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ABSTRACT

A new penalty function is associated with an inequality constrained
nonlinear programming problem via its dual. This penalty function is
globally differentiable if the functions defining the original problem are
twice globally differentiable. In addition, the penalty parameter remains
finite. This approach reduces the original problem to a simple problem
of maximizing a globally differentiable function on the product space of
a Euclidean space and the nonnegative orthant of another Euclidean space.
Many efficient algorithms exist for solving this problem. For the case
of quadratic programming, the penalty function problem can be solved
effectively by successive overrelaxation (SOR) methods which can handle

huge problems while preserving sparsity features.
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1. Introduction

It is well known that exterior penalty functions [6,13] in mathe-
matical programming suffer from one of two difficulties. Either the
Hessian of the penalty function becomes ill-conditioned as the penalty
parameter approaches infinity [6,20], or the penalty function is
nondifferentiable [13]. There have been, however, attempts at obtaining
penalty functions which are both differentiable and for which the
penalty parameter remains finite [8,3,4,1]. We present here a different
and an extremely simple penalty function which, by taking advantage of
the structure of the dual problem, results in a penalty function which
is differentiable and for which the penalty parameter remains finite.
The key idea behind the present approach is extremely simple and is best
illustrated by the following equality-constrained minimization problem

minimize f(x) subject to h(x) = 0
xeRN

where f and h are differentiable functions from the n-dimensional
real Euclidean space R" into R and Rk respectively. The classical

exterior penalty problem for this problem 1is

minimize f(x) + %ﬂ|h(x)“2

xeRM

where o 1is a positive penalty parameter and

| denotes the 2-norm.

At stationary points of the penalty problem we have

T

vf(x) + avh(x) h(x) =0



where Vf(x) 1is the nx1 gradient of f, Vh(x) is the kxn Jacobian
of h and the superscript T denotes the transpose. In order for this
condition to approach the stationarity conditions for the minimization

problem, which are
vE(x) + vh(x)Tu = 0, h(x) = 0

where u is an kx1 vector of Lagrange multipliers, the quantity

oh(x) must approach u. Since h(x) = 0, it turns out that in general
o must approach «. There are exceptions. For example if u =10

then ¢ need not approach . This is an exceptional case which

does not hold in general for the original minimization problem.

However, if we consider the Wolfe dual [22,15] to an ineguality

constrained minimization problem, then the optimal Lagrange multiplier
associated with the equality constraint of the dual is zero provided that
the Hessian of the Lagrangian is nonsingular at the optimum. Hence for
the exterior penalty problem associated with Wolfe dual we can show
(Theorems 1 to 4) that under rather natural conditions the penalty
parameter remains finite. Hence we can obtain a globally differentiable
penalty function with a finite penalty parameter. Because our penalty
problem formulation depends in an essential manner on the dual problem,
our results are local results in the absence of convexity, and become
global results if convexity is assumed. Because our penalty function is
smooth and its parameter is finite it has important computational
implications. For example, fast methods of smooth optimization could be
used to directly optimize the differentiable penalty function (Algorithm 1),

or the function may be used as in [12] in enlarging the convergence region



of fast but locally convergent algorithms [9,11]. In addition, for
positive definite quadratic programming problems, our penalty function
can be used to derive a successive overrelaxation (SOR) algorithm
without the need to invert the underlying positive definite matrix of
the problem (Algorithm 2). SOR algorithms have proved to be successful
in solving linear programming problems [17] and have the potential for
solving enormous problems that cannot be tackled by pivotal methods
while at the same time preserving the sparsity of the problem.

Besides this Introduction, this paper contains two sections. In
Section 2 we treat the general nonlinear programming problem while in
Section 2 we specialize to the quadratic programming case to obtain
sharper results. Section 1 contains theorems relating stationary points,
Tocal and global optima of the nonlinear inequality constrained problem
to those of the penalty problem. We also give a simple gradient projec-
tion algorithm for optimizing the penalty function. In Section 3 we
have similar results for the quadratic programming case. We also present
an SOR method for quadratic programming which is a generalization of the
SOR method used with successful computational results on Tinear
programming [17].

