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A Dual Active-Set Solver for Embedded Quadratic
Programming Using Recursive LDLT Updates

Daniel Arnström, Alberto Bemporad, Fellow, IEEE, and Daniel Axehill, Member, IEEE

Abstract—In this technical note we present a dual active-set
solver for quadratic programming that has properties suitable
for use in embedded model predictive control applications. In
particular, the solver is efficient, can easily be warm-started, and
is simple to code. Moreover, the exact worst-case computational
complexity of the solver can be determined offline and, by using
outer proximal-point iterations, ill-conditioned problems can be
handled in a robust manner.

Index Terms—Quadratic programming, model predictive con-
trol, embedded optimization

I. INTRODUCTION

EFFICIENT, reliable, and simple quadratic programming
(QP) solvers are essential when model predictive control

(MPC) is used on embedded systems in real-time applications,
where a QP has to be solved at each time step under real-time
constraints with limited memory and computational resources.

Popular methods for solving these QPs are active-set meth-
ods [1]–[4], interior-point methods [5], [6], gradient projection
methods [7]–[10], and operator splitting methods [11].

In particular, the active-set method in [1] (QPNNLS), which
is based on reformulating the QP as a nonnegative least-
squares (NNLS) problem, is simple to implement and has
proven to be efficient for solving small to medium size
QP problems. Furthermore, its reliability has been improved
greatly in [12] where outer proximal-point iterations are used
to improve its numerical stability, and in [13], where QPNNLS
is shown to be closely related to a primal active-set QP
method applied to the dual problem, allowing the complexity
certification method in [14] to be used to determine the exact
computational complexity of QPNNLS.

In this technical note we use insights from [13] to propose
a dual active-set method for quadratic programming which
retains the favorable properties of QPNNLS (efficiency and
simplicity) by making recursive updates to an LDLT factor-
ization. In addition to retaining favorable properties, we show
that operating directly on the dual QP instead of the NNLS
reformulation used in [1] yields additional improvements: (i)
Direct reusability of matrix factors when the linear term in
the objective function and the constant term in the constraints
change, which is relevant for MPC and when the active-
set method is combined with outer proximal-point iterations.
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(ii) Improved numerical stability already in the setup without
proximal-point iterations. (iii) Improved efficiency by reducing
intermediate computations stemming from the NNLS reformu-
lation.

The main contribution of this paper is, hence, showing how
the properties of QPNNLS can be retained and improved by
directly operating on the dual QP problem instead of an NNLS
problem. Concretely this requires, for example, extending the
recursive LDLT updates to detect and handle singularities.
More broadly, we show that a simple dual active-set solver
that performs such recursive LDLT updates can outperform
state-of-the-art solvers on small to medium size QPs, which
are often encountered in embedded MPC applications.

Problem formulation: We consider QPs in the form

minimize
x

J(x) ,
1

2
xTHx+ fTx

subject to Ax ≤ b,
(1)

where x ∈ Rn. The objective function J is characterized by
H ∈ Sn++ and f ∈ Rn, and the feasible set is characterized
by A ∈ Rm×n and b ∈ Rm. Furthermore, the solution to (1)
is denoted by x∗.

Remark 1 (Relaxing strict convexity): The proposed algo-
rithm requires H to be invertible. The case when H � 0 can,
however, be handled by performing proximal-point iterations,
described in Section IV-E.

A set of necessary and, because of the convexity of (1), suf-
ficient conditions for optimality of x∗ are the KKT-conditions:

Hx∗ +ATλ∗ = −f, (2a)
Ax∗ ≤ b, λ∗ ≥ 0, (2b)

[b−Ax∗]i[λ∗]i = 0, ∀i = 1, . . . ,m, (2c)

for λ∗ ∈ Rm, and where the operator [·]i extracts the ith row
of a matrix, or the ith entry of a vector.

Instead of solving (1) directly, we will solve its so-called
dual problem:

minimize
λ≥0

Jd(λ) ,
1

2
λTMMTλ+ dTλ, (3)

where we have, similar to [1], introduced

M , AR−1, v , R−T f, d , b+Mv, (4)

and where R is an upper triangular Cholesky factor of H
(H = RTR). The solution λ∗ to (3) satisfies the same KKT-
conditions as (1) (see, e.g., [15]) and x∗ can, hence, be
recovered from λ∗ through (2a) when H � 0.
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Notation: Since the proposed method, soon to be intro-
duced, is an iterative method, λk denotes the value of the
dual iterate at iteration k. Furthermore, Wk is the so-called
working set, which contains indices of the components of λk
that are free to vary (which can be interpreted as imposing
the corresponding primal constraints to hold with equality).
Conversely, Wk contains the components of λk which are
fixed at zero. For M and d, which are constant in all iterations,
we let Mk and dk denote the rows of M and d indexed byWk,
respectively. Likewise, Mk and dk denote the rows of M and
d indexed by Wk, respectively. Finally, ker(A) denotes the
kernel of a matrix A.

