
n5'~ ugW XNNW

t~j2t00tin004:D ff.E-l'VD.. t~ w or-t .f0 -g pu ,0;0Dz;0;d X t- . ff;

MASSACHUSETTS I~~NSTI!TUE
TECH O GY

............... , . E s f. M , ...

A Dual-Ascent Procedure for

Large-Scale Uncapacitated Network Design

by

A. Balakrishnan, T.L. Magnanti, and

R.T. Wong

OR 161-87 May 1987

A DUAL-ASCENT PROCEDURE FOR

LARGE-SCALE UNCAPACITATED NETWORK DESIGN

A. Balakrishnan

Krannert Graduate School of Management

Purdue University

T. L. Magnanti

Sloan School of Management

Massachusetts Institute of Technology

R. T. Wong

Krannert Graduate School of Management

Purdue University

May 1987

Supported by Grant #ECS-8316224 from the Systems Theory and Operations

Research program of the National Science Foundation.

tSupported in part by ONR contract #NOOO 14-86-0689 from the

Office of Naval Research.

C

r

Abstract

The fixed-charge network design problem arises in a variety of problem

contexts including transportation, communication, and production scheduling.

We develop a family of dual ascent algorithms for this problem. This approach

generalizes known ascent procedures for solving shortest path, plant location,

Steiner network and directed spanning tree problems. Our computational

results for several classes of test problems with up to 500 integer and 1.98

million continuous variables and constraints shows that the dual ascent

procedure and an associated drop-add heuristic generates solutions that, in

almost all cases, are guaranteed to be within 1 to 3 percent of optimality.

Moreover, the procedure requires no more than 150 seconds on an IBM 3083

computer. The test problems correspond to dense and sparse networks,

including some models arising in freight transport.

0

Introduction

The fixed charge network design model, which is a fundamental discrete

choice design model, is useful for a variety of applications in

transportation, distribution, communication, and several other problem

settings that make basic cost tradeoffs between operating costs and fixed

costs for providing network facilities (see Magnanti and Wong (1984)). The

fixed charge design model is deceptively simple. The basic ingredients are a

set of nodes and a set of uncapacitated arcs, and, between selected pairs of

nodes, a required flow that must be routed over the network. Each arc has two

types of cost: a per unit flow cost and a fixed charge for using the arc. The

problem is to select a subset of arcs that minimizes the sum of the flow (or

routing) costs and fixed charge costs.

Magnanti and Wong (1984) have shown that the basic fixed charge design

model is quite flexible and contains a number of well-known network

optimization problems as special cases including the shortest path, minimum

spanning tree, uncapacitated plant location, Steiner network, and traveling

salesman problems.

Since many of these special cases, e.g., the uncapacitated plant location

problem, are known to be difficult to solve (in the parlance of computational

complexity theory, they are NP-hard), so is the general fixed charge design

model. The closely related budget network design problem, that removes the

fixed charge terms from the objective function, but instead limits the sum of

fixed charges incurred through a budget constraint, is also NP-hard (Johnson,

Lenstra, and Rinnooy Kan (1978)). In fact, Wong (1980) has shown that even

finding an approximate budget design solution is an NP-hard problem.

In addition to these theoretical arguments, substantial empirical

evidence also confirms the difficulty of solving network design problems. A

number of researchers including Hoang (1973), Boyce, Farhi and Weischedel

(1973), Dionne and Florian (1979), Boffey and Hinxman (1979), Gallo (1981) and

Los and Lardinois (1980) have studied branch and boiind algorithms for either

the fixed charge or budget design problems. Although these branch and bound

algorithms can successfully solve problems with a small number of arcs (up to

40-50), their computation time grows very quickly in the problem size.

- 1 -

For larger scale problems, several approximate solution procedures are

available. Billheimer and Gray (1973) and Los and Lardinois utilize add-drop

type heuristics for the fixed charge design problem; Dionne and Florian, and

Boffey and Hinxman use similar techniques for the budget design problem. Wong

(1985) describes a special add heuristic for budget design problems on the

Euclidean plane. He shows that asymptotically it is very likely that the cost

of the solution generated by this heuristic will, under certain conditions, be

very close to the cost of the optimal solution.

Some recent research has extended the range of applicability of

optimization-based approaches. Magnanti, Mireault and Wong (1986) have solved

network design problems with an accelerated version of Benders' decomposition

combined with a preprocessing routine that eliminates unnecessary variables.

The preprocessing routine utilizes a dual ascent procedure to be described in

this paper. This implementation of Benders' method has been able to solve to

optimality undirected network problems with up to 30 nodes and 90 candidate

arcs. Lamar, Sheffi and Powell (1984) have proposed an iterative

linearization scheme embedded in a branch and bound routine. The algorithm

has been successfully applied to a special type of fixed charge directed

network design problem that arises in freight routing operations. The test

problems include networks with up to 46 nodes and 510 fixed-charge arcs.

In this paper we present a new dual-based approach for solving large-

scale fixed charge network design problems. We begin in Section 1 by modeling

the fixed charge design problem as an integer program and discussing various

formulations, including a new one for the undirected network case. Section 2

describes dual ascent procedures for computing approximate solutions to the

dual of the linear programming relaxation of the design problem formulation.

The dual solution provides a lower bound for the optimal solution value and

this solution, together with the complementary slackness conditions, permits

us to generate a feasible network design solution. By using a drop-add

heuristic, we further improve the upper bound generated by the feasible design

solution. The dual lower bound, when used in conjunction with the upper bound

from the heuristic solution, enables problem reduction by eliminating some

arcs from the network. Section 3 presents these and other enhancements.

As part of our discussion in Section 2, we also comment on some general

principles for designing dual ascent algorithms. We show how our ascent

- 2 -

procedure can be viewed as a generalization of Dijkstra's (1959) shortest path

algorithm and of Wong's (1984) dual ascent procedure for the Steiner network

problem, which itself generalizes Bilde and Krarup's (1977) and Erlenkotter's

(1978) ascent algorithm for uncapacitated plant location, as well as the Chu-

Liu (1965) and Edmonds (1967) directed spanning tree algorithm. Thus, just as

the network design model formulation generalizes the shortest path, facility

location, spanning tree and Steiner network problems, our algorithm

generalizes the dual ascent methods proposed for these special cases.

Finally, in Section 4, we present extensive computational results for our

dual-based procedure on a wide variety of randomly generated test problems,

including sparse and dense networks containing up to 45 nodes and up to 595

candidate arcs. We also describe our experience in applying the method to

solve some special design problems studied by Lamar, Sheffi and Powell (1984)

in the setting of freight routing systems.

The dual based approach, with but a few exceptions, has been able to

generate upper and lower bounds that differ by at most only 1 to 3 percent.

The maximum CPU time required for the entire dual-based procedure was 150

seconds on an IBM 3083 -(model BX) computer. The dual ascent component of this

procedure is quite efficient; for larger problems, the add-drop heuristic

consumes a major portion of the required CPU time.

In the past, dual ascent procedures have been successfully used to solve

several special cases of the network design problem including the

uncapacitated plant location and Steiner tree problems. Our results, which

show that the dual ascent approach can be successfully applied to a variety of

large-scale network design models, confirm the power of the dual ascent

solution strategy and demonstrate the effectiveness of the approach for a

broader range of network optimization problems.

- 3 -

1. Network Design Problem Formulations

This section introduces and discusses formulations for the general fixed

charge network design problem. We focus on the undirected network case and

give some alternative formulations including a new formulation when the flow

costs are the same for all commodities. Sect-ions 2 and 3 introduce algorithms

that utilize these network design formulations. All our subsequent

discussions apply with minor modifications to the directed network design

problem as well.

1.1 General Network Design Model

The basic ingredients of the model are a set N of nodes and a set A of

uncapacitated and undirected arcs that are available for designing a network.

The selection of those arcs to be included in the network depends upon

tradeoffs between fixed design costs and variable operating costs. Selecting

more arcs offers the potential for reducing the operating (or routing) costs

at the expense of higher fixed costs. On the other hand, with fewer arcs in

the design, the fixed costs are lower but the routing costs increase.

The model permits multiple commodities which might represent distinct

physical goods, or the same physical good but with different points of origin

and destination. (Some authors, e.g., Rardin and Choe (1979), Rardin (1982),

and Lamar, Sheffi and Powell (1986), permit commodities to have multiple

origins and destinations. Our model assumes, however, that each commodity has

a single origin or single destination, which we model as a set of commodities,

each with a single source and single destination.) We let K denote the set of

commodities and for each k K, assume (by scaling, if necessary) that one

unit of flow of commodity k must be shipped from its point of origin, denoted

O(k), to its point of destination, denoted D(k).

The model contains two types of variables, one modeling discrete design

choices and the other modeling continuous flow decisions. Let yij be a binary

variable that indicates whether (yij
= 1) or not (ij = 0) arc i,j} is chosen

k
as part of the network's design. Let xk. denote the flow of commodity k on

the directed ar (ij). Note that (ij) and (ji) denote directed arcs with

the directed arc (i,j). Note that (i,j) and (j,i) denote directed arcs with

- 4 -

opposite orientations corresponding to the undirected arc i,j). Even though

arcs in the model are undirected, we refer to the directed arcs (i,j) and
k

(j,i) because the flows are directed. Then, if y = (Yij) and x = (x j) are

vectors of design and flow variables, the model becomes

[P1]

minimize (ckijxij + cixji) + F iyij (l.1)
LJ I ljJ ji ji jij

ksK ei,jc}A [i,j}EA

subject to

x i - Xil =
jeN IN

'-1 if i = O(k)

all i N, and

1 if i = D(k) (1.2)

all k K,

0 otherwise
L-

xi - ij all i,jj e A, and (1.3a)

k all k K,
Xji < Yij (1.3b)

k k
xk., x.. > 0 all {i,j} e A, and

y. = °or 1 all k £ K. (1.4)
ij

In this formulation each arc i,j} has a nonnegative fixed design cost
k

F.. and c.. is the nonnegative per unit cost for routing commodity k on the

k k
directed arc (i,j). In general, c.. need not equal c..i Constraints (1.2)

imposed upon each commodity k are the usual network flow conservation

equations. The "forcing" constraints (1.3a) and (1.3b) state that ifij = 0,

i.e., if arc {i,j) is not included in the design, then the flow of every

commodity k on this arc must be zero in both directions, and if arc i,j is

included in the design, i.e., if yij = 1, the arc flow is unlimited (since the

flow of any commodity k on arc (i,j) or (j,i) is at most 1 anyway).

-5

For directed network design problems, A is the set of available directed

arcs and Fij represents the fixed charge of the directed arc (i,j). The

k
formulation uses design variables yij for all (i,j) A and flow variables xi..

for all (i,j) A and k K. Inequalities (1.3a) defined for all (i,j) A

and k K constitute the forcing constraints for this case. The flow

conservation equations (1.2) remain unchanged, and the summations in the

objective function are now taken over (i,j) rather than i,jj (and the terms

kk
c..kx are removed).
jixji

The network design problem can also be formulated in a number of

different ways. For example, aggregating the forcing constraints (1.3) yields

the equivalent set of constraints

Z xi; + xji < 2 K yij for all {i,j] A. (1.5)

k

k k
Both versions of these constraints force each x.. and x.. for k K to be zero1J J1

if yi] = 0, and become redundant if yi = 1. This alternate formulation is

much more compact, however. For one of the problems considered in our

computational tests, with 1980 commodities and 500 arcs, the disaggregate

formulation contains nearly 2 million forcing constraints (1.3), while the

aggregate version contains only 500 of these constraints (1.5).