We briefly describe our notation. ATl vectors in R" will be
column vectors unless transposed to a row vector by the superscript T.
RQ will denote the nonnegative orthant {x|xeR", x>0}. For x in R,
Xis i=1,...,n, will denote its ith component, while x, will denote a
vector in R" with components (x,). = max {x;,0}, i=1,...,n and | x]|
( T

..i
1
x'x)72.

will denote the Euclidean norm For an mxn real matrix A, A_i



will denote the ith row, A<j the jth column, and if I<{1,...,m},

Je{l,...,n} then AI will denote the submatrix with rows Ai’ iel, AJ

will denote the submatrix with columns  A-j, jed, and AIJ will denote

the submatrix with elements A.., ieI and Jjed. For a differentiable

1J
function f:Rn~+R, vf(x) will denote the nx1 gradient vector, while
for a differentiable function g:R"-+Rm, vg(x) will denote the mxn
Jacobian matrix. For a twice differentiable function L:R"xRT>R,
VXL(x,u) will denote the nx1 gradient with respect to x, VuL(x,u)
will denote mx1 gradient with respect to u, VZL(x,u) will denote

(n+m) x (n+m) Hessian with respect to both x and u whose submatrix

components are denoted as follows

VXXL(x,u) VXUL(x,u)

VoL(x,u) =

VUXL(x,u) VuuL(x,u)

For a nonlinear programming problem such as (1) below, a point
(x,u) e R satisfying the Karush-Kuhn-Tucker conditions (1') is said

to be a KKT point, while X is said to be a stationary point of (7).

Whenever a point (X,u) 1is a KKT point, the differentiability of f

and g at Xx is implicitly assumed.



Theorem 1 (Equivalence of stationary points of (1), (2) and (4))

Llet f and g be twice continuously differentiable at Xx. Then

(a) Ax,u) is a stationary X,Uu) is a stationary
(X, is a KK
point of 2) and point of (4) for
point of (
V. L(x u) ' exists any y
(b) (x,u) is a stationary
(x,u) is a stationary (x,u) is a KKT - point of (4), Y # O
point of (2) point of (1) and %-is not an
jgenvalue of VXXL(x,u)

Proof
The proof follows directly by writing the Karush-Kuhn-Tucker conditions

[15] (1'), (2') and (4) for problems (1), (2) and (4) respectively as follows

9,L(%.3) = 0, 9(X) < 0, i'g(X) = 0, G20 (1)
For some veR™:
vXL(i,a) - VXXL(R,G)V =0
g(x) - vg(x)v < 0 ,
T, .- (2"
u' (g(x) - vg(x)v) =0
u>
v L(x,u) = 0

X



2. The General Nonlinear Programming Problem

We consider here the problem

minimize f(x) subject to g(x) <0 (1)
xeRN

where f s a function from the n-dimensional real Euclidean space R"
into the reals and g is from R" into R™. Associated with this
problem is the Wolfe dual [22,15]

maximize L(x,u) subject to VXL(x,u) =0, u>0

(x,u)eR”+m

(2)
where L(x,u):= f(x) + uTg(x)

Our penalty function is derived from (2) by constructing an exterior
penalty function for the equality constraints only. Thus we define the

penalty function
.= Y 2
8(xsu,y):= L(x,u) - E-HVXL(X,U)“ (3)

and consider the penalty problem

maximize 6(X,u,y) (4)
(x,u)eRNHM
u>0
which is differentiable on Rn+m when f and g are differentiable on

R". We shall relate various stationary and solution points of problems

(1), (2) and (4). We begin with a simple but useful result.



(I - v, L(x,0))V,L(x;u) = 0
g(x) - yvg(x)v,L(x,u) <0 ,
T, - - - . (4")
u (g(x) - yg(x)v L(x,u)) = 0
u>0

In the next result we establish, under appropriate assumptions, the

local concavity of ©(x,u,y) in both the variables x and u.

Theorem 2 (Negative semidefiniteness and definiteness of Vze(i,ﬁ,y))

Let (X,u) be a KKT point of (1), let f and g be twice contin-
uously differentiable at x and let VXXL(R,G) be positive definite
with minimum eigenvalue p > 0. Then for y:;~%, (x,u) is a stationary
point of (4) and the Hessian Vze(i,ﬁ,y) with respect to (x,u) is negative
semidefinite. If in addition y > %— and Vg(x) has linearly independent
2

rows, then V<8(X,u,y) is negative definite and hence (X,u) is a strict

local maximum of (4).

