lana Pacifico (L. Pacifico, F. Fotouhi and R.L.F., unpublished

work) available at [47]. To determine Drosophila interlogs of

yeast or worm interactions, a list of Drosophila proteins

belonging to eukaryotic clusters of orthologous groups

(KOGs) [53] was obtained from the National Center for Bio-

technology Information (NCBI) [54]. Each fly protein was

assigned one or more KOG IDs, based on the cluster(s) to

which it belongs. A list of interactions among yeast (S. cerevi-

siae) proteins, derived mostly from high-throughput yeast

two-hybrid screens [4,55] and from the determination of pro-

teins in precipitated complexes [56,57], was obtained from

the Comprehensive Yeast Genome Database [58,59].

For the interactions determined by precipitation of com-

plexes, two lists were generated. One list includes the binary

interactions between the bait protein and every protein that

was co-precipitated, but not between the precipitated pro-

teins (hub and spoke model). The second list included all pos-

sible binary interactions among the members of a complex

(matrix model). The lists were each used to generate a list of

interactions between KOG pairs, which in turn was used to

generate a list of potential interactions between pairs of Dro-

sophila proteins belonging to those KOGs. Similarly, Dro-

sophila-worm (C. elegans) interlogs were determined using

the list of interactions between worm proteins determined by

high-throughput yeast two-hybrid screening [5]. Drosophila

genetic interactions were obtained from Flybase [27,60]. To

compare the two-hybrid data with other datasets we gener-

ated random interaction maps having the same BD proteins,

total interactions and topological properties as the LexA or

Gal4 data. The AD clones in each interaction list were

indexed, an array of the same number of genes as the AD

clones was randomly fetched from the Drosophila Release 3.1

genome [61] and these genes were used to replace the original

AD clones at the same indexed positions.

Fifty thousand such random networks were generated for

each two-hybrid dataset, and then compared with the yeast

interlogs, worm interlogs, and genetic interactions to deter-

mine the amount of overlap expected by chance. P values rep-

resented the number of times that the observed number of

overlapping interactions was detected in 50,000 iterations of

a random network, divided by 50,000. In most cases P <

0.0002 (see Additional data file 6). Additional methods are in

Additional data file 1. To compare the number of common

interactions between the LexA and Gal4 maps with the
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number expected by chance, we generated 106 random LexA

maps and found that they never contained more than two

interactions in common with the Gal4 map; thus, the P-value

for the 28 common interactions is significantly less than 10-6.

Additional data files
The following additional data are available with the online

version of this paper. Additional data file 1 contains Supple-

mentary materials and methods; Additional data file 2 con-

tains Supplementary Table 1, BD 'baits' used in the LexA

screens; Additional data file 3 contains Supplementary Table

2, Interactions detected in the LexA screens; Additional data

file 4 contains Supplementary Table 3, Enrichment of Gene

Ontology classes, complete list; Additional data file 5 contains

Supplementary Table 4, Enrichment of Domain pairs, com-

plete list; Additional data file 6 contains Supplementary Table

5, P-values for overlap among datasets, and Supplementary

Table 6, Interactions from the LexA and Gal4 screens that

successfully used the same BD bait proteins; Additional data

file 7 is a PDF containing Supplementary Figure 1, Interaction

maps of other clusters; Additional data file 8 is a PDF contain-

ing Supplementary Figure 2, Proteins clustered by interaction

profile; Additional data file 9 contains the legends to Supple-

mentary Figures 1 and 2.

Additional data file 1Supplementary materials and methodsSupplementary Materials and methodsClick here for additional data fileAdditional data file 2Supplementary Table 1: BD 'baits' used in the LexA screensSupplementary Table 1: BD 'baits' used in the LexA screensClick here for additional data fileAdditional data file 3Supplementary Table 2: Interactions detected in the LexA screensSupplementary Table 2: Interactions detected in the LexA screensClick here for additional data fileAdditional data file 4Supplementary Table 3: Enrichment of Gene Ontology classes (the complete list)Supplementary Table 3: Enrichment of Gene Ontology classes (the complete list)Click here for additional data fileAdditional data file 5Supplementary Table 4: Enrichment of Domain pairs (the com-plete list)Supplementary Table 4: Enrichment of Domain pairs (the com-plete list)Click here for additional data fileAdditional data file 6Supplementary Table 5: P-values for overlap among datasetsa nd Supplementary Table 6: Interactions from the LexA and Gal4 screens that successfully used the same BD bait proteinsSupplementary Table 5: P-values for overlap among datasetsa nd Supplementary Table 6: Interactions from the LexA and Gal4 screens that successfully used the same BD bait proteinsClick here for additional data fileAdditional data file 7Supplementary Figure 1: Interaction maps of other clustersSupplementary Figure 1: Interaction maps of other clustersClick here for additional data fileAdditional data file 8Supplementary Figure 2: Proteins clustered by interaction profileSupplementary Figure 2: Proteins clustered by interaction profileClick here for additional data fileAdditional data file 9The legends to Supplementary Figures 1 and 2The legends to Supplementary Figures 1 and 2Click here for additional data file
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