II. A DUAL ACTIVE-SET ALGORITHM

The dual active-set algorithm that we propose, given in Al-
gorithm 1, can be interpreted as the primal active-set algorithm
considered in [14] applied to the dual problem in (3), which
is mathematically equivalent to several other popular active-
set algorithm formulations (see Section III-C for details and
advantages of the proposed formulation). We will now give
an overview of the algorithm and then cover specifics, such as
how to efficiently solve the subproblems encountered in Step
3 and 12, in Section II-B.

Algorithm 1 Dual active-set method for solving (1).
Input: M,d, v,R−1,W0, λ0
Output: x∗, λ∗,A∗

1: while true do
2: if MkM

T
k is nonsingular then

3: [λ∗k]Wk
← solution to MkM

T
k [λ

∗
k]Wk

= −dk
4: if λ∗k ≥ 0 then
5: [µk]Wk

←MkM
T
k [λ

∗
k]Wk

+ dk, λk+1 ← λ∗k
6: if µk ≥ 0 then optimum found, goto 16
7: else j ← argmini∈Wk

[µk]i, Wk+1 ←Wk ∪ {j}
8: else
9: pk ← λ∗k − λk, B ← {i ∈ Wk : [λ∗k]i < 0}

10: [λk+1,Wk+1]← FIXCOMPONENT(λk,Wk,B, pk)
11: else (MkM

T
k singular)

12: [pk]Wk
← solution to MkM

T
k [pk]Wk

= 0, pTk d < 0
13: B ← {i ∈ Wk : [pk]i < 0}
14: [λk+1,Wk+1]← FIXCOMPONENT(λk,Wk,B, pk)
15: k ← k + 1

16: return x∗ ← −R−1(MT
k [λ

∗
k]Wk

+ v), λ∗k,Wk

17: procedure FIXCOMPONENT(λk,Wk,B, pk)
18: j ← argmini∈B − [λk]i/[pk]i
19: Wk+1 ←Wk \ {j}, λk+1 ← λk − ([λk]j/[pk]j)pk

A. Algorithm overview

Like any other active-set method, Algorithm 1 iteratively
updates the working set W . An iteration always starts by
solving an equality constrained subproblem defined by the
current working set Wk:

min
λ

1

2
λTMMTλ+ dTλ

s.t. [λ]i = 0, ∀i /∈ Wk,
(5)

where k is the current iteration. By using the constraint
[λ]Wk

= 0 to eliminate variables, (5) is equivalent to the
unconstrained problem

min
[λ]Wk

1

2
[λ]TWk

MkM
T
k [λ]Wk

+ dTk [λ]Wk
, [λ]Wk

= 0. (6)

If MkM
T
k � 0 , the unconstrained problem in (6) has a unique

solution and the solution λ∗k to (5) is then given by

MkM
T
k [λ

∗
k]Wk

= −dk, [λ∗k]Wk
= 0. (7)

If λ∗k ≥ 0, we set λk+1 ← λ∗k and check for primal feasibility
(see below). Otherwise, a line-search along the line-segment
connecting λk and λ∗k is performed and the first component
which becomes zero is removed fromWk, i.e., is fixed at zero.

If MkM
T
k is singular and dTk p 6= 0 for some

p ∈ ker(MkM
T
k ), there is no bounded solution to (6), i.e., the

objective function can be made arbitrarily small by moving in
a direction pk which satisfies

[pk]Wk
= 0, MkM

T
k [pk]Wk

= 0, dT pk < 0. (8)

Hence, a line-search along the ray λk + αpk, α > 0, is
performed. As is discussed in detail in Section IV-A, at least
one component of λ in Wk will become zero while moving
along this ray if (1) is feasible. Again, the first component
which becomes zero is removed from Wk, i.e., is fixed at
zero.

Remark 2 (Impossibility of dT pk = 0): For Algorithm 1, one
can show that once MkM

T
k becomes singular, there always

exists a solution to (8), see, e.g., Lemma 3.5 in [16] for details.
When λ∗k ≥ 0, primal feasibility for the constraints not in
Wk is checked by computing the primal slack (which is the
dual vector of (3))

[µk]Wk
=MkMkλ

∗
k + dk. (9)

Primal feasibility is satisfied if µk ≥ 0 and, since stationarity,
dual feasibility, and complementary slackness already hold, λ∗k
is optimal. Otherwise, the most negative component of µk is
added to Wk (making the corresponding component of λ free
to vary).

Remark 3 (Selection rule): Adding the most negative com-
ponent of µk to Wk is a common rule in practice, but
adding any negative component of µk to Wk also leads to
convergence.