In addition, it is possible to aggregate commodities by origin (or

k
destination). In this aggregate formulation, x, which now denotes the total

flow on arc (i,j) that originates at node k, corresponds to the aggregation

(sum) over all destination nodes of the commodities with origin k. The

forcing constraint becomes

k < kNy and

xij INli and xji <NlYij,

and the flow balance constraints (1.2) are altered accordingly (that is, the

flow balance constraints for aggregate commodity k impose a requirement of 1

unit for each demand node D(1) in the original formulation whose origin 0(1)

is node k). For the problem mentioned in the last paragraph, this aggregate

formulation contains 45 rather than 1980 commodities and 45,000 rather than

nearly 2 million forcing constraints. (Note that it is also possible, as we

- 6 -

do in our modeling approach, to reverse this procedure and disaggregate any

commodity naturally formulated with a single origin and multiple destinations

as a set of commodities, one for each destination.)

Although the disaggregate formulation contains a considerably larger

number of constraints than either of these two aggregate formulations, it is

preferred computationally (if it can be solved efficiently). The linear

programming relaxation of the disaggregate model is much more tightly

constrained than the linear programming version of the aggregate models.

Therefore, the disaggregate formulation more closely approximates the integer

program and provides a sharper lower bound on the value of the integer

programming formulation. Various authors have noted the important algorithmic

advantages of using tight linear programming relaxations. For example, see

Cornuejols, Fisher and Nemhauser (1977), Davis and Ray (1969), Beale and

Tomlin (1972), Geoffrion and Graves (1974), Mairs et al. (1978), Magnanti and

Wong (1981), Rardin and Choe, and Williams (1974).

As a final observation concerning the problem formulation (1.1) - (1.4),

note that (since the problem is uncapacitated) for a given choice of binary

design variables ij., the problem decomposes into a shortest path problem

(defined on the network specified by arcs with yij = 1) for each commodity.

Therefore, the problem always has an optimal solution in which all the x

variables are integer. Our subsequent analysis and algorithmic development

makes heavy use of this problem feature.

1.2 An Improved Formulation for Fixed Charge Network Design

Under certain conditions, the linear programming relaxation of the

disaggregate formulation (1.1) - (1.4) can be further tightened with another

version of the forcing constraints (1.3). We focus upon undirected network

k
design problems whose flow cost does not vary by commodity, i.e., c.. = c..

1J 1J

for all k K, and c.. + c.. > 0 for all i,j} A. Many network design
1J Ji

models satisfy this rather mild assumption.

Consider an arc [i,j] e A and two commodities k and h with origins O(k)

and O(h) and a common destination D(k) = D(h), which, for convenience, we

assume is node 1. Suppose we have an optimal solution (x,y) to the integer

- 7 -

program P1 that routes each commodity k on a shortest path (see our final

k h
comment in Section 1.1), and x23 = 1. Then it is always possible to set x3 2 =

O and maintain optimality. To see this result, let d.. denote the minimum
1J

routing cost from node i to node j as defined on the network specified by the

k
optimal choice of the Yij variables. Since x23 = 1 in the optimal solution

and the flow between every origin-destination pair is carried on shortest

paths d21 = 23 + d31. If x3 2 = 1, then the total routing cost for commodity

h will be

dO(h),3 c32 21 d(h),3 + c32 c23 d31

dO(h),3 + d3 1 (since c32 + c23 > 0),

h
Therefore, we can set x3 2 = 0 without loss of optimality. Similarly, we can

reverse the roles of x 3 and xh2 and, therefore, the constraint
23 32

xk+ h < 1
x23 x32 -

will not affect the value of the optimal solution of the design model. In

general, this inequality becomes

xk + xh < y for all {i,j]eA if D(k)=D(h). (1.6)
xi] i - ij

The same type of argument applies when commodities have a common origin O(k) =

O(h); so we also have

k h
xkj + Xji < Yij for all {i,j}cA if O(k)=O(h). (1.7)

Notice that when h = k, (1.6) and (1.7) reduce to

Xkl + Xkj < Yij for all i,j}eA, kK.
ii i - ij

Since the flow variables are nonnegative, these inequalities are at least as

tight as (1.3). So if we substitute (1.6) and (1.7) for (1.3),the linear

programming relaxation of the resulting formulation P2 will be at least as

tight as LP1, the linear programming relaxation of P1.

LP2, the linear programming relaxation of P2, can be strictly tighter

than LP 1. Consider, for example, the 3-node network shown in Figure 1.1, with

- 8 -

_ �1_1�

Figure 1.1

Example for Comparing LP1 and LP2

F12 =1

C12 =0

F13 = 1

C13 =0

F23 = 1

C23 = 0

Commodity

k

h

Origin Destination

2 1

3 1

- 9-

F12 = F13 = F23 = 1 and c..ij = 0 for all i,j). Suppose that the problem

contains two commodities k and h with origins O(k) = 2, O(h) = 3 and

destinations D(k) = D(h) = 1. For this problem, the optimal solution to LP 1

is

k k k h h h

12 Y13 23 = x2 1 = x23 = x3 1 = X21 = X3 1 = X3 2 = 1/2.

The total solution cost is 3/2. Notice that this solution violates the

constraint k + h 2constraint x 3k + 2 < Y23 from (1.6). An optimal solution to LP2 is

k h

Y12 = Y13 = x2 1
=

3 1
= 1

which has a total solution cost of 2. Hence, LP2 is strictly tighter than LP1

for this example.

For clarity, we first discuss solution methods for the original

formulation P. Section 2 introduces a general dual ascent framework for

approximately solving the dual of LP1, the linear programming relaxation of

problem P. We present two alternative implementations of the general dual

ascent strategy, and demonstrate how these algorithms generalize the ascent

methods proposed earlier for some special cases of the network design problem.

Section 3 deals with algorithmic modifications to handle the tighter

constraints (1.6) and (1.7), and other enhancements.

-10 -

2. Dual Ascent Algorithms for the NDP

Since the network design problem is NP-hard, we focus on methods for

generating good lower bounds and heuristic solutions, rather than solving the

problem optimally. The network design problem's special structure makes it a

particularly attractive candidate for applying dual ascent, a technique that

attempts to generate good lower bounds relatively fast by solving the linear

programming dual problem approximately. Besides generating lower bounds, dual

ascent solutions can also be used to identify feasible network designs that

serve as starting solutions for local improvement heuristics. Further, they

can aid in reducing the problem by eliminating some design variables.

Dual ascent has been applied successfully to several network design

related models including the uncapacitated facility location problem (Bilde

and Krarup, Erlenkotter, Van Roy and Erlenkotter (1982)), the generalized

assignment problem (Fisher, Jaikumar and Van Wassenhove (1986)), the Steiner

tree problem (Wong (1984)), the set covering problem (Kedia and Fisher

(1986)), and the set partitioning problem (Fisher and Kedia (1986)).

In this section, we outline a general dual ascent framework for the

network design problem and develop two algorithms that can be interpreted in

terms of this framework. The next section describes various enhancements of

the second algorithm including dual-based heuristic and problem reduction

methods.

Consider the linear programming dual DP 1 of the formulation P1,

[DP 1]

maximize zD = vk() (2.1)

k£K

subject to

k k k k

vj vi cij ij for all k e K,

k k k k [i,j 1 e A, (2.2)
v V. Cji + wji

IJ l J

- 11 -

} w + wi < F..

k k

wij > O, wj > 0 fo
1 - ji -

for all {i,j} A

r all k K, and all i,j} A

k
In this formulation, [vi} for all i N and k K is the dual variable

corresponding to the flow conservation equation (1.2) for commodity k at node

k k
i, while w.. and w.. for all k K and i,j} A correspond to the forcing

constraints (1.3a) and (1.3b), respectively. For each commodity k K, one of

the flow conservation equations (1.2) is redundant; hence we have arbitrarily

k
set vO(k) equal to zero.

2.1 Dual Ascent Framework

The dual ascent strategy that we consider consists of iteratively

k k k
modifying the wij, wji values and the v. values in order to increase the dual

ij, ji 1

objective function value monotonically. Observe that, for any given vector w

k k
= {wij.wji] that satisfies constraints (2.3) of DP1, the 'best' v-values are

obtained by solving (2.1) - (2.2). This subproblem decomposes by commodity;

the subproblem [SPk(w)] corresponding to commodity k is

[SPk(W)

subject to

k
maximize VD(k)

k k 'k
V. - V. < c,.
J 1 1i

k k -k
. - Vj< C.. i

k k k
cij = cij + wi, and

k k k
C.. = C.. + W..
J1 J1 Ji

Observe that [SPk(w)] is the dual of a

to destination D(k) using the modified

for all k K, and

all {i,j]} A (2.6)

for all i,jJ} A,

and, all k E K.

shortest path problem from origin O(k)

' k k k k =
arc lengths c.. = c.. + w.. and c.. =1

J 1J
1
J J1

-12 -

(2.3)

(2.4)

where

(2.5)

k k k
c.. + w... For a given set of w-values, setting v. for all i N equal to the
31 j1 1

length of the shortest path from origin O(k) to node i, with cij and c..ji as

arc lengths, gives one optimal solution of [SPk(w)]. (In the remainder of

this section, we implicitly assume that all shortest paths are determined

Ak Ak
using the modified arc lengths c.. and c...) In particular, the optimal value

k3 J1

of the subproblem [SPk(w)] is vD(k), the length of the shortest path from

origin O(k) to destination D(k). Therefore, the dual objective function value

can be increased by increasing the length of the shortest origin-to-

destination (abbreviated as O-D) path for one or more commodities through

appropriate increases in w-values (and, hence, in c-values). These

observations suggest the following ascent strategy:

Iteratively increase one or more w-values (and hence the modified arc

-k Ak
lengths cij or c ji) so that

(a) constraints (2.3) remain feasible, and

k
(b) the shortest O-D path length VD(k) increases for at least one

commodity k K at each stage.

k k
To satisfy condition (a), we consider increasing w.. and w.. values

corresponding only to those arcs i,jj for which constraint (2.3) has slack.

Suppose the w-values at some iteration satisfy constraint (2.3) corresponding

to arc i,j} A as a strict inequality, i.e., the fixed charge F.. for arc

k k
{i,j} is not yet completely 'used up' by the w.. and w.. values. Let s..

represent the slack or "unabsorbed fixed charge" in this constraint. The

k k
ascent strategy consists of using this slack to increase the wij or wji value

for one or more commodities k K so that the shortest path length VD(k) (and,

hence, the lower bound ZD) increases. Essentially, therefore, the dual ascent

procedure seeks to selectively allocate the unabsorbed fixed charges s in
13

order to increase the length of the shortest O-D path for one or more

commodities at each iteration.

We have not yet specified how to select the arc(s) whose slack must be

allocated and how to allocate this slack to the various commodities.

Different arc selection and slack allocation schemes give rise to different

implementations of the dual ascent method. We next discuss two alternative

- 13

implementations - one that changes a single w-value at each iteration and

another that simultaneously increases w-values corresponding to several arcs.

The first method which we call the Path Diversion method, although not likely

to be the best implementation, is simple to state and illustrates several

features of the dual ascent approach. The enhancements and computational

results to be presented in Sections 3 and 4 pertain to the second method,

called the Labeling method.