Proof
By Theorem 1, (X,u) satisfies the KKT conditions (4') for

problem (4). We have from (3) when f and g are differentiable at X

that

_
(I—'yVXXL(x,u))VXL(x,u)

VO (X,U,y) = (5)

g(x) - vvg(x)v,L(x,u)

L e

Recalling that VXL(Q,D) = 0 we have that



7 LI = YT L(Ra8)) (1= 7, L(R.8))vg(X)!
v20(X,1,y) = (6)
Vg (X) (I - v, L(X,0)) , g (X)ve(x)T
L. XX .
Define
C:= VXXL(x,u) and A:= vg(x) (7)
then
C(I-vC) (1-vC)A'| |C AT cllc aT|
v26(%,0,7) = - “y
A(I-+C) ATl 1A o A

and for vy > = we have that

Ol

(x" uT)Vze(i,ﬁ,y)(X) xTcx + 2x Au - yﬁ]Cx+ATu||2

u
X Cx + 2xT(Cx+ATu) - yHCx+ATu||2

Blixl2 + 201k [oxtATul|-y] cx+ATul |2

Bl FlloeaTull) - (-3 cxhull

A

0

A

Hence V26(R,G,y) js positive semidefinite for vy > If (ﬁ) # 0 then

ot~

we consider two cases:

Case I: Cx + ATu # 0. For this case it follows from v > %~ that

(xF uT)vze(i,ﬁ,y)(ﬁ) <0.



Case II: Cx + ATu = (0 and (3) # 0. For this case we have that x # 0,

else uTA =0, u# 0, which contradicts the assumption that the rows of

A are linearly independent. Hence

(x! uT)vze(i,a,y)(ﬁ) = -x'Cx < 0

where the last inequality follows from the assumption that C fis
positive definite.

Thus in either case (xT uT)Vze(i,G,y)(ﬁ) <0 for (x,u) # 0 and
Vze(i,ﬁ,y) is negative definite for vy > %- and (Xx,u) is a strict local

maximum of (4) [6,13]. 0

The assumption in Theorem 2 that vg(x) has full row rank is
restrictive, but apparently it is the best we can do if we require that
Vze(i,ﬁ,y) be negative definite. A natural relaxation is to merely ask
for conditions that ensure that (X,u) ds a strict local maximum of (4).
1t turns out that such a relaxation can be reflected in replacing the
linear independence of the rows of vg(X) by the less stringent require-

ment of the Tinear independence of the gradients of the active constraints

only as follows.

Theorem 3 (Strict Tocal maximum of 8(x,u,v))
The last sentence of Theorem 2 can be replaced by the following: If

in addition vy > %» and Vgi(i) are linearly independent for ieJ where
J = {i]g;(X)=0, i=1,....m} (8)

then (X,u) 1is a strict local maximum of (4).
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Proof

Let A; = ng(i). From the proof of Theorem 2, by replacing A by
1

AJ, we have that nge(i,D,Y) is negative definite for vy > 5 where
C(I-yC)  (I-vOAT| ¢ A] c [c AH
8(X,U,y):= = -y
Jd T

(9)

0 A

J J

We establish now that (X,u) 9s a strict local maximum by (4) by
establishing the second order sufficient optimality condition [6,13].
Note from (5) that Vue(i,ﬁ,y) = g(x), and since the optimal multiplier

associated with the nonnegativity constraint u >0 1is -V B (X, U,Y) s

u
hence the second order sufficient optimality condition for (4) is then
X X
X Ug = T T T2, /= = XE
0# ()= |y 50| (X Upug upV 0(X,usY) ug | 0 (10)
Uy Uy
where
E =

{1|61=0, gi(i)<0}
{ilﬁi=0, 91(§)=0}
{i|51>0» gi(§)=0}

s [<p)
i i

Since J = GuH it follows that the second order condition (10) can be

rewritten as

X

0# |ug20| = (x| u))vjy0(R,dny) (3)<o (11)
UH t



-11-

Condition (11) is automatically satisfied for vy > %— because we have
already established that nge(i,a,v) is negative definite for

y>%. 0

So far no convexity assumptions have been made anywhere and con-
sequently all our results are Tocal results. We can globalize some of
our results if we assume that f is uniformly strictly convex and ¢
is convex on R". In fact we can show then that for each local solution
(x(v), uly)) of (4), x(y) 1is the unique global solution of (1). In

particular we have the following.