Remark 4 (Primal feasibility tolerance): When implemented
in practice, µk ≥ −εp is considered instead of µk ≥ 0 in Step
6 for numerical reasons, where εp > 0 is the tolerance for
primal feasibility. Similar tolerances should also be used for
the inequalities in Steps 4, 9, and 13.

After Wk has been changed by either adding or removing
an index to get a new working set Wk+1, the algorithm starts
another iteration by solving (6) for Wk+1 (or by solving (8)
if Mk+1M

T
k+1 is singular) and the steps described above are

repeated until convergence.
The convergence of Algorithm 1 can be proven by standard

arguments for active-set methods (cf. e.g., Section 4 in [17]
or Section 3 in [18]).
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B. LDLT factorization

The matrix MkM
T
k is central in Algorithm 1, partly because

of whether it is singular or not results in different modes (Steps
2-10 or Steps 11-14, respectively), but also since it is used to
compute λ∗k in Step 3 or pk in Step 12. We will now show that
the above-mentioned operations can be efficiently performed
by factorizing MkM

T
k = LDLT , where L is a lower unit

triangular matrix and D is a diagonal matrix. In particular,
we show in Section II-B1 that the singularity of MkM

T
k can

easily be indentified, and in Section II-B2 and Section II-B3
we show that the system of linear equations defining λ∗k and
pk can be efficiently solved. Moreover, since only a single
row of Mk is either added or removed between iterations in
Algorithm 1, L and D can be recursively updated, as described
in Section II-B4, which reduces the computational complexity
of the algorithm significantly.

1) Detecting singularity: Given an L and D it is straight-
forward to determine whether MkM

T
k is singular or not since

this can directly be seen in D:
Lemma 1: Assume that there exist L and D such that

MkM
T
k = LDLT , with L being a lower unit triangular matrix

and D being a diagonal matrix with nonnegative elements.
Then [D]ii 6= 0,∀i⇔MkM

T
k is nonsingular

Proof: Directly follows from L having full rank and that
D is a diagonal matrix.

2) Solving nonsingular KKT-systems: When MkM
T
k is

nonsingular, solving MkM
T
k [λ

∗
k]Wk

= −dk given an LDLT

factorization of MkM
T
k can be done by solving two triangular

linear systems:

y ← Solve Ly = −dk (forward substitution), (10a)

z ← Scale y with D, [z]i =
[y]i
[D]ii

, (10b)

[λ∗k]Wk
← Solve LT [λ∗k]Wk

= z (backward substitution).
(10c)

Remark 5 (Efficient forward substitution): Because a certain
number of first rows of the lower-triangular matrix L and of dk
and D remain constant between iterations, both the forward
substitution and scaling in (10a) and (10b) do not have to
be done from scratch at each iteration of Algorithm 1. The
amount of previous computations that can be reused depends
on how much the working setWk changes. For example, only
the last element of y in (10a) has to be solved for after a
constraint is added to Wk.

3) Solving singular KKT-systems: Next, we consider the
case when MkM

T
k is singular, which, from Lemma 1, means

that at least one diagonal element of D is zero. The following
lemma shows that the LDLT factorization can be used to
efficiently compute a p which satisfies MkM

T
k p = 0.

Lemma 2: Assume that MkM
T
k = LDLT with the ith

diagonal element of D being zero, i.e.,

L =

L1 0 0
lTi 1 0
∗ ∗ ∗

 , D =

D1 0 0
0 0 0
0 0 D2

 . (11)

Let p̃ be the solution to LT1 p̃ = −li. Then p =
[
p̃T 1 0

]T
satifies MkM

T
k p = 0.

Proof: By multiplying LT with the given p we get

LT p =

LT1 li ∗
0 1 ∗
0 0 ∗

p̃1
0

 =

LT1 p̃+ li
1
0

 = ei (12)

where ei is the ith unit vector and we have used that LT1 p̃+li =
0. Using (12) and that the ith element of D is zero gives

MkM
T
k p = LDLT p = LDei = 0, (13)

proving the lemma.
Hence, we can find a nontrivial null vector of MkM

T
k by

solving an (i−1)-dimensional upper unit triangular system of
linear equations by backward substitution. In most cases, i =
|Wk| since MkM

T
k only becomes singular after an addition of

an element toWk, which in turn implies that the zero element
in D will be the last diagonal element (if the updates described
below are used).

How null vectors of MkM
T
k can be used to detect primal

infeasibility is discussed in Section IV-A.
4) Updating LDLT after addition to/removal from W: To

recursively update L and D after adding an index to W , we
recall the result from Theorem 2 in [1].