2.2 Path Diversion Method for Dual Ascent

This implementation increases one w-value (i.e., corresponding to one

directed arc (i,j) and one commodity k) at each iteration. Initially, all w-

k
values are set to zero and VD(k) for all k K is set equal to the length of

k k
the shortest path from O(k) to D(k), using c..ij and c.. as arc lengths. At any

intermediate iteration, consider arcs {i,j} that currently have positive

slacks sij. To allocate this slack effectively, we must identify a commodity

k k k
k so that increasing wij or wji will increase the shortest path length vD(k).

Clearly, if commodity k has a current shortest O-D path that does not include

k k
the directed arc (i,j) (or (j,i)), then increasing w.. (or wi) will not

increase the shortest path length vD(k). Hence, we need to consider only

those arcs with positive slack that belong to all the current shortest O-D

paths for at least one commodity. To identify such arc-commodity

combinations, we compute for each directed arc (i,j) and commodity k the

k
shortest O-D path length excluding (directed) arc (i.). Let l.i denote this

shortest path length; 1. must be greater than or equal to the current
1ij

k k k
shortest path length vD(k). If lj = VD(k)' then arc (i,j) does not belong to

one or more current shortest O-D paths for commodity k; therefore, increasing

k
w.. does not affect the shortest path length and hence the dual objective

k k k k
function value ZD' Suppose 1 ii > vD(k). Then increasing wij by up to (

k ivk k
VD(k)) causes a corresponding increase in VD(k); further increases in w..i

leave the dual objective function value unchanged. Thus, at each iteration

the algorithm

(a) selects a directed arc (i,j) and commodity k satisfying

- 14 -

s.. > 0 and k > V(k)' and
' j Vj D(k)'

k k bk
(b) increases wj and VD(k) by min si j - D(k)].

When several arc-commodity combinations satisfy the conditions of step (a), a

variety of selection rules could be used to choose one of the eligible

combinations: for instance, a 'greedy' rule would select the arc-commodity

combination that gives the maximum dual objective function increase computed

in step (b). The algorithm terminates when no arc-commodity combination

satisfies the conditions of step (a).

The main disadvantage of this method is its excessive computational
k

requirements to reevaluate .ij for several arcs and commodities at each
ij

iteration. Further, since it increases just one w-value at a time, the

procedure requires a relatively large number of iterations. In contrast, the

algorithm we describe next modifies several w-values simultaneously and uses a

labeling scheme to efficiently determine the required changes in the w-values

and v-values and to update the dual solution at each iteration. Some

preliminary computational experiments showed that this method also produces

better lower bounds than the Path Diversion method.

2.3 Labeling Method for Dual Ascent

We now consider an alternative implementation of the dual ascent strategy

described in Section 2.1. At each iteration, the method simultaneously

increases several w-values corresponding to a single commodity. In order to

interpret this method in terms of the general dual ascent framework, we first

introduce some notation and underlying concepts.

For any commodity k K, consider a partition (Nl(k),N 2(k)) of the node

set N so that O(k) Nl(k) and D(k) N2(k). We wish to identify directed

k
arcs (i,j) whose w.. values must be increased in order to increase the

k
shortest O-D distance vD(k). Let A(k) be the set of all directed arcs (i,j)

incident from Nl(k) to N2(k), that is i,jj} A, i Nl(k), and j N2(k). We

refer to A(k) as the (directed) cutset for commodity k induced by the node

k
partition (Nl(k),N 2(k)). Clearly, increasing wij for every directed arc (i,j)1 2 ij~~~~~~~~~~~~~~~

-15 -

e A(k) increases the shortest path distance from O(k) to all nodes of N2(k)

(including the destination D(k)) and hence increases the dual objective

k
function value ZD. However, not all these w.. values need to be increased in

k
order to raise vD(k). In particular, if an arc (i,j) A(k) does not belong

k
to any shortest O-D path for commodity k, then the corresponding w value can

be left unchanged. To identify shortest path arcs of A(k), we note that if

arc (i,j) belongs to at least one shortest O-D path, then

k k k k Ak

vj - vi = Cij + wj () (2.7)

We refer to arcs satisfying equation (2.7) as tight arcs and let A'(k) denote

the set of tight arcs in the cutset A(k). The previous argument implies that

we need to consider increasing w-values only for arcs in A'(k). For each arc

(i,j) A'(k), the current slack sij determines the maximum amount by which

k

wi can increase to maintain feasibility in the dual constraint (2.3); let

61 = min {sij : (i,j) A'(k).

Also, as we increase the w-values for the arcs in A'(k), the shortest path

distance, i.e., the v-value, to each node in N2(k) increases. Consequently,

one or more arcs in the set A"(k) = A(k)\A'(k) may become tight; let

2 =i j ij j (i

Then, increasing wij by 6 = min {61,62 J (and correspondingly decreasing the

slack s.. by 6) for all arcs (i,j) E A'(k) increases all shortest path lengths

k

vk to nodes 1 of N2(k) by 6, and improves the lower bound. We refer to this

updating procedure as the simultaneous w-increasing step. Observe that, when 6

= 61' the slack sij for one of the tight arcs reduces to zero; on the other

hand, when 6 = 62, an arc of A"(k) becomes tight.

Our ascent algorithm mechanizes this strategy of increasing, for each

commodity, multiple w-values corresponding to arcs of a suitably chosen
k

cutset. The procedure initializes all w-values to zero and sets vi equal to

k
the shortest path length from O(k) to node i (using the variable costs c.. and

k
c.. as arc lengths), for all i N and k K. Also, initially, N2(k) = D(k)

and N(k) = N \ D(k)} for all k K. At each iteration, the algorithm

- 16 -

sequentially considers the commodities k for which O(k) N2(k). For every

such commodity, the implementation performs the simultaneous w-increasing step

once. If, as a result, the slack s.. for some tight arc (i,j) becomes zero,
1J

then node i is transferred from Nl(k) to N2(k). We refer to this augmentation

of the set N2(k) as labeling and to nodes of N2(k) as labeled nodes. (We show

later, in Section 2.5, that this dual ascent labeling step is closely related

to, and, in fact, generalizes, the labeling operation in Dijkstra's shortest

path algorithm.) The algorithm stops when the origin O(k) is labeled for all

commodities k K. This procedure can be described formally as follows:

Labeling Method

Step 0: Initialization

k k
Set wij - 0 and wi O0 for all i,j} A and k K

sij v Fij for all i,jj E A

vi -shortest path length for all i N, k K
1

from O(k) to node i

Nl(k) - N\[D(k)} for all k K

N2(k) 4 D(k) for all k K

z + k
D D(k).

Set CANDIDATES = k K : O(k) Nl(k)}.

Step 1: Ascent Iterations

Select a commodity k e CANDIDATES,

set A(k) = (i,j) : i Nl(k), j N2(k)}, and

(a) calculate the amount of w-increase:
k k k

Set A'(k) = (i,j): c.. - (v v) 0, (i,j) . A(k),

k k k k
(i,j): cij + wij - (v vi) = 0, (i,j) A(k)},

61 = min {sij: (i,j) A'(k)},

- 17 -

k k k k
62= m in {c. + w. - vk + : (i,j) A"(k) = A(k)\A'(k)},

6 = min (61,62).

(b) update relevant w-values, slacks and shortest path lengths:

wkj Wkj + 6 for all (i,j) A(k)
ij wij

sij - sij - 6 for all (i,j) A'(k)

k k
vI 4 vI + 6 for all I E N2(k)

ZD - ZD + 6.

(c) label a new node:

If 6 = 61' for some (i*,j*) e A'(k) satisfying s.*.* = 0, set

Nl(k) + Nl(k)\{i* }

N2 (k) N2 (k) U i*j.

Remove commodity k from CANDIDATES and repeat Step 1;

Step 2: Stopping Rule

If O(k) N2(k) for all k K, STOP.

Otherwise, set CANDIDATES = k K : O(k) Nl(k)}, and

return to Step 1.

Remarks:

(1) By design, the algorithm always maintains dual feasibility: that is,

cik + w - vj + vk > 0 for all (i,j) A and k E K.

Also, because of the mechanics in Step 1, whenever an arc in A(k) becomes

tight, it remains so throughout the execution of the algorithm.

(2) Note that the algorithm only increases the values of the w variables. It

is possible to show that when the algorithm terminates, the dual objective

value can possibly be increased by reallocating fixed costs (by decreasing
k

some w.. values and increasing others). This possibility suggests a more
elaborate iterative procedure that accounts for such tradeoffs. Our

elaborate iterative procedure that accounts for such tradeoffs. Our

- 18 -

computational experience in Section 4 shows, however, that simply increasing
k

the w.. values, as in this implementation, does surprisingly well.

(3) Step 1 does not specify the order for considering commodities. The

implementation that we tested groups together all commodities with a common

origin. Thus, it first examines all commodities with node 1 as the origin,

next those with node 2 as origin, and so forth. In some preliminary tests for

design problems with complete demand (i.e., with required flows between every

node pair), we found that employing more sophisticated priority rules for

sequencing the commodities in this step did not significantly or consistently

improve the performance. Further, as shown in Appendix 1, the commodity-

grouping scheme that we adopted, when applied to the Steiner tree problem,

gives the same results as Wong's (1984) dual ascent algorithm for this

problem.

(4) Step l(c) labels at most one node in each iteration. In some degenerate

cases, the slacks for several arcs might simultaneously reduce to zero in l(b)

making more than one node of Nl(k) eligible for labeling. In such cases,

subsequent iterations transfer the remaining 'eligible' nodes to N2 (k), one

at a time, before achieving further ascent. Once again, this scheme

generalizes the Steiner tree dual ascent method discussed in Appendix 1.

Properties of the Dual Solutions Produced by the Labeling Method

The intermediate and final dual solutions produced by this ascent

algorithm satisfy several important properties.

Property 1 (Shortest Path Property):

k
(i) At every step in the algorithm, v. for all i N and k K represents

1

the shortest path distance from origin O(k) to node i.

(ii) For every commodity k, all nodes in N2(k) belong to at least one

shortest O-D path for commodity k.

- 19

Initially, all v-values represent shortest path lengths from the,

origin. By increasing (in Step l(b)) v for all I N2(k) by 6 at

every iteration, the algorithm ensures that statement (i) is

satisfied. Also, the labeling scheme of Step l(c) ensures that

statement (ii) is satisfied. We use an induction argument to prove

this second property. Initially, N2(k) contains only the destination

D(k), and hence satisfies this conditon. Consider any intermediate

iteration and assume that all nodes currently in N2(k) lie on at least

one shortest O-D path for commodity k. A node i is labeled (i.e.,

transferred from Nl(k) to N2(k)) in this iteration only if one of the

incident arcs, say, (i,j) belongs to cutset A(k), is tight, and has

its slack reduced to zero. Since arc (i,j) is tight, equation (2.7)

is satisfied, implying that node i, when it is labeled, must lie on at

least one shortest O-D path for commodity k (since, by the induction

hypothesis, node j N2 (k) belongs to at least one shortest O-D path).

Because of these two properties, equation (2.7) serves as a necessary

as well as sufficient condition for identifying shortest path arcs of

the directed cutset A(k).

Property 2 (Zero-Slack Path Property):

For every commodity k, all nodes in N2(k) are connected to the

destination D(k) via shortest paths containing only zero slack arcs.