Theorem 4 (Stationary points of (4) as global solutions of (1) and (2))
let f and g be convex and twice continuously differentiable on

R, et

yTvzf(x)y ;:vilyHZ for all x, yeR" and some v > 0, (12)

and let v > %w For every stationary point (x(y), u(y)) of (4), x(v)

is independent of vy and x(y) = X, where Xx is the unique solution

of (1).

Proof

For x, y in R" and ueR"™, u > 0 we have that
T
v Lixuly 2 yP?F(ay 2 vy ll° (13)

Hence VXXL(x,u) is positive definite for all u > 0 and its smallest
eigenvalue p(x,u) satisfies the inequality p(x,u) > v. By Theorem 1(b)

every stationary point (x(y), u(y)) satisfies the KKT conditions (1') of
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(1). Since f 1ds strictly convex and g is convex, x{y) must equal
the unique solution X of (1) and (x,u(y)) must solve (2) [15]. N
We note that problem (4) can be used directly to construct an
algorithm for solving the original problem. For example we can easily
prescribe a Levitin-Poljak gradient projection algorithm [14] or a
superlinearly convergent quasi-Newton algorithm [10,7,9,11,21]. The key
observation to make here is that the projection operation here is an
extremely simple one, namely projection on Rn><RT. We give below the
simplest gradient projection algorithm for solving (4) and its convergence

to a KKT point of (1).

Algorithm 1 (Gradient projection algorithm for (4))

Choose vy > 0 and any (X s U )eR xR,. Having (x1,u1) compute
+
(X-I 1 u1 ]) as follows:

E

Direction choice: p1 = (I—yVXXL(x1,u1))VxL(x1,u1)

qi i

)

(uleg(x})-yog (v L)), - u
Stepsize choice: (xi+],ui+1) = (x1+xipi,ui+kiqi)
where Ai is chosen such that
6(x1+xipi,u1+xiqi,y)=lnix{6(x1+xp1,ui+Xqi,y){ui+kqi;p}
where 06 1is defined by (3).

By standard convergence results [14] and by Theorem 1 we have.

Theorem 5 (Convergence of Algorithm 1)
Let f and g be thrice differentiabie on R". FEach accumulation point
(x,u) of the sequence {(x",u")} generated by the gradient projection Algo-

rithm 1, such that %~ is not an eigenvalue of VXXL(R,G), is a KKT point of (1).
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3. The Quadratic Programming Problem

In this section we specialize our results to the quadratic programming
problem and obtain some sharper results. However the principal purpose of
this section is to describe an SOR method for solving the quadratic program-
ming problem which does not require the inversion of the matrix defining the
quadratic term [17]. This should substantially widen the appTlicability of
SOR methods to mathematical programming problems which have hitherto been
Timited principally to the minimization of quadratic functions on the nonnega-
tive orthant [16,17,18]. The principal advantages of SOR methods are their
ability to handle extremely large problems and to preserve sparsity.

We shall consider here the quadratic program

minim;ze -%XTCX + de subject to Ax< b (14)
xeR o

where C is an nxn symmetric matrix, A dis an mxn matrix, d is in

R" and b s in R".  The dual to this problem obtained from (2) is

maximize -%XTCX~%de4-u

(X,u)eRn+m

T(Ax-b) subject to Cx+d+Alu=0, u>0  (15)

We note in passing that the standard quadratic programming dual [5,15]
obtained by substituting from the equality constraint into the objective
function of (15)

maximize —-LXTCx-bTu subject to Cx*—d+—ATu= 0, u>0 (16)
(x,u)eRN¥M 2 -

cannot be used to obtain a differentiable exact penalty function because
the optimal multiplier associated with the equality constraint in (15)
is zero when C 1is nonsingular, whereas it is equal to x in (16) also

when C is nonsingular [15].
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The penalty function associated with (15) is

¢(x,u,y):=-%XT0x-+de-+uT(Ax-b)-J§|u»aATu+dH2 (17)
and the associated penalty problem is
maximize ¢(x,u,y) (18)
(x,u)eRNM
u>0

We have as an immediate consequence of Theorems 2 and 3 the following.