Lemma 3: Let L be a unit lower triangular matrix and D be
a diagonal matrix such that MkM

T
k = LDLT . Furthermore

let M+ = [ Mk

[M ]i
]. Then M+(M+)T = L+D+(L+)T with

L+ =

[
L 0
lT 1

]
, D+ =

[
D 0
0 δ

]
, (14)

where l and δ are defined by

LDl =Mk[M ]Ti , δ = [M ]i[M ]Ti − lTDl. (15)

Proof: Cf. proof of Theorem 2 in [1].
Similarly, we recall the result from Lemma 2 in [1] for

recursively updating L and D after the removal of an index
from W .

Lemma 4: Let MkM
T
k = LDLT with

L =

L1 0 0
∗ 1 0
A li L2

 , D =

D1 0 0
0 δi 0
0 0 D2

 , (16)

where li and δi are placed in the ith column of L and D,
respectively, and where L1 and L2 are lower unit triangular
and D1 and D2 are diagonal. Furthermore, let M - be Mk with
the ith row removed. Then M -(M -)T = L-D-(L-)T , where L-

and D- are given by

L- =

[
L1 0

A L̃2

]
, D- =

[
D1 0

0 D̃2

]
, (17)

if L̃2D̃2L̃
T
2 = L2D2L

T
2 + δilil

T
i , where L̃2 is lower unit

triangular and D̃2 is diagonal.
Proof: Cf. the proof of Lemma 2 in [1].

In Lemma 4, the LDLT factorization of L2D2L
T
2 + δilil

T
i is

a rank-one update of an existing LDLT factorization, which
can be done efficiently by, e.g., Algorithm C1 in [19].
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III. COMPARISON TO SIMILAR QP ALGORITHMS

A. QPNNLS

The proposed method is similar to the QP method de-
scribed in [1] (QPNNLS), which is based on transforming
the QP to a nonnegative least-squares (NNLS) problem. This
transformation results in solving least-squares subproblems on
the form miny ‖ATk y − bk‖22 at each iteration, which in turn
results in solving the linear equation AkATk y = Akbk, similar
to the linear equation (7) solved in Algorithm 1. Similar to
the proposed algorithm, an LDLT factorization of AkATk is
used to efficiently solve these linear equations. Explicitly,
Ak = [Mk dk] in [1], and both having Mk and dk in Ak,
in contrast to only Mk as in the proposed method, leads to
some undesirable properties.

First of, elements in Mk and dk can be of different magni-
tude which can lead to numerical problems. This was partly
resolved in [12] by introducing a scaling factor β at the cost
of some extra overhead.

Secondly, and more critically, Mk depends on H and A
while dk also depends on f and b. This is of importance when
numerical stability of the methods are improved with outer
proximal-point iterations [12] and when the QPs are solved in
the context of linear MPC. In both of these applications, H
and A remain constant while only f and/or b change between
QP instances, which means that the computational complexity
can be significantly reduced by starting the solver with the
previous solution and reusing the L and D factors. For the
proposed method this is straightforward since L and D are
related to M which, in turn, is related to the unchanged H
and A. For QPNNLS, however, L and D are related to M and
d, where d changes between iterations. Hence, to be able to
reuse L and D between QP instances in QPNNLS, two rank-
one updates are necessary. These rank-one updates introduce
additional complexity compared with the proposed method.

Finally, the NNLS reformulation used in QPNNLS intro-
duces an additional scaling factor that depends on the current
iterate, which is not necessary in the proposed method, leading
to additional simplifications.

B. Goldfarb-Idnani

Warm-starting the proposed method is straightforward:
given W0, any λ0 satisfying [λ0]W0 ≥ 0, [λ0]W0

= 0, suffices
(however [λ0]W0 > 0 is preferable for numerical reasons).
Warm-starting is not as straightforward for the popular dual
active-set method in [18] (GI), which needs to be started in a
nonnegative complementary basic solution, i.e., a nonnegative
solution to (7). Warm-starting GI, hence, requires an additional
procedure which finds a nonnegative complementary basic
solution given an initial working set W0, increasing the
computational burden. In fact, such a procedure is often similar
to Steps 9-10 in Algorithm 1, i.e., is already embedded in the
proposed method (cf, e.g., Alg. 5.3 in [20]).

Another important difference between GI and the proposed
algorithm is that GI, similar to many other active-set QP
methods, computes a step direction from the current iterate
λk to λ∗k at each iteration, whereas Algorithm 1 computes λ∗k
directly. Some advantages of computing λ∗k directly are:

(i) The availability of λ∗k allows for the update λk+1 ← λ∗k
in Algorithm 1 when λ∗k ≥ 0. This means that numerical
errors in λk+1 only stem from solving (7) one time. In
contrast, by computing a step direction, numerical errors in
the iterate accumulate each time a step is taken, i.e., there
is no ”resetting” mechanism for the numerical errors in the
iterate in GI, as for Algorithm 1, when λ∗k ≥ 0.