The previous induction argument can be extended to establish this

property. (A node i is added to N2(k) only if an incident tight arc,

say, (i,j) A'(k) has zero slack; and this arc must lie on at least

one of the shortest paths from node i to D(k).) Labeling the origin

O(k), therefore, signals the creation (or existence, in degenerate

cases) of a shortest O-D path for commodity k (using the modified arc

lengths c..), all of whose arcs have zero slack. Since this path
1J

contains only arcs with zero slack, w-values for arcs on this path

cannot be increased. Since this path is also a shortest O-D path,

increasing w-values corresponding to commodity k on other arcs does

not increase the shortest O-D path length for commodity k or,

therefore, the dual objective function value. Consequently, when the

- 20 -

algorithm terminates, i.e., when all origins are labeled, any further

increases in w-values, with respect to the final dual solution, cannot

improve the final lower bound ZD. Further, since every commodity has

a zero-slack shortest O-D path, the design consisting of all zero

slack arcs is feasible, i.e., every origin-destination pair is

connected in this design. We use this solution as the starting point

for a heuristic procedure that determines a locally optimal upper

bound (see Section 3.3).

Property 3 (Minimum Allocation Property):

After every ascent step, the w-values satisfy the condition

k k k k
W. = max {0, v - / cc } for all {i,j} A, and

w. = max ,{ v. v. - c all k e K. (2.8)

k
This property implies that wij is positive only if arc (i,j) is tight,

k k k
that is v - C > 0 (and hence is a shortest path arc with

j 1 ij -

respect to the modified costs) for commodity k. Thus, the ascent

procedure is parsimonious in allocating the slacks s.. toward

k l
increasing the wij values. (Indeed, for a given set of v-values, the

expression on the right-hand side of (2:8) is the minimum permissible
k

value of w.. needed to ensure feasibility in constraints (2.2) of

DP1.) Also, because of this characteristic, every intermediate dual

k
solution is completely specified by the current values of v; thus,

the algorithm need not explicitly store and update the values of wkij

2.4 Dual Ascent Example using the Labeling Method

To illustrate the operation of the Labeling method, consider the example

in Figure 2.1. For this example, F14 = 3 and F12 = 2; all other fixed costs

are zero. There is only one commodity, with origin 0(1) = 1 and destination

D(1) = 4. The variable costs are the same in both directions and are shown in

Figure 2.1. (For simplicity, we have eliminated the superscripts referring to

- 21 -

Figure 2.1

Dual Ascent Labeling Method Example

Destination

V3 = 2C

F13 =0

C13 = 20

12= 17

F,12 = 2

C12 = 1712

v 1 =0

Origin

- 22-

.

commodity 1 in the figure.) We wish to increase v4, starting with all w-

values equal to zero and v-values as shown in the figure.

Initially, N2 (1) = {4, N1(1) = 1,2,3), s14 = F14 = 3, s12 = F12 = 2,

s24 = s13 = 534 = 0 and ZD = 21. The first execution of Step 1 yields A'(1) =

[(2,4)}, 6 = 24 = and ZD remains 21; N2(1) becomes [2,4} and N 1(1) becomes

{1,3}. Node 2 is labeled in this iteration. The second pass through Step 1

gives A'(1) = (1,2)) and 6 = 62 = c14 - (v4 - vl) = 22 - (21 - 0) = 1. The

objective function ZD = v4 becomes 22, and the slack for arc [1,2) decreases

to s12 = F12 - 6 = 2 - 1 = 1. Node 2 is labeled in this iteration. The third

iteration computes A'(1) = (1,4),(1,2) and 6 = 61 = s12 = 1. The objective

function ZD = v4 increases to 23 and N2(1) = [1,2,4). Since node 1 is labeled

in this iteration, i.e., (1) = 1 N2(1), the dual ascent procedure

terminates with a dual solution value of 23. (For this example, the dual

objective function value equals the optimal value of the design problem.)

2.5 Interpretations of the Dual Ascent Labeling Method

In Section 2.1, we interpreted dual ascent labeling method as a shortest

path expansion technique. In fact, as the following discussion demonstrates,

the method can be viewed as a generalization of Dijkstra's shortest path

labeling technique. Suppose we wish to identify the shortest path from node 1

to node n in a given network. Consider an equivalent network design problem

with a single commodity, say commodity 1, originating at node 1 and destined

k
for node n. Set all routing costs c.. equal to zero and fixed costs F.. equal

to the given arc lengths. Then the optimal network design solution consists

of the shortest path from node 1 to node n.

For the equivalent network design problem, let us examine the sequence

that the Labeling method labels nodes. First, we note that, since all routing

costs are zero, every arc (i,j) contained in the directed cutset A(k)

corresponding to the node partition Nl(k) and N2(k) is tight, i.e., if i

N1(k) and j N2(k), then (i,j) A'(k). At every iteration, therefore, 6 = 61

and one node is labeled (assuming, for simplicity, that 6 = sij for a unique

arc (i,j) in Step l(a) of the labeling method). In particular, the node that

-23 -

is labeled at the pth iteration is the pth closest node to the destination n;

and, the nodes in N2(k) correspond to those for which the shortest paths from

the destination n have been definitively identified. Careful examination

shows that the order in which nodes are added to N2(k) is exactly the same as

the order in which Dijkstra's algorithm assigns permanent node labels when it

starts from node n and seeks the shortest path to node 1.

The dual ascent labeling algorithm also generalizes several other

procedures. When the method is applied to directed network design models, it

can be viewed as a generalization of Wong's (1984) dual ascent technique for

Steiner tree problems on a directed graph. Appendix 1 establishes the

connection between the Steiner tree and network design dual ascent algorithms.

The ascent procedure also generalizes Edmonds' directed spanning tree

algorithm and Erlenkotter's ascent procedure for uncapacitated facility

location since Wong (1984) has shown that his procedure generalizes these two

methods.

Thus, just as the network design model contains a number of well-known

network optimization problems as special cases, the network design ascent

procedure generalizes the algorithms proposed for a number of these special

cases including the Steiner tree, uncapacitated facility location, shortest

path and directed spanning tree problems.

Finally, the methods discussed in this section extend easily to the

directed network design case as well. The primary difference for directed

k k ,
problems is that w ij and wji use up separate fixed charges Fij and Fji,

respectively (assuming the given network contains both the directed arcs (i,j)

and (j,i)), instead of competing for the same fixed charge Fij.

In summary, we have outlined a general dual ascent framework for the

network design problem and discussed two specific implementations of the

general strategy. The two implementations differ primarily in the method used

to identify arc-commodity combinations for increasing w-values. Balakrishnan

(1984) discusses other alternative implementations suggested by this dual

ascent framework including a complementary method for adjusting the v-values

- 24 -

without decreasing the dual objective function value in order to increase the

slack variables for selected arcs, thereby permitting more ascent.

In the next section, we discuss several enhancements for the labeling

method to account for the stronger forcing constraints (1.6) and (1.7)

discussed in Section 1.2, provide an initial solution for local improvement

network design heuristics, and permit problem reduction by eliminating arcs.

- 25 -

3. Enhancements and Applications of the Dual Ascent Algorithm

In this section, we discuss several enhancements of the dual ascent

labeling method presented in Section 2.3. After describing a modified ascent

procedure that exploits the improved network design formulation discussed in

Section 1.2, we outline an enhancement that utilizes information provided by a

feasible integer design solution and offers an opportunity to further improve

the lower bound.

A good dual solution naturally provides a good lower bound for the

optimal design solution. The last two subsections discuss additional ways of

exploiting a good dual solution; we discuss a way of constructing a feasible

design solution from a given dual solution and also describe problem reduction

tests that eliminate unnecessary variables. These tests are based upon

information provided by the dual solution.

3.1 Modified Dual Ascent Procedure for an Improved Formulation

This section describes a modification that takes advantage of the

improved network design formulation P2 given in Section 1.2.

Recall that we can substitute (1.6) and (1.7) for the forcing constraints

(1.3) and obtain a formulation with a stronger linear programming relaxation

than the usual formulation (1.1) - (1.4). In order to simplify our

implementation, whenever two commodities k and h have the same origin, we

substitute only the following inequalities for (1.3).

k h
xj + xji < yij for all i,jlzA if O(k) = O(h). (1.7)

(We do not add the corresponding inequalities (1.6) when two commodities have

the same destination.) Replacing (1.3) by (1.7) gives a formulation P3

(consisting of (1.1), (1.2), (1.7), and (1.4)) that has a tighter linear

programming relaxation than P1 (containing (1.1) - (1.4)).

The dual of the linear programming relaxation of P, denoted as DP3, is

-26 -

I _

[DP 3]

maximize
k

vD(k)
k

subject to

k k

vj - v i -
heS(k)

k k v

he S(k)

keK heS(k)

kh k
Uij < Cij

kh k

ij < Cji

kh
uk. < F..

13 l

for all k K, and

all {i,j} A,

for all {i,j} A,

kh >
U.. >
1j

for all k K, h S(k),

and all {i,j} A,

(3.4)

where S(k) = h: h s K, h k, and O(h) = O(k)},

vik = dual variable corresponding to the flow conservation

equation (1.2) at node i for commodity k, and
kh
u.. = dual variable corresponding to the forcing constraint
13

(1.7) for arc fi,j) and commodities k and h S(k).

k
The dual ascent strategy remains unchanged since we wish to modify the v.

1

values in order to maximize the dual objective function. The only difference

between this procedure and the previous algorithm is that instead of changing
k k kh

the w..J and w.J. variables we update the u.i variables. For this new dual

problem, we can define the modified arc length (see Section 2.1) as

~k k
C.i = Cij +
1J 1 J

heS(k)

kh

Uij,
or

- 27 -

(3.1)

(3.2a)

(3.2b)

(3.3)

~k k kh
Cji= Cji + uij, for all i,j} A. (3.5)

heS(k)

k
Recall from Section 2.1 that increasing variable w..i increases the

Ak kh
modified arc length cij. For the current dual problem if we increase ui,

-k -h .
then the two modified arc lengths c.. and cij increase. So increasing ci

also increases cij for some h S(k) without an additional decrease in the

-h
slack sij. Essentially, we are able to increase cj for 'free'.

-k kh
To increase c..j we must select a commodity h S(k) and increase u...

Our implementation delays this decision. Suppose we increase the modified arc

-k
length c.. by an amount A. We save this information until we need to increase

-h -h
an arc length cji for some h S(k). Then we can increase c.ji up to an

amount A without any decrease in the slack variables.

kh
Note that this delay in selecting u.. allows us to exploit constraint

(1.7) which is an 'expanded' version of the forcing constraint (1.3). The

ascent procedure for the expanded dual problem is more flexible than the

ascent procedure for the dual of LP1 because the expanded version can increase

some shortest path lengths with a possibly smaller decrease in the slacks;

therefore, the enhancement should generally produce tighter lower bounds.

3.2 Dual Ascent and Feasible Network Design Solutions

Another way to improve the performance of the dual ascent algorithm is to

use information provided by a good integer solution to the network design

problem. Suppose we have an optimal solution to the design problem and the

optimal integer solution has the same value as the optimal linear programming

solution; then any optimal dual solution and optimal integer solution must

satisfy the linear programming complementary slackness conditions. So we can

use the optimal integer solution as a guide for constructing a dual solution

by ensuring that the complementary slackness conditions are satisfied. Given

a feasible integer solution (see Section 3.3 for methods to generate integer

solutions) and a solution produced by the dual ascent procedure, we can find

- 28 -

all complementary slackness violations. As shown in Section 2.3, when the

dual ascent labeling procedure terminates, the design consisting of only zero-

slack arcs is feasible. For this design, solving a shortest path problem for

each commodity k K gives the arc flows. With respect to this network design

solution (with ij = 1 if sij = 0), the only complementary slackness condition

that can be violated is

k k

wij(xi - ij) = O for all k K, and

k k all i,j} A. (3.6)

wji(.ji Yij O

k k
These constraints impose only one restriction: if Yij = 1 and x. = (x.. =

k k i
0) then wij (wji) must be zero. Let IJK be the indices of all wij variables

that must be zero in order to satisfy the complementary slackness condition

(3.6). To enforce the complementary slackness conditions (3.6), we re-execute

the dual ascent procedure with the added constraint that for all (i,j,k)

k
IJK, w. = . Incorporating these constraints into the ascent procedure is

ii k

straightforward. Whenever attempting to increase w.. for any (i,j,k) IJK,

k
we effectively assume that F.. ij 0; so W.. will remain at value zero. After

running this restricted dual ascent procedure, we take the final dual solution

generated and use it as an initial solution to the regular unrestricted

version of the dual ascent procedure.