Theorem 6 (Concavity and strict concavity of ¢(x,u,y))
Let C be positive definite with minimum eigenvalue p > 0. Then
for vy ;-%, V2¢(x,u,y) is negative semidefinite and hence ¢(x,u,y)

1

R If in addition v > > and

is a concave function of (x,u) on
A has Tinearly independent rows, then V2¢(x,u,y) is negative definite
and hence ¢(x,u,y) 1is a strictly concave function on Rn+m. If

Y>]

5 and only Ai’ ied are linearly independent where

J = {i]Asx=b,, i=1,...,m}

and (X,u) 1is a KKT point of (1), then (x,u) is a strict global

maximum solution of (18).

Corollary 1 Let {x|Ax<b} be nonempty, Tet C be positive definite
with least eigenvalue p > 0. Then for each vy > %y problem (18) is

a concave quadratic maximization problem which possesses a solution
(x(y)> u(y)) with x(y) independent of vy and x(y) = X where X is

the unique global solution of (14).
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With the help of the SOR scheme of [16] we can solve iteratively the
quadratic program (18) in Rn><RT and thereby obtain a solution to (14).

It will be convenient for that purpose to have the following expressions

at hand
(I-vC)( Cx+A utd)
Vo (X,U,y) = (19)
Ax - b - vA( Cx+A u+d)
C(I-yC) (I-yC)A
V2o (x,u,) = (20)
A(I-yC) -YAA

An SOR method for solving the quadratic program (18) with relaxation

factor we(0,2) can be given as follows then

-i+‘| . . .
x}+] x] “g : VX.d)(x1 ,....,x1+%,x1,....,xn,u1,y)
(V@ (x5u757) )55
j=1,....5n
(21)
: . s
T Ty B v R ARSSPPRAL T PSR
(V@O umsy) )y
=1, »M

We spell out our SOR scheme in detail now.
Algorithm 2 (SOR scheme for (18))

Choose we(0,2), vy > max I{;Lijf Ci 0t , %;# an eigenvalue of C
J C. .
J

and (xo,uo)e Rn><RT. Having (x1,ui) compute (x1+1,u1+]) as follows:
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. n
SR — ((1;-¢,) Z czx"‘”+}j C. i +ATu'+d))
., /Q;=j

Set to 11f ;=0 “For j>1 Tonly

J=T,....,N
ui""]___(ui W (A X1+1 b. YA 'H"] z 1+]+nz1 (AT) u +d)))
T A S e . A}
R AT ) =
For j>1 only
j=1,....,m
Remark T

The only implicit assumption in Algorithm 2 is that Aj # 0,
j=1,....,m. This assumption imposes no restrictions whatsoever, since
all constraints ij é}bj of (14) for which Aj = (0 are either

inconsistent (bj<<0) or else can be discarded.

Remark 2

Note that in Algorithm 2 only linear arrays are needed in distinc-
tion from rectangular arrays. That is, we need to access the rows and
columns of C and A one at a time. Thus, if the problem is of
enormous size and very sparse, then only the nonzero elements need be

stored, and this sparsity unlike pivotal algorithms is never Tost.

We can now use the convergence theorems of [16] and the theorems
of this paper to obtain the following convergence result for the SOR

Algorithm 2.
Theorem 7 (Monotonicity and convergence of the SOR Algorithm 2)
For the sequence {(x1,u1)}, i=1,2,..., generated by Algorithm 2

o0 U vy > a(xouthy), 20,1, (22)
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and each accumulation point (x,u) of the sequence {(x1,u1)} is a KKT
point of the original quadratic program (14). If in addition C is

positive semidefinite then X is a global solution of (14).

Proof

Inequality (22) foliows from (9) of [16] and by Theorem 2.1 of [16]
(X,0) is a stationary point of (17). By Theorem 1, (x,u) is a KKT
point of (14). When C is positive semidefinite x 1is a global minimum

solution of (14) by the sufficiency of the KKT conditions [15]. 0

We note that Theorem 7 does not ensure the existence of an
accumulation (x,u) of the sequence {(xi,ui)} of Algorithm 2. To
ensure that at least one accumulation point exists we need to impose
some sort of qualification similar to that of Theorem 2.2 of [16] which
will ensure the boundedness of the iterates {(xi,ui)} of Algorithm 2.