(ii) Less constraints can be classified as blocking when λ∗k
is computed directly since only negative components of λ∗k
can be blocking while, similarly, all negative components of
the step direction are seen as possible blocking constraint for
GI, where the former is always a subset of the latter. This
ultimately leads to fewer computations for the former when
removing constraints from W , since fewer ratio tests (Step 18
in Algorithm 1) have to be done.

(iii) In particular for GI, λ∗k can not be determined directly
from the computed step direction since the step length along
the step direction to reach λ∗k is unknown. Therefore, a primal
iterate is also updated and used to determine which step length
should be taken along the step direction from the iterate λk
to reach λ∗k (this is referred to the full step length in [18]).
Performing these primal updates increases the computations
needed compared with Algorithm 1, where only the dual
iterate λk needs to be updated in each iteration.

C. Other active-set methods
As is shown in [21], many active-set methods reported in

the literature are mathematically equivalent, in the sense that
they produce the same sequence of iterates before reaching the
solution, and Algorithm 1 belongs to the family of methods
considered therein. For example, the proposed method is math-
ematically equivalent to the active-set algorithms presented
in [17], [18], [22]. The differences between these active-set
algorithms are numerical, e.g., how the systems of linear
equations are solved and book-keeping of iterates.

The proposed method also shares the interpretation of
the dual active-set methods in [23] (QPDAS) and in [24]
(DRQP) as a primal active-set method applied to the dual
problem (3). Instead of handling unbounded subproblems
directly, as is done in the proposed method, QPDAS performs
proximal-point iterations on the dual problem. Furthermore,
the factorization used for solving the subproblems is different.
DRQP differs from the proposed method in that it works on a
sparse QP formulation rather than a dense one. By doing so,
the subproblems are solved using a Riccati recursion, which
leads to a linear computational complexity in the horizon
of the MPC problem when solving the subproblems. DRQP
cannot, however, detect primal infeasibility directly and does
not perform low-rank updates to reduce computations, while
the proposed algorithm does both (see Section IV-A and
Section II-B4, respectively, for details).

Recursively updating an LDLT factorization when solving
the subproblems in an active-set method is described in
the context of primal active-set methods in [19]. Since the
constraints are particularly simple for the dual problem (3),
some of the computations described in [19] simplify when
the factorization is used in the context of the proposed dual
active-set method.



5

IV. EXTENSIONS

A. Detecting infeasibility

For a QP method to be reliable it needs to be able to
detect if (1) has a primal feasible solution at all, i.e., if
{x ∈ Rn : Ax ≤ b} 6= ∅, otherwise the QP method might
not be able to terminate in finite time for infeasible problems.
Primal infeasibility can be detected in Step 13 in Algorithm 1
if B = ∅, as is shown by the following lemma.

Lemma 5: Let pk satisfy [pk]Wk
= 0,MkM

T
k [pk]Wk

= 0,
and dT pk < 0. Furthermore, let B , {i ∈ Wk : [pk]i < 0}.
Then if B = ∅, i.e., if pk ≥ 0, the QP in (1) is infeasible.

Proof: Inserting αpk, for an arbitrary constant α > 0, in
the dual objective gives

V (αpk) =α
2 1

2
pk
TMMT pk + αdT pk

=α2 1

2
[pk]

T
Wk
MkM

T
k [pk]Wk

+ αdT pk = αdT pk,

where the second equality follows from [pk]Wk
= 0 and the

last equality follows from MkM
T
k [pk]Wk

= 0. Now, since
dT pk < 0, V (αpk) → −∞ as α → ∞. Furthermore, αpk is
dual feasible since αpk ≥ 0, ∀α > 0 (pk ≥ 0 by construction),
making (3) unbounded. The desired result follows from an
unbounded dual problem being equivalent to an infeasible
primal problem, see, e.g., [25, Sec. 5.2.2].

B. Intermediary lower bounds on J(x∗)

In some applications, for example when QP subproblems are
solved as a part of solving mixed-integer quadratic programs
(MIQPs) with branch-and-bound, having a lower bound on
J(x∗) can reduce computations significantly [26].

Since Algorithm 1 operates on the dual problem, the well-
known result from convex optimization that the dual function
evaluated at a dual feasible point yields lower bounds on J(x∗)
(see, e.g., [25, Sec. 5.1.3]) can be used to efficiently compute
such bounds. Concretely, we get the lower bound

J(x∗) ≥ 1

2
(‖MT

k λ
∗
k‖22 − ‖v‖22) (18)

every time λ∗k ≥ 0 in Algorithm 1.
Moreover, by inserting λ∗k in (3) and using (7) one gets that

Jd(λ
∗
k) = − 1

2‖M
T
k λ
∗
k‖22, and, since Algorithm 1 is a descent

method, ‖MT
k λ
∗
k‖22 will increase in subsequent iterations,

resulting in the lower bounds in (18) increasing (and becoming
tight once µk ≥ 0).