Hopefully, the added restrictions imposed by the complementary slackness

conditions will allow us to find a better dual solution. (However, the new

dual solution is not guaranteed to provide a better lower bound than the

previous dual solution.) Note that if the new dual solution generates another

integer solution, we can repeat the proposed dual ascent enhancement. This

iterative approach is similar to the one proposed by Prodon, Liebling, and

Groflin (1985) for the Steiner tree problem.

3.3 Dual-based Heuristic Procedure

As noted in the last section, the dual solution generated by the ascent

algorithm can be used to produce a feasible integer solution. This initial

solution can be improved using add-drop type procedures (see Billheimer and

- 29 -

Gray or Los and Lardinois). The add (drop) procedure starts with an initial

network design solution and at each iteration adds (drops) an arc to (from)

the current design in order to improve the total design cost. The procedure

continues until no arc can be added (dropped) from the solution without

increasing the total design cost. Note that instead of constructing the

initial design using the dual solution, we might consider other methods for

generating initial feasible solutions for the local improvement heurisitic.

For instance, an initial solution consisting of all possible arcs is often

used to initialize the drop heuristic (see, Billheimer and Gray). Previous

experience with various network design heuristics (see, Ellman (1983))

suggests that the cost of the networks produced by the local improvement

procedure with different starting solutions is about the same. However, the

computation time of the add-drop heuristic improves drastically when the

initial design is produced from the dual solution. In addition, the dual

solution provides a lower bound and hence a performance guarantee on the

quality of the feasible solution generated by the heuristic.

Intuitively, this improvement in running time is'not surprising. The

dual solution takes into account all the design problem data. Thus, a design

constructed from the dual solution utilizes a great deal of problem

information. On the other hand, an initial solution consisting of all

possible arcs does not utilize any special problem parameters. It is,

therefore, reasonable to expect that the dual-based solution will provide a

superior starting point for the local improvement procedure.

3.4 Dual-based Problem Reduction Methods

In addition to providing lower bounds and initializing local improvement

heuristics, dual solutions also enable us to identify arcs of the given

network that must or must not necessarily belong to the optimal design.

Fixing the design variables (to 1 or 0, respectively) corresponding to these

arcs not only reduces subsequent computational effort for solving the problem,

but also improves the quality of the upper and lower bounds on the optimal

value. This section describes two problem reduction tests that use any

intermediate dual solution and a known upper bound Z (say, the cost of the

current best heuristic solution). These preprocessing tests can be viewed as

- 30 -

dual-based penalty methods similar to those employed for fathoming vertices in

a branch-and-bound scheme (see, for example, Geoffrion (1974)).

Suppose we want to determine if the optimal design should contain some

arc [i,jj. Consider the effect, on the current dual objective function value

ZD, of forcing arc i,jJ to be in the design by adding the constraint

yij = 1 (3.7)

to problem P. Let ij be the dual variable corresponding to this constraint.

Then, the dual constraint (2.3) corresponding to arc i,j} becomes

wij+ wji + ij - Fij, (3.8)
k k

and the revised dual objective function contains the additional term + Pij.

Let s.. denote the slack for the constraint (2.3) corresponding to arc i,j}

in the final solution to DP1 constructed by the dual ascent algorithm. Then,

setting Pij equal to sij (and reducing the slack to zero) gives a feasible

solution to the revised dual problem DP3; this dual solution has an objective

function value of (ZD + sij). Therefore, the optimal value of the network

design problem when constraint (3.7) is added to P1 must be at least (ZD +

sij). Clearly, if (ZD + sij) exceeds Z, the current upper bound, then the

optimal network design solution must violate constraint (3.7) implying that

the optimal design cannot contain arc i,j}. Thus, if

(- ZD) < sij' (3.9)

then arc i,j} can be excluded, i.e., ij must be 0 in the optimal network

design solution. We refer to this method as the Arc Exclusion Test.

We can similarly devise-an Arc Inclusion test that identifies arcs

necessarily belonging to the optimal design. For any arc i,j), let

represent the increase in the shortest path length for commodity k (using c..

k k
= c. + w..i as arc lengths) when arc {i,j} is deleted from the network. If

the sum k Aij exceeds (Z - ZD), then the optimal design must necessarily

contain arc {i,jj. This test may be computationally expensive since, for each

arc, it requires reevaluation of the shortest path lengths for all those

commodities that currently use this arc in their shortest paths. Similar

- 31 -

dual-based tests can be applied to determine whether or not a given commodity

k must flow on a certain arc i,j}.

To summarize, the basic dual ascent labeling method can be applied

iteratively to generate good dual solutions and lower bounds. The dual

solutions give feasible designs that serve as starting points for a local

improvement heuristic. In turn, the upper bound thus generated, in

conjunction with the dual lower bound, enables variable elimination. Thus,

the enhancements discussed in this section lead to a composite algorithm,

driven by the dual ascent labeling method, for identifying good network design

solutions, for verifying the quality of these solutions through lower bounds,

and for reducing the problem. In the next section, we discuss some

implementation details and computational results for such a composite

algorithm that incorporates the iterative dual ascent, heuristic and problem

reduction features.

- 32 -

4. Computational Results

We implemented the dual ascent algorithm and the heuristic procedure in

FORTRAN on an IBM 3083 (Model BX) and performed extensive computational tests

using two types of problems ranging in size from 20 nodes, 80 arcs and 380

commodities (80 integer variables and 60,800 continuous variables and forcing

constraints) to 45 nodes, 500 arcs and 1980 commodities (500 integer variables

and 1,980,000 continuous variables and forcing constraints). In all, we

tested 106 problem instances. We did not attempt to solve these problems to

optimality (for example, by embedding the dual ascent algorithm in a branch-

and-bound scheme); for almost all instances, the gap between our dual-based

upper and lower bounds, expressed as a percentage of the lower bound, was less

than 3 %.

The first set of test problems are defined over random undirected

networks with "complete" demand (i.e., one commodity for every node pair) and

arc costs (both fixed and variable) that are proportional to the Euclidean

distance between the end points of the arc. For this problem type, Section

4.1 describes some salient features of our dual ascent implementation and

presents computational results for various network sizes, arc densities and

fixed-to-variable cost ratios.

The second class of test problems consist of some realistic directed,

"Less-than-Truckload Consolidation" problems considered by Lamar, Sheffi and

Powell (1984). Section 4.2 discusses the special characteristics of this

problem type and presents computational results using the dual ascent method

for Lamar et al.'s 7 test problems.

4.1 General Undirected Test Problems: Random, Undirected Networks with

Complete Demand and Euclidean Costs

We used the following problem generating program to construct test

problems in this category. The network generator first selects the required

number of nodes (specified by the user) from a 100 x 100 grid in the plane and

generates a random spanning tree over these nodes (to ensure that the problem

is feasible). The required number of remaining arcs are then randomly

selected using a method described in Knuth (1969). For every directed arc

- 33 -

k
(i,j), the variable cost c..j is the same for all commodities k and is set

equal to the Euclidean length of arc i,j} (rounded to the nearest integer).

The fixed charge Fij is some user-specified multiple of the variable cost.

All problems have a complete demand pattern, i.e., one unit must be

transported from each node to every other node. Transshipment is permitted at

every node.

For our experiments we generated these problems in eleven sizes ranging

from 20 nodes, 80 arcs and 380 commodities to 45 nodes, 500 arcs and 1980

commodities. Table I shows the dimensions of the network for each of the

eleven problem sizes. Problems in categories 1 to 6 represent sparse networks

with varying levels of arc densities. Problem sizes 7 to 11, on the other

hand, correspond to complete networks.

For each problem size, we considered three realistic fixed-to-variable

cost ratios of 2, 10 and 15; as the fixed charge increases in this range

relative to the variable cost, we expect that the problems will become harder

to solve. We generated three instances, using different random number seeds,

for each of the 33 problem combinations.

Implementation Details

Our FORTRAN implementation of the composite dual ascent-based algorithm

to solve this class of undirected network design problems incorporates the

enhancement and the iterative dual ascent scheme based on complementary

slackness violations described in Sections 3.1 and 3.2, as well as a drop-add

heuristic that uses an initial design derived from the dual solution. (The

drop-add method first drops arcs successively as long as the total cost

decreases before initiating the add phase.) The main subroutines in the

program are (i) an "unrestricted" dual ascent routine, (ii) a "restricted"

dual ascent routine that takes into account complementary slackness

restrictions, and (iii) the drop-add heuristic procedure. The only problem

reduction test that we implemented was the Arc Exclusion method to eliminate

arcs {i,j} whose remaining slack s.. exceeds the difference between the
1J

current best upper and lower bounds. Figure 4.1 contains a flowchart showing

the interrelationships between the various segments of the composite program.

- 34 -

------ ---

0
0
00

00

O 0 0 O O
O O O O O
o N O O O

4 (N en (N OO

r- M. ~-. '1 !.

o o 0 0 0
o m LA 0 0

V- -1 - q LA

O O O 0 0 O
00 0 r1. o % 00C

M Q 0 0 D 0

O O e O O CD
. 1 - O LA

O Ln O LA 0 L
r4I N M M en t

- (N Mn R LA

%A

-M

0L0

3:
wz

0)

o0)E0u

O O O0 OQ

z sq 0 1 t
L n Ln

m rm C

LA 0 0 LA LA

'- w m ' O

o o 0 m 'ct
O C O LA 0 Ln

(N nO m

00o o 0
'- -

35

0
M -
> '

0o

Z
D O

0

C
OV.P

c

0
4-Cj

E
w
UG
O
h._

I-

G,

0

la

._O
O

i.

a

0
a

.

OE
ZE

0

z

ZC

OQCO 0
Z

c

- E
0 =

- r �M I

- __

Flowchart for
Figure 4.1

Dual-based Composite Algorithm

Initialize: ITERN= 0
Upper bound =

Initialize dual
variables

IITERN <- ITERN + 1

IF
Execute unrestricted

labeling routine

Construct starting
design from final

dual solution

Execute restricted
labeling routine

Identify
complementary

slackness
violations

r

Improve heuristic
solution using

drop-add procedure

I

Update current incumbent
and upper bound, if

necessary

I

I Apply arc exclusion test I

Yes

No

/n
dditional arch

TEN ud ed I

:'Y MAes

se

-36-

Ii .

.

l -~~~~~~~~~~~~~

L
.-

BIW

I

! l

i. II

j4

The program uses integer arithmetic and a forward-star representation

(see, for example, Magnanti and Golden (1978)) of the network. Other data

structures employed by the program include an array to flag the labeled nodes

and a logical array to identify, for each commodity k, the set of tight cutset

arcs A'(k). The dual ascent routines iteratively update the latter array

rather than recomputing the set A'(k) every time (as indicated in Step 1 of

the Labeling method). This set is updated in the following manner. In Step 1

of the Labeling method, a new arc becomes tight if 6 = 62. In such a case,

the status of the variable corresponding to this arc in the logical array for

A'(k) is changed. This updating step adds at most only one arc to A'(k) at

each iteration. Therefore, in some degenerate cases when two or more arcs

become tight simultaneously, A'(k) may not contain all the tight cutset arcs;

the other arcs are added to A'(k) successively in subsequent iterations.