In particular we have the following.

Theorem 8 (Boundedness of the iterates of the SOR Algorithm 2)

Let C be positive definite with minimum eigenvalue p>0, let y?>% and
Tet either (i) A have linearly independent columns and there exists an R satis-
fying the constraint qualification AX<b or (ii) let A have linearly indepen-
dent rows. Then the sequence {(xi,ui)}, i=1,2,...., generated by the SOR Algo-
rithm 2 is bounded and 1im xi =X, where X is the unique global solution of (14).

>0

Proof

By Theorem 6 the constant Hessian V2¢(x,u,y) defined by (20) is

negative semidefinite. We shall assume that the sequence {(x1,u1)}
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generated by Algorithm 2 is unbounded and exhibit a contradiction. With-

out loss of generality suppose that ll(xi,u1)H # 0 and {l|xi,uiH}-+W.

q (I-yC)d
Define z:= (ﬁ), M:= V2¢(x,u,y) and q:= T s . Then
9 -b-vAd
o(x,u,v) = o(z,v) = JZ-ZTMZ +qz

1t follows from (22) and Algorithm 2 for i=1,2,...., that u' >0 and

v

. I .
0(2%y) _elzly) 12 M, 1 T 2

BB BT TR

i
Z

[l

-+

By the Bolzano-Weierstrass Theorem we get that has an

accumulation point y on the unit sphere in satisfying O <-lyTMy

and y = (é) with X<R" and GeRT. Since M is negative semidefinite
it follows that yTMy = 0 and hence My = 0. Since we also have that

T

0 . T . .
oz ) ( o(z'sy) . 1 A AN LRI
T = ] 1) =
(Ean] Iz"ll (2| I (| | EA
it follows that 0 é:qu. We thus have
. T- I
My =0,qy>0,0#y=(5),ux0 (23)

or equivalently
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C(1-yC)  (I-yC)AT| _
(£) = 0, % + qpi 2 0, @2 0, (X,0) # 0 (24)
A(I-vC)  —ymAT

From the generalized Gordan theorem of the alternative [19] (24) is

equivalent to either

the rows of [C(I-yC) (I—yC)AT] are Tinearly dependent (25)

or
C(I-yC)v + (I-yC)ATw = (I-yC)d

A(T-yC)v - yAA W > - b ~yAd (26)

. . +
has no solution (v,w) in RN

Because vy > %- it follows that I - yC is negative definite and that
C(I-yC) is nonsingular which contradicts (25). We will show now that
(26) also leads to a contradiction. By hypothesis we have that AX < b
for the case when the columns of A are linearly independent and

consequently there exists a w satisfying

T

A'lw = d + CX
and hence
A% = ACT!(ATw-d) < b
that is
acld - acTTATw + b > 0.

For the case when the rows of A are linearly independent the last inequal-

ity also holds for some w because AC']AT is nonsingular. Consequently

ac 1 ((1-yC)d - (I-yC)ATw) - yAATw > - b - yAd
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By defining

v = (1-v¢) Te N ((1-yC)d - (1-vC)ATw)

we-get

C(I-yC)v+ (I-yC)ATw= (I-yC)d

A(T-yC)v - vAATw > = b - yAd

These last two relations contradict (26). Consequently the sequence
{(x",u’)} is bounded and must have at Teast one accumulation point. For
each accumulation point (X,i), X must equal the unique solution Xx of

(14). Since {xi} is also bounded it must converge to x [2]. 0

At this time we do not have any computational experience for the SOR
Algorithm 2 for solving the general quadratic programming problem (14).
However, for the case when matrix C = ¢l where ¢ 1is a positive number

and vy = %3 the penalty problem (18) becomes

Maximize - %ﬂ]ATu+dH2-ebTu (27)

ueRM
u>0

This is precisely the dual of the quadratic program perturbation of [17]

associated with the Tinear program

Minimize d'x  subject to Ax < b (28)
xeRN
and which was solved quite successfully by the SOR method proposed here.
Thus for at least this special class of quadratic programs computational
experience is very encouraging. It is hoped that this experience will

carry over to the more general case.
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