Remark 6 (Detecting cycling): ‖MT
k λ
∗
k‖22 can also be used

to detect cycling in Algorithm 1, which can occur for ill-
conditioned problems due to rounding errors. This can be done
by checking whether ‖MT

k λ
∗
k‖ increases every time λ∗k ≥ 0,

which ensures that Algorithm 1 is making progress in each
iteration.

C. Bound constraints

Often the constraints in QPs encountered in applications,
for example in MPC, are given by upper and lower bounds in
the form b− ≤ Ax ≤ b+. A naive way of handling these is to
reformulate the constraints as Ãx ≤ b̃, with Ã , [ A−A ], b̃ ,

[ b
+

−b− ], which puts the QP in the form in (1). The structure
of the bound constraints can, however, be used to reduce
the computational complexity and memory footprint of Al-
gorithm 1, primarily when computing µk. When exploiting
the bound structure, each component of [λ]i corresponds to,
instead of just the one-sided constraint [A]ix ≤ [b]i, the
two-sided constraint [b−]i ≤ [A]ix ≤ [b+]i. To distinguish
between whether the upper or lower bound is active, the sets
W+ and W−, containing components corresponding to active
upper and lower bounds, respectively, are introduced. Note that
W+ ∪W− =W .

To determine if optimality has been achieved or whether
a constraint needs to be added to W , we consider the primal
slacks µ+

k and µ-
k for the upper and lower bounds, respectively,

for the constraints not in Wk, computed by

[µ+
k]Wk

=MkM
T
k λ
∗
k + [b+ +Mv]Wk

,

[µ-
k]Wk

= −MkM
T
k λ
∗
k − [b− +Mv]Wk

.
(19)

Hence, instead of d, the algorithm uses d+ , b+ + Mv
and d− , −(b− +Mv). Importantly, the relatively expensive
matrix multiplication MkM

T
k λ
∗
k only has to be computed

once in (19), while it has to be computed twice if the naive
formulation with Ã and b̃ is used. Furthermore, if a component
of µ+

k is negative, the corresponding component of µ-
k does not

have to be computed since both the upper and lower bounds
cannot be violated simultaneously (under the assumption that
b− ≤ b+, i.e. that the QP problem is not trivially infeasible).
Optimality has been achieved if µ+

k ≥ 0 and µ-
k ≥ 0.

Otherwise, the most negative component of µ+
k or µ-

k is added
to Wk.

When each component of λ is the multiplier for both an
upper and lower bound simultaneously, it does not have to
be nonnegative anymore. Instead, components of λk corre-
sponding to active upper bounds have to be nonnegative while,
conversely, components corresponding of active lower bounds
have to be nonpositive. The condition λ∗k ≥ 0 is, hence,
replaced by

[λ∗k]i ≥ 0 ∀i ∈ W+
k , and [λ∗k]i ≤ 0 ∀i ∈ W−k . (20)

Moreover, B is redefined as B , {i ∈ W+ : [λ∗k]i < 0}∩{i ∈
W− : [λ∗k]i > 0}. For the singular case, B is redefined in a
similar way but in terms of pk rather than λ∗k.

Finally, when solving the subproblems MkM
T
k λ
∗
k = −dk,

the components of dk corresponding to active upper bounds
should be replaced by elements of d+ and, likewise, the
components of dk corresponding to active lower bounds should
be replaced by elements of −d−.

Remark 7 (Box-constrained QP): When the constraints are
in the simple form b- ≤ x ≤ b+, common in, e.g., MPC,
then M = R−1, which is upper triangular. This additional
structure can be exploited to reduce computations and the
memory footprint further.

D. Equality constraints

Algorithm 1 can also easily be extended to handle equality
constraints in (1). If the equality constraints are given as
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Gx = h, we can, similar to (4), define

N , GR−1, w , R−1f, e , h+Nw. (21)

The dual of the QP can then be stated as

minimize
λ≥0, ν

1

2

[
ν
λ

]T [
N
M

] [
N
M

]T [
ν
λ

]
+

[
e
d

]T [
ν
λ

]
(22)

Essentially, equality constraints can be interpreted to always
be active, i.e., be treated as being in Wk for all k. The
corresponding modifications to Algorithm 1 are, hence, to
replace (7), (8) and (9) with[

N
Mk

] [
N
Mk

]T [
ν∗k

[λ∗k]Wk

]
= −

[
e
dk

]
, (23a)[

N
Mk

] [
N
Mk

]T [
ν̃k

[pk]Wk

]
= 0, dT pk < 0, (23b)

µk =Mk

[
N
Mk

]T [
ν∗k

[λ∗k]Wk

]
+ dk, (23c)

respectively.
Finally, factors L and D such that NNT = LDLT are

computed in the start of the algorithm.