(This scheme is similar to the labeling strategy in Step l(c) which labels at

most one node in each iteration.)

As mentioned at the end of Section 2.3, at every stage the w-values are

completely specified for given v-values (using equation (2.8)); therefore, our

implementation does not explicitly store or update the w-values. Also, we

evaluate the complementary slackness restrictions using the best solution

derived by the drop-add heuristic rather than the initial design constructed

from the final dual ascent solution.

The drop-add heuristic uses a modified version of Dijkstra's shortest

path algorithm (suggested by Dionne and Florian) to efficiently update the

commodity routings when arcs are dropped or added from the design. The method

maintains and periodically updates a list of candidate arcs to be dropped

(added), arranged in order of decreasing cost savings. The sequence in which

arcs are dropped (added) follows the order in this list. (See Los and

Lardinois for a similar technique.)

The program permits the user to specify a parameter MAXITR that

influences the number of dual ascent cycles that are performed. By a dual

ascent cycle we mean a complete execution of the dual ascent routine (until

all commodity origins are labeled), heuristic procedure, and problem reduction

test. The program initially executes the unrestricted dual ascent routine,

constructs an initial design from the dual solution and identifies a heuristic

- 37 -

solution using the drop-add procedure. From the second cycle onwards, the

restricted dual ascent routine, with complementary slackness restrictions

derived from the last cycle, precedes the unrestricted version. The drop-add

procedure is rerun with an initial design derived from the latest dual

solution and new complementary slackness restrictions are identified. The

process continues for MAXITR cycles. The procedure continues with additional

dual ascent cycles if, during the last cycle, the Arc Exclusion test

eliminated one or more arcs.

The FORTRAN program was compiled with level 2 optimization using the VS

FORTRAN compiler on the IBM 3083 (Model BX). Table II summarizes our results

for 99 runs: for 11 problem sizes, with 3 fixed-to-variable cost ratios for

each size, and 3 random replications for each ratio. After some initial

testing, we decided to set the parameter MAXITR to 2 for each run (since

additional 'required' dual ascent cycles did not seem to improve the bounds in

most problem instances).

Interpretation of Computational Results

As expected, the algorithm performs much better for lower fixed-to-

variable cost ratios both in terms of the quality of the bounds and required

computation time. For problems with a ratio of 2, the average optimality

measure is less than 0.38% for all problem sizes; when this ratio increases

to 10, the average value of ranges from 1.00% to 2.24%. The effectiveness

of the arc exclusion test is very sensitive to the magnitude of the gap

between the upper and lower bounds. As the problem size and the fixed-to-

variable cost ratio increase, this test deletes a smaller percentage of arcs.

Also, for higher fixed-to-variable cost ratios, the proportion of arcs

eliminated tends to be higher for dense networks (problem sizes 7 to 11).

In general, the CPU time increases with the problem size and the fixed-

to-variable cost ratio. However, in some cases (for example, for problem

sizes 2, 4, and 5) the average CPU time is lower for a higher ratio. This

phenomenon is attributable to the fact that our program executes additional

dual ascent cycles (beyond the specified limit of 2 dual ascent cycles)

whenever the reduction test deletes one or more arcs. The CPU time per ascent

cycle is larger for higher fixed-to-variable cost ratios in all cases. The

- 33

___ _ _ __~~-- ----

Table II ·
Summary of Dual Ascent Results for General Undirected Test Problems

Problem FCNC Avg.% Avg.* CPU time*& Avg.* no. Avg.* no.
size ratio gap*+ of of

arc deleted ascent
Total s % Ascent* cycles

2.0 0.09 2.65 54.3 40.7 2.67
1 10.0 1.00 4.33 62.4 33.3 3.33

15.0 1.94 5.04 64.5 21.3 3.00

2.0 0.08 6.91 47.8 40.7 3.67
2 - 10.0 1.09 9.18 62.5 21.3 3.67

15.0 1.97 7.78 57.8 11.0 2.67

2.0 0.14 9.46 42.0 36.0 2.67
3 10.0 1.06 13.04 57.7 15.7 2.67

15.0 1.68 14.21 61.1 3.3 2.67

2.0 0.10 21.81 39.0 37.7 3.67
4 10.0 1.35 15.03 46.8 0 3.67

15.0 2.12 19.69 48.9 0 2.00

2.0 0.24 50.51 37.1 2 2.33
5 10.0 1.52 81.67 44.8 1 2.33

15.0 2.33 79.80 42.0 0 2.00

2.0 0.22 80.81 36.0 0.3 2.33
6 10.0 1.79 120.89 35.4 0 2.00

15.0 2.30 150.26 35.1 0 2.00

2.0 0.33 3.26 55.8 60 3.67
7 10.0 1.97 3.77 63.9 52 3.67

15.0 2.29 4.08 64.2 57.3 3.3

2.0 0.38 7.20 51.4 73.3 3
8 10.0 2.24 10.74 69.9 42 3

15.0 3.12 14.72 60.9 45.3 3.33

2.0 0.27 18.95 53.0 106 3.33
9 10.0 1.85 35.19 55.2 21 3.33

15.0 2.44 37.19 62.1 52.7 3.33

2.0 0.38 43.71 46.4 24.7 3
10 10.0 1.68 57.78 59.6 25 3

15.0 2.34 68.95 62.5 17.7 3

2.0 0.28 117.70 40.5 11 4
11 10.0 1.93 78.70 54.3 0 2

15.0 2.49 87.40 57.4 0 2

* Average over 3 problem instances.

& CPU time in seconds on an IBM 3083 (Model BX).

§ Total CPU time includes time for initialization, dual ascent, heuristic, and
input/output operations. The time for initialization and I/O operations was less
than 2.5% of the total CPU time for all problems.

Time required for dual ascent as a percentage of the Total CPU time.

+ Percentage gap = (Upper Bound - Lower Bound)/Lower Bound %.
-39-

breakdown of CPU time indicates that the ascent and heuristic phases require

comparable computational effort. For smaller problems (problem sizes 1, 2,

and 3), the CPU time per cycle for ascent increases faster with the fixed-to-

variable cost ratio than the CPU time per cycle for the heuristic procedure.

A detailed examination of the outputs revealed that the relative improvement

in the upper bound was significantly lower for the Add phase than for the Drop

phase.

In addition to these test results, Magnanti, Mireault, and Wong (1986)

present computational experience for over 40 randomly generated, undirected

networks of a similar type ranging in size from 10 to 33 nodes and 45 to 130

arcs. While Magnanti et al. focused on solving the network design problem

optimally using Benders' decomposition, they used dual ascent in a

preprocessing routine to generate lower and upper bounds for problem

reduction. Their test networks differ from the problems considered here in

the following three respects:

(i) Instead of a complete (or "all-to-all") demand pattern, the problems

assume a sparser "two-to-all" demand pattern. One unit of demand is

assumed from each of two designated sources to every other node.

(ii) The test problems model a variety of cost structures. Variable

costs include both a component related to the Euclidean arc length

and a uniform random component. Fixed costs are either directly or

inversely proportional to the variable costs and for some problems

contain an additional uniform random perturbation.

(iii) The problems belong to the class of network improvement models: a

randomly selected subset of arcs is assigned zero fixed costs. These

arcs represent links of the given network that already exist and that

must be included in all candidate designs.

Magnanti et al. report that for all but 2 of their test problems, the

ascent procedure gave upper and lower bounds that differed by at most 2.3%.

These results complement and confirm our experience about the effectiveness of

the dual-based procedures for solving general, undirected network design

problems.

- 40 -

·I -

4.2 Directed LTL Test Problems: Less-than-Truckload Consolidation Problems

Many distribution contexts involve transporting relatively small

quantities of material between numerous widely dispersed geographical

locations. In such cases, the total transportation cost can often be reduced

by exploiting the economies of scale in the cost structure. This saving is

accomplished by consolidating the small less-than-truckload shipments close to

the respective points of origin, dispatching full truckloads to downstream

breakbulk centers and distributing the individual shipments locally. Lamar,

Sheffi and Powell (1984) modeled this less-than-truckload (LTL) consolidation

decision as a network design problem and proposed a method that successively

strengthens the weak linear programming relaxation (with the aggregate forcing

constraints (1.5) instead of (1.3) of formulation P1) to generate lower

bounds. In this section we discuss computational results for Lamar et al.'s 7

test problems using our dual ascent procedure.

We first briefly review the distinctive characteristics of Lamar et al.'s

test problems. The LTL network contains two types of nodes: end-of-line

terminals that serve as origins and destinations, and transshipment

(consolidation and break-bulk) points. Transshipment is not permitted at the

terminal nodes. The network is directed and complete, i.e., it contains one

directed arc for every pair of nodes. Both the fixed and variable costs are

directly proportional to the Euclidean arc lengths. Every pair of terminal

nodes defines a commodity whose demand is determined using a gravity-type

model. Lamar et al. tested problems containing either 10 or 40 terminal nodes

and either 2 or 6 transshipment points. Table III shows the problem

dimensions for the 7 test problems labeled LSP1 to LSP7. Observe that

problems LSP4 to LSP7 have the same dimensions; however, they differ in the

demand level, with problems LSP4 and LSP6 corresponding to the medium demand

case and problems LSP5 and LSP7 having low and high demand, respectively.

(The demand parameters of problem LSP6 were divided (multiplied) by a factor

of 50 (5) to obtain the low (high) demand instance LSP5 (LSP7).)

Since our network design model assumes unit demands for each commodity,

we transform the LTL problem with commodity-dependent demands to the unit

demand form by scaling the variable costs for each commodity (so that flow now

measures percentage of demand). Observe that, unlike the first class of

- 41

- O
IA: C 0

(o m'O..L cw-,
z.4, C

O0

cn,

0~ &

'-

O

L,

-o

E

z

4n

o

E
E
0
U

-o

L.

C

C

cn

1,.
COJ

0)E

0
I.-

a-

O O O O O O O
I EN 00 00 00 00

1D. 00 O O O 0D 0

N O N o O o OEN 0 eN 0 0 0 0
q Ln) - - - m-

I- W LA LA L LA

00 LA w. 0 m
en EN EN CN I

N EN eN eN d
r4 r4 m ffi 4

r-
EN 0

O O O O O O Oo o 0 0 0 0 0a an w %O to to w
LA Ln Ln LA LA
q- q- V-1 W- V-

EN O N O O O O
en Iq EN r-% fr- r-r%
- d N Cs 0 0 0 0

-N O O O O

EN O EN O D 0 'I

CD o O O oo- 0r 0q 0q 0 O O
q q'

(N C(9 q LA 1.0 r-

LA m LA m tA LA
_j -J _i -J _ - J

- 42 -

E

o

0.
o
,m
O
._

o
-o

I§

C
0= U

I a

C0

¢ImC

E

0

,0
L.

0

cnT"

oo O

Q

-- '
OC-

0x E
C -

C -.

0) C

L m

E 2
(=

, *

problems, variable costs are now different for different commodities. Also,

in transforming the problem to an equivalent unit demand problem, decreasing

the demand parameter effectively increases the fixed-to-variable cost ratio.