E. Proximal-point iterations

The numerics of any QP solver can be improved by per-
forming outer proximal-point iterations, which results in a
sequence of better conditioned QPs being solved. In particular,
proximal-point iterations are given by

xk+1 = argmin
x

1

2
xT (H + εI)x+ (f − εxk)Tx

s.t. Ax ≤ b,
(24)

where ε > 0 is a regularization parameter. It can be shown
(cf. [12, Corollary 1]) that limk→∞ xk = x∗ when (24) is
iteratively applied. As was shown in [12], combining outer
proximal-point iterations with an active-set algorithm can lead
to an efficient and numerically stable solver. The numerical
stability of the proposed method can, hence, be improved by
amending it with outer proximal-point iterations, summarized
in Algorithm 2. In Algorithm 2, Rε is an upper Cholesky factor
to H + εI , Mε , ARε, η > 0 is a tolerance for determining
if a fixed point has approximately been reached, and DAQP
refers to Algorithm 1. Also note that DAQP is heavily warm-
started in Step 4 when each perturbed QP in the form (24) is
solved, reducing the computational burden significantly.

Algorithm 2 Proximal-point iterations.
Input: ε > 0,Mε, b, f, R

−1
ε ,W, λ, x

Output: x∗, λ∗,A∗
1: while true do
2: v ← R−Tε (f − εx); d← b+Mεv
3: xold ← x
4: [x, λ,W]← DAQP(Mε, d, v, R

−1
ε , λ,W)

5: if ‖x− xold‖ < η then
6: return x, λ,W

F. Exact complexity certification
As was mentioned in Section II, Algorithm 1 can be inter-

preted as the active-set algorithm considered in [14]. Therein,
a complexity certification method is proposed, which exactly
determines the computational complexity for this active-set
algorithm when QPs originating from a given multi-parametric
quadratic program are to be solved. This complexity certifica-
tion method can, hence, be used to determine the exact com-
putational complexity of Algorithm 1. By doing so, worst-case
bounds on the number of iterations and/or floating operations
of Algorithm 1 can be determined before it is used in, e.g., an
embedded MPC application.

V. NUMERICAL EXPERIMENTS

We will now empirically substantiate the claim in Sec-
tion III-A that DAQP is a direct improvement, both in terms
of numerical robustness and computational complexity, of
QPNNLS. We then compare DAQP with other state-of-the-art
QP solvers that are commonly used in MPC applications.

A. Comparison with QPNNLS
Numerical stability of the proposed method is compared

with QPNNLS on a set of randomly generated small-scale
QPs with varying condition numbers κ(H). For each κ(H),
100 QPs of size n = 25,m = 100 are generated and the
worst-case distance from the optimal solution x∗ as well as
the worst-case solution time are measured.

We compare the original formulation of QPNNLS presented
in [1] (QPNNLS), the extended version of QPNNLS presented
in [12] in which numerical stability is improved by scaling
and by performing outer proximal-point iterations (QPNNLS
PROX), the proposed method given by Algorithm 1 (DAQP),
and, finally, Algorithm 1 in conjunction with outer proximal-
point iterations given by Algorithm 2 (DAQP PROX).

For all experiments, the primal feasibility tolerance is εp =
10−6 and, for the proximal-point iterations, ε = 10−4 and η =√
2−52 ≈ 1.5·10−8 (square root of machine epsilon for double

precision). All of the methods are implemented in MATLAB
using double precision and reference x∗ are obtained by using
CPLEX with settings emphasizing numerical precision. Each
QP is solved five times and the median execution time for
these five runs is the reported solution time.

Worst-case results are shown Figure 1, with DAQP showing
better numerical properties and worst-case solution time com-
pared with QPNNLS, as is to be expected from the discussion
in Section III-A. Furthermore, Figure 1 also illustrates that
the robust numerical properties of QPNNLS PROX reported
in [12] extend to when DAQP is amended with proximal-
point iterations. The worst-case solution time for DAQP PROX
is, however, less than that of QPNNLS PROX, mainly be-
cause DAQP PROX can directly reuse the LDLT factorization
between the outer proximal-point iterations, while QPNNLS
PROX has to perform low-rank updates before reusing the
factors.

Remark 8: For some QPs with κ(H) > 106, QPNNLS
reached the iteration limit and was, hence, unable to return
a solution within the infeasibility tolerance. This explains the
jump in solution time for κ(H) > 106 in Figure 1a.
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Fig. 1. Comparison of DAQP, QPNNLS, with and without performing outer proximal-point iterations, on QPs with varying condition number κ(H). The
worst case solution time and distance to the optimizer reported for 100 randomly generated QPs with n = 25 and m = 100, for each κ(H).