The last column in Table 3 contains the average fixed-to-variable cost ratio

for each of the 7 equivalent test problems. Finally, the integer programming

formulation for the transformed LTL problem contains fewer integer variables

than the total number of arcs in the network. This reduction in the number of

integer variables is possible because each direct terminal-to-terminal arc

(i,j) can carry only the commodity flowing from i to j (since transshipment is

not permitted at terminal nodes). Effectively, therefore, for each of these

arcs the fixed charge can be added to the flow cost (since the total flow on

this arc will be only either 0 or 1). Consequently, only arcs incident to or

from the transshipment nodes require design variables. For example, of the

2070 arcs in problem LSP4, 1560 (= 40 x 39) are direct terminal-to-terminal

arcs that have effectively no fixed charge; hence, the formulation contains

only 510 (= 2070 - 1560) design variables. Observe also that this special

characteristic eliminates the need for forcing constraints corresponding to

the direct terminal-to-terminal arcs.

Implementation Details

The LTL-consolidation problems are defined over directed networks, have

commodity-dependent variable costs and prohibit transshipment at the

origin/destination nodes. We, therefore, had to modify the dual ascent code

used for the general, undirected problems in order to handle these special

features. Some key differences in the implementation for LTL problems are the

following: (i) the program uses floating point arithmetic; (ii) unlike the

previous implementation, the LTL implementation executes only one dual ascent

cycle, i.e., it does not perform the restricted ascent; (iii) the program does

not incorporate the enhancement of Section 3.1 to handle the stronger forcing

constraint (1.7); (iv) due to storage limitations, the program does not use a

logical array to identify the tight cutset arcs belonging to the set A'(k);

instead, A'(k) is recomputed at every iteration; and (v) local improvement is

performed using only a drop procedure, instead of a drop-add procedure.

- 43 -

Interpretation of Computational Results

Table IV presents our computational results for the 7 LTL test problems.

As before, the CPU execution times correspond to a FORTRAN implementation,

compiled with the level 2 optimization option, on the IBM 3083. The

computational results demonstrate that, for LTL problems, both the proportion

of transshipment nodes and the demand level (or, equivalently, the fixed-to-

variable cost ratio) have a strong influence on the number of dual ascent

iterations and the quality of the dual-based bounds. For example, problem

LSP2 has both the highest proportion of transshipment nodes and the highest

percentage gap (4.57 %) among all the medium flow problems. Similarly,

problem LSP5 has a relatively large gap (6.32 %) because of its exceptionally

high fixed-to-variable cost ratio (114.43). The % gaps range from 0.32 to

1.23 for the remaining 5 out of the 7 problems.

The CPU time, on the other hand, depends more on the problem size than on

the proportion of transshipment nodes. A comparison of Table IV with the dual

ascent results for general, undirected problems of comparable size (Table II)

suggests that the LTL-consolidation problems, because of their special

structure, are easier to solve (though in 2 instances, the percentage gaps are

larger). In particular, the CPU time required per ascent cycle is

significantly smaller for the LTL problems. Another interesting difference

between these two classes of problems is the much larger proportion of

computation time required for the heuristic procedure in the LTL case. On

analyzing the detailed outputs, we found that many more arcs had to be dropped

from the initial LTL solution before reaching a local optimum. The fact that

only one particular commodity can flow on each direct origin-to-destination

arc possibly contributes to this behavior.

- 44 -

en N

ei LO
LM W-

'0 qr
m

N LA 0 O LA
N N oo % (N

o o rN N
(N ai e

00 re

~CO
¶q 00
(N en

N (N 00 N Mn Ln
LA m e O Mn N en

q 6 6 k - O

- C n 9t LA 1.0
0= 0. a O= a. Q 0
VI tA VI VI VI LA L
.-J -j -J J ==j -J -j

- 45 -

m

a

en
00

ECm2

ocn0
U

fA
V$A
CL

o
-9

C
Q
U
0

I:

c

(a
O

4-

E

0
o0

IJC

> 0
m

i-

0

%A

C

Il

0

NO-
%.

6i

m

J

co

E-)
g

o
co

0
4-I

.a
N

._

C.

C
.(

C

m0,O
0

E

._

-0

_7

Ilm

I

5. Conclusions

The results in this paper show that a combined dual ascent method and

drop-add heuristic is capable of effectively solving large-scale uncapacitated

network design problems. This approach solves large-scale problems (up to 595

design arcs in our computational experiments) quickly and consistently

generates solutions guaranteed to be within 1 to 3 % of optimality. The

application of the methodology to realistic trucking data also shows that it

should be capable of solving large-scale problems met in practice. The most

significant limitation to the method at present is not computation time, but

rather storage requirements.

The effectiveness of the dual ascent method provides empirical

confirmation that, for the disaggregate formulation (1.1) - (1.4), linear

programming provides a good approximation to the integer programming

polyhedron for the network design model. This experience adds to the growing

evidence that for linear programming relaxations of integer programs "larger

is better"; that is, when they can be solved, the relaxations are most

effective when the linear programs are written in the most disaggregate form,

with many constraints and variables. For the network design problem, this

experience would be even more compelling if it were complemented by

theoretical evidence (possibly probabilistic, average case analysis) that

demonstrates the method's effectiveness. The work of Prodon, Liebling, and

Groflin on the Steiner tree problem provides some insight in this direction.

It seems, though, that much remains to be done.

Another major avenue for future research, that would considerably enhance

the range of applications of the network design model, would be the addition

of multiple choice and precedence constraints on the design variables and the

introduction of arc capacities. Unfortunately, our preliminary experience

suggests that a straightforward generalization of our linear programming-based

dual-ascent methodology is not effective in solving capacitated problems. The

linear programming relaxation no longer provides a good approximation to the

integer program - the gap between the objective values of the linear and

integer programs seems too large. This experience suggests the need for

better linear programming formulations for the capacitated problems and the

likely need for a better understanding of the structure (most particularly,

- 46 -

the facial structure) of the integer programming polyhedron. In some

complementary work, we have made some first steps toward meeting this

objective. Balakrishnan (1985) and Balakrishnan and Magnanti (1987) have

developed several results concerning the polyhedral structure of uncapacitated

network design problems, as formulated with path instead of arc flows.

Barany, Van Roy and Wolsey (1984a and 1984b) and Pochet and Wolsey (1986) have

studied the polyhedral structure of the uncapacitated economic lot-sizing

problem (this problem can be viewed as a special network design problem).

Lemke and Wong (1987) described several facets of the k-median facility

location problem and Leung and Magnanti (1986) have introduced new facets for

the capacitated facility location problem. Leung, Magnanti and Vachani (1987)

and Pochet (1986) have described facets for the capacitated economic lot-

sizing problem and Magnanti and Vachani (1987) have discussed facets for

production planning problems with changeover costs. Several of these

contributions also contain encouraging computational experience. Since each

of these problems can be viewed as special cases of the capacitated network

design problem, their analysis sheds some insight on the polyhedral structure

of the general version of this problem. Again, however, much remains to be

done.

Acknowledgments:. We would like to thank Professor Bruce W. Lamar for

providing us the data for the Less-than-Truckload Consolidation test problems.

- 47 -

Appendix 1

Relating the Dual Ascent Algorithms for the

Steiner Tree and Network Design Problems

The Steiner tree problem on a directed graph can be stated as follows:

find a minimum cost set of directed arcs that connects a designated root node

to a designated subset T of nodes. As indicated by Magnanti and Wong (1984),

this problem can be modeled as a single source network design problem with ITI

commodities, one for each node in T, and for every commodity t, the root node

is the origin and node t is the destination. The fixed cost of an arc is

equal to its cost in the Steiner problem and all flow routing costs are zero

k
(i.e., all c.. = 0). Then an optimal network design solution will also be an

optimal Steiner problem solution.

Wong's (1984) dual ascent procedure for Steiner trees operates in the

same manner as the dual ascent labeling method applied to the equivalent

network design problem except that the two procedures process the commodities

in a different order. (In this Appendix, we assume familiarity with Wong's

algorithm.)

Recall that the dual ascent labeling method processes the commodities in

a fixed order. On the other hand, the Steiner ascent method has a special

priority scheme for processing the commodities: it processes commodities at

certain times depending on the characteristics of the current dual solution.

We will now show that the two ascent procedures are, in fact, equivalent in

the following way. If the dual ascent labeling method processes a commodity

that would not have been processed with the Steiner ascent method, the

labeling method will not change the dual solution during that iteration.

Thus, the commodities ignored in the course of the Steiner ascent method will

also be effectively ignored by the labeling method. Since the two ascent

procedures are otherwise identical, we will have shown that the dual ascent

labeling method applied to the equivalent network design problem for Steiner

trees is equivalent to the Steiner tree dual ascent method.

Wong's Steiner tree dual ascent procedure constructs an auxiliary

directed graph G' with the same node set as the Steiner network and arc (i,j)

- 48 -

is in the graph only if sij = O0. We shall say that a destination node t1 T

belongs to a root component if whenever G' contains a path from any node t2 c

T to tl, G' also contains a path from t1 to t2. (Thus if, for example, all

arcs have positive slack then each node of T comprises a root component.) The

k
Steiner ascent procedure selects a commodity k and increases vD(k) only if

node D(k) belongs to a root component in G'. We now show that the dual ascent

labeling method simulates this behavior when applied to the equivalent network

design model of the Steiner tree problem.

We first note that when the dual ascent labeling method is applied to the

network design model of Steiner tree problems, at each iteration, every arc

(i,j) contained in the directed cutset corresponding to the node partition

Nl(k) and N2(k) is tight i.e., if i Nl(k) and j N2(k), then (i,j) A'(k).

To establish this property observe that, since all c = 0, and all w
i1

variables are initialized to zero, the initial values of all the v variables

are zero. Therefore, originally

k k k- k
c.. + wk. - (vk - vk) = 0, for all arcs (i,j) A,

that is, all arcs are tight initially. Remark 1 following the statement of

the algorithm shows that all the arcs in the directed cutset A(k) remain tight

during each iteration.

This property implies that the minimization operator defining 62 in Step

1 never has any candidates. So 6 will always be defined by 61 and each

execution of Step 1 will label a new node and therefore increase N2(k) by one

element. Throughout the following discussions we assume, for simplicity, that

61 = sij for a unique arc (i,j) in Step l(a) of the labeling method (that is,

the degeneracy described in Remark 4 following the statement of the method in

Section 23 does not arise).

The dual ascent procedure executes Step 1 for every commodity k K with

O(k) E N1(k). We will now show that if we are executing Step 1 with a

commodity k, whose destination node D(k) does not belong to a root component,

then 6 = 0 and the dual ascent procedure will not change the dual solution.

First we need to establish the following property.

- 49 -

Property (Labeling Property for Root Components)

Suppose we are executing Step 1 with commodity k whose destination D(k)

does not belong to a root component of G'. Then, for some 1 K, there

must a path of arcs with s.. = 0 from D(1) to D(k) but not from D(k) to

D(l). Also for at least one h K, D(h) N2(1) and D(h) N2(k).

Proof:

The first part of this property is a restatement of the assumption that D(k)

does not belong to a root component of G'. We will prove the second part by

contradiction. Assume that no h K satisfies D(h) N2(1) and D(h) N2(k),

and therefore N2(1) is a subset of N2(k). Then since no path of arcs with sij

= 0 connects D(k) to D(l), we must have D(k) N2(1) and therefore IN2(k)I >

IN2(1), + 1.

The current execution of Step 1 with commodity k will increase N2(k) by

one element. If commodity 1 is still in the set CANDIDATES then N2(1) will

also increase by one element by the end of the entire execution of Step 1 for

all candidates. Otherwise if commodity 1 is not in the set CANDIDATES, then

N2(1) will not be increased during the current execution of Step 1. Therefore

at the end of the entire execution of Step 1 we will still have N2(k) >

IN2() + 1.

However, each complete execution of Step 1 increases N2(j) by one element

for every commodity j that satisfies the condition O(j) N(j). Since

IN2(k)I > IN2 (1) I + 1 at the end of the current execution of Step 1, some

previous execution of Step 1 must have processed commodity k but not commodity

1 (that is, during that iteration O(l) N2(1)). Then the current execution

of Step 1 with commodity k will also have 0(1) N2(1). For the Steiner

problem we have O(1) = O(k), and since we are assuming that N2(1) is a subset

of N2(k) we have O(k) N2(k). But we are executing Step 1 with commodity k

which implies that O(k) Nl(k) and contradicts the previous statement. So

there must be at least one h K such that D(h) N2(1) and D(h) N2(k). ·

The labeling property for root components implies that 6 must be zero

during the current execution of Step 1 with commodity k for the following

-50 -

reason. We have assumed that D(1) N2(k) (since D(k) does not belong to a

root component) which implies that there is a path of arcs with s.. = 0 from

D(1) to D(k). The labeling property implies that for some commodity h,°D(h)

N2(1) and the network must also contain a path of arcs with sij = 0 from D(h)

to D(1). Hence there is a path of arcs with s.. = 0 from D(h) to D(k). Since
1J

D(h) N2(k), at least one arc of this zero-slack path from D(h) to D(k) must

belong to the directed cutset A(k). Hence, 6 must be zero for the current

execution of Step 1 with commodity k.

This argument shows that the Steiner tree ascent method priority scheme

is, in effect, simulated by the labeling method (since the labeling method

will not change the dual solution if it is processing a commodity that would

not have been selected by the Steiner tree method). Thus, we have shown that

the dual ascent labeling method for the network design problem is essentially

a generalization of the Steiner tree dual ascent method.

- 51

References

BALAKRISHNAN, A. 1984. Valid Inequalities and Algorithms for the Network

Design Problem with an Application to LTL Consolidation. Unpublished

dissertation, Sloan School of Management, Massachusetts Institute of

Technology, Cambridge, Massachusetts.

BALAKRISHNAN, A. 1985. LP Extreme Points and Cuts for the Fixed-Charge

Network Design Problem. Working Paper, Krannert Graduate School of

Management, Purdue University, West Lafayette, Indiana.

BALAKRISHNAN, A., AND T. L. MAGNANTI. 1987. Set Packing-Based

Inequalities for the Fixed-Charge Network Design Problem. In

preparation.

BARANY, I., T. J. VAN ROY AND L. A. WOLSEY. 1984a. Uncapacitated Lot

Sizing: The Convex Hull of Solutions. Math. Prog. Study 22, 32-43.

BARANY, I., T. J. VAN ROY AND L. A. WOLSEY. 1984b. Strong Formulations

for Multi-item Capacitated Lot Sizing. Man. Sci. 30, 1255-1261.

BEALE, E. M. L., AND J. A. TOMLIN. 1972. An Integer Programming Approach

to a Class of Combinatorial Problems. Math. Prog. 3, 339-344.

BILDE, O., AND J. KRARUP. 1977. Sharp Lower Bounds and Efficient

Algorithms for the Simple Plant Location Problem. Annals of Disc.

Math. 1, 79-97.

BILLHEIMER, J., AND P. GRAY. 1973. Network Design with Fixed and Variable

Cost Elements. Trans. Sci. 7, 49-74.

BOFFEY, T. B., AND A. I HINXMAN. 1979. Solving for Optimal Network

Problem. Eur. J. Opnl. Res. 3, 386-393.

BOYCE, D. E., A. FARHI AND R. WEISCHEDEL. 1973. Optimal Network Problem:

A Branch-and-Bound Algorithm. Environ. Plan. 5, 519-533.

CHU, Y. J., AND T. H. LIU. 1965. On the Shortest Arborescences of a

Directed Graph. Scientia Sinica 14, 1396-1400.

CORNUEJOLS, G., M. L. FISHER AND G. L. NEMHAUSER. 1977. Location of Bank

Accounts to Optimize Float: An Analytic Study of Exact and

Approximate Algorithms. Mgmt. Sci. 23, 789-810.

DAVIS, P. S., AND T. L. RAY. 1969. A Branch-and-Bound Algorithm for

Capacitated Facilities Location Problems. Nav. Res. Log. Quart. 16,

331-344.

DIJKSTRA, E. W. 1959. A Note on Two Problems in Connexion with Graphs.

Numerische Mathematik 1, 269-271.

DIONNE, R., AND M. FLORIAN. 1979. Exact and Approximate Algorithms for

Optimal Network Design. Networks 9, 37-59.

- 52 -

EDMONDS, J. 1967. Optimum Branchings. J. Res. Nat. Bur. Stan. - B. Math.

and Math. Phy. 71B, 233-240.

ELLMAN, J. 1983. Implementation of Solution Procedures to the General

Network Design Problem. Computer Science Masters project, Rennselaer

Polytechnic Institute, Troy, New York.

ERLENKOTTER, D. 1978. A Dual Based Procedure for Uncapacitated Facility

Location. Opns. Res. 26, 992-1009.

FISHER, M. L., R. JAIKUMAR AND L. VAN WASSENHOVE. 1986. A Multiplier

Adjustment Method for the Generalized Assignment Problem. Man. Sci.

32, 1095-1103.

FISHER, M. L., AND P. KEDIA. 1986. A Dual Algorithm for Large Scale Set

Partitioning. Working Paper No. 894, Krannert Graduate School of

Management, Purdue University, W. Lafayette, Indiana.

GALLO, G. 1981. A New Branch-and-Bound Algorithm for the Network Design

Problem. Report L81-1, Instituto Di Elaborazione Dell' Informazione,

Pisa, Italy.

GEOFFRION, A. M. 1974. Lagrangian Relaxation for Integer Programming.

Math. Prog. Study 2, 82-114.

GEOFFRION, A. M., AND G. GRAVES. 1974. Multicommodity Distribution System

Design by Benders Decomposition. Mgmt. Sci. 5, 822-844.

HOANG, H. H. 1973. A Computational Approach to the Selection of an

Optimal Network. Man. Sci. 19, 488-498.

JOHNSON, D. S., J. K. LENSTRA AND A. H. G. RINNOOY KAN. 1978. The

Complexity of the Network Design Problem. Networks 8, 279-285.

KEDIA, P., AND M. L. FISHER. 1986. Optimal Solution of Set Covering

Problems Using Dual Heuristics. Working Paper No. 901, Krannert

Graduate School of Management, W. Lafayette, Indiana.

KNUTH, D. 1969. The Art of Computer Programming: Volume 2, Seminumerical

Algorithms. Addison-Wesley, Reading, Massachusetts.

LAMAR, B. W., Y. SHEFFI AND W. B. POWELL. 1984. Bounding Procedures for

Fixed Charge, Multicommodity Network Design Problems. Working Paper,

Department of Civil Engineering, Massachusetts Institute of

Technology, Cambridge, Massachusetts.

LAMAR, B. W., Y. SHEFFI AND W. B. POWELL. 1986. A Lower Bound for

Uncapacitated, Multicommodity Fixed Charge Network Design Problems.

Working Paper, Department of Civil Engineering, Massachusetts

Institute of Technology, Cambridge, Massachusetts.

LEMKE, P., AND R. T. WONG. 1987. Characterization and Description of

Facets for the K-Median Problem. In preparation.

- 53 -

LEUNG, J., AND T. L. MAGNANTI. 1986. Valid Inequalities and Facets of the

Capacitated Plant Location Problem. Working Paper OR 149-86,

Operations Research Center, Massachusetts Institute of Technology,

Cambridge, Massachusetts (to appear in Math. Prog.).

LEUNG, J., T. L. MAGNANTI AND R. VACHANI. 1987. Facets and Algorithms for

Capacitated Lot Sizing. Working Paper, Operations Research Center,

Massachusetts Institute of Technology, Cambridge, Massachusetts.

LOS, M., AND C. LARDINOIS. 1980. Combinatorial Programming, Statistical

Optimization and the Optimal Transportation Network Problem. Trans.

Res. 16B, 89-124.

MAGNANTI, T. L., AND B. W. GOLDEN. 1978. Transportation Planning: Network

Models and Their Implementation. In A. C. Hax (ed.). Studies in

Operations Management. North-Holland, Amsterdam.

MAGNANTI, T. L., P. MIREAULT AND R. T. WONG. 1986. Tailoring Benders

Decomposition for Network Design. Math. Prog. Study 26, 112-154.

MAGNANTI, T. L., AND R. VACHANI. 1987. A Strong Cutting Plane Approach to

Production Planning with Changeover Costs. In preparation.

MAGNANTI, T. L., AND R. T. WONG. 1981. Accelerating Benders

Decomposition: Algorithmic Enhancement and Model Selection Criteria.

Opns. Res. 29, 464-484.

MAGNANTI, T. L., AND R. T. WONG. 1984. Network Design and Transportation

Planning: Models and Algorithms. Trans. Sci. 18, 1-55.

MAIRS, T. G., G. W. WAKEFIELD, E. L. JOHNSON AND K. SPIELBERG. 1978. On a

Production Allocation and Distribution Problem. Man. Sci. 24,

1622-1630.

POCHET, Y. 1986. Valid Inequalities and Separation for Capacitated

Economic Lot Sizing. Discussion Paper, Center for Operations

Research and Econometrics, Universite' Catholique de Louvain,

Belgium.

POCHET, Y., AND L.- A. WOLSEY. 1986. Lot-Size Models with Backlogging:

Strong Relaxations and Cutting Planes. Discussion Paper, Center for

Operations Research and Econometrics, Universite' Catholique de

Louvain, Belgium.

PRODON, A., T. LIEBLING AND H. GROFLIN. 1985. Steiner's Problem on Two-

Trees. Working Paper, Departement de Mathematiques, Ecole

Polytechnique Federale de Lausanne, Lausanne, Switzerland.

RARDIN, R. L. 1982. Tight Relaxations of Fixed Charge Network Flow

Problems. Technical Report, No. J-82-3, School of Industrial and

Systems Engineering, Georgia Institute of Technology, Atlanta.

RARDIN, R. L., AND U. CHOE. 1979. Tighter Relaxations of Fixed Charge

Network Flow Problems. Technical Report, No. J-79-18, School of

- 54 -

Industrial and Systems Engineering, Georgia Institute of Technology,

Atlanta.

VAN ROY, T. J., AND E. ERLENKOTTER. 1982. A Dual-Based Procedure for

Dynamic Facility Location. Man. Sci. 28, 1091-1105.

WILLIAMS, H. P. 1974. Experiments in the Formulation of Integer

Programming Problems. Math. Prog. Study 2, 180-197.

WONG, R. T. 1980. Worst-Case Analysis of Network Design Problem

Heuristics. SIAM J. Alg. Disc. Meth. 1, 51-63.

WONG, R. T. 1984. Dual Ascent Approach for Steiner Tree Problems on a

Directed Graph. Math. Prog. 28, 271-287.

WONG, R. T. 1985. Probabilistic Analysis of an Optimal Network Problem

Heuristic. Networks 15, 347-363.

- 55 -