B. Model predictive control application

The proposed algorithm is also tested for MPC of an ATFI-
16 aircraft [27], which is a tutorial problem in the MATLAB
Model Predictive Control Toolbox and was also considered
in [1], [12]. The system consists of two inputs, flaperon and
elevator angles, which are upper and lower constrained, and
two outputs, attack and pitch angles, with upper and lower
limits imposed on the pitch angle. The system is simulated
for 10 seconds (with a sampling time of 0.05 seconds) with
an angle of attack reference of 0 and a pitch angle reference
shifting between ±10◦. For prediction horizon N , the resulting
QPs have dimensions n = 2N+1, m = 4N+2(N−1), where
the extra optimization variable is due to the output constraints
being softened. Because of the system having unstable poles,
the Hessian has a fairly high condition number (κ(H) > 1010).
For the weights in the MPC formulation, the same settings as
in the MATLAB MPC Toolbox tutorial were used.

Since the same MPC problem also was considered in [1],
[12] and that the proposed method is a direct improvement
of the methods therein (motivated in Section III-A and high-
lighted by the experiments in Section V-A), the favourable
results for QPNNLS reported therein immediately also holds
for the proposed method, and are in fact even strengthened.
Nevertheless, we compare the worst-case solution time for the
proposed method with some additional QP solvers which are
used in the context of MPC. Herein, we focus on the case
when the MPC problem is reformulated as a dense QP.

Remark 9 (Exploiting sparsity): We want to stress that our
focus here is on solving dense QPs from the condensed MPC
problem formulation. When solving large problems, other
solvers that use sparse formulations [6], [11], [24], [28], [29]
might be more efficient. If the ideas herein can be modified
to exploit sparsity is a topic for future research.

We compare a C implementation1 of Algorithm 1 (DAQP)
and Algorithm 2 (DAQP PROX) with: (i) The parametric
active-set method presented in [2] (qpOASES e), coded in C;
(ii) The operator splitting method presented in [11] (OSQP),
coded in C; (iii) The interior-point method presented in
[6] (HPIPM), coded in C; (iv) The dual active-set method
presented in [3] (QPKWIK) which is based on [18], with
generated C code from MATLAB.

1Available at https://github.com/darnstrom/daqp.

To get reliable solution times, each QP was solved 15
times and the median solution time was used as the reported
solution time for the QP. When possible and relevant, the
solvers were provided with precomputed matrix factorizations,
e.g., the Cholesky factor of H was precomputed for DAQP,
qpOASES e and QPKWIK and only solution time was con-
sidered for OSQP. The memory footprint for DAQP for the
largest QPs (N = 30), including code and problem data, was
48kB/70kB for single/double precision, respectively.

The worst-case solution times are reported in Figure 2a,
where DAQP and DAQP PROX outperform the other solvers.
Note, however, that HPIPM and OSQP scale better with N and
will, as N grows larger, sooner or later outperform active-set
methods. Still, DAQP seems superior on small to medium size
MPC problems, which is a common scope of problems where
embedded model predictive control is employed. Moreover,
the average quality of the solutions computed by the solvers
are compared in Figure 2b and Figure 2c by considering the
average difference in the objective function and the worst-
case constraint violations, respectively. A positive value in
Figure 2b, implies that the solution is on average worse than
that of DAQP. Figure 2b illustrates that the second-order
solvers (except QPKWIK for larger horizons) give a better
performance compared with OSQP. Moreover, qpOASES and
DAQP PROX yield slightly better solutions than DAQP for
larger horizons (where κ(H) ≈ 1014). Finally, Figure 2c
illustrates that the constraint violation is low and similar for
the active-set methods, while OSQP has, comparatively, large
worst-case constraint violations. Also note that HPIPM has no
constraint violation since it is an interior-point method.

VI. CONCLUSION

In this paper we have presented a dual active-set solver
which is efficient, reliable, and simple to code, making it
suitable for use in real-time model predictive control ap-
plications. Numerical experiments show that the proposed
method can outperform state-of-the-art QP algorithms for QPs
encountered in embedded MPC applications, both in terms of
computational complexity and numerical robustness.

Future work includes combining the ideas herein with low-
rank updates of the Riccati factorization [30], to investigate
if these ideas can lead to an efficient solver for problems of
larger size.

https://github.com/darnstrom/daqp
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Fig. 2. Worst-case solution time and solution quality when solving QPs encountered during the MPC of an ATFI-16 aircraft in simulation for varying
prediction horizons N . The QPs have dimensions n = 2N + 1, m = 4N + 2(N − 1). The solvers were exectued on an Intel 2.7 GHz i7-7500U CPU.
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