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Abstract

A dual-mode algorithm for routing an unmanned autono-

mous roving vehicle designed to explore the uncertain

terrain of other planets is presented. The algorithm consists

of a global mode, which uses dynamic programming and

terrain information available from photo reconnaissance

data to determine a nominal optimal path, and a local mode,

which routes the vehicle around obstacles whose presence,

location, and extent are not known in advance. Gaussian

probability density functions are used to simulate terrain

for examples that illustrate the performance of the al-

gorithm.
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Plans for future space missions in the Mars explora-
tion series include an unmanned roving vehicle designed
to explore the Martian surface and transmit television
pictures and other scientific data to earth. Because of the
long transit times required for transmission of television
information from Mars to earth, it is not feasible for an
earth-based operator to control the vehicle from obser-
vations obtained by monitoring a television picture of
the terrain; therefore, the vehicle is to be controlled by
a computer having a limited weight and limited memory
capacity, that is, either on board or in an orbiting satel-
lite. This paper presents a routing algorithm consisting
of a local and a global mode that has been proposed
for providing heading commands to the roving vehicle.
The local mode of the algorithm utilizes only informa-

tion available from the vehicle's sensors to determine a
path from a specified starting point to a designated
terminal point. This mode provides a means of circum-
navigating hazards of arbitrary size and shape. The
primary limitation of the local mode is its inability to
utilize terrain information which will be available from
a previous Mars orbiter mission. As a result, using the
local mode alone will determine a path from point to
point, but this path may be far from desirable in terms of
distance traveled, energy expended, or some other
measure of system performance. To alleviate this diffi-
culty, a global mode is employed to determine a nominal
optimal path from gross terrain information available
from a previous Mars orbiter mission. In the dual-mode
strategy the vehicle follows the precomputed nominal
optimal path as long as no hazards are detected by on-
board sensors; detection ofan obstacle initiates a transfer
to the local mode which finds a path around the obstacle
to another point on the nominal optimal path where the
global mode resumes control.

The Local Mode

The description of the local mode of the path-finding
algorithm requires the following definitions.

1) Acceptable Point: An acceptable point is defined as

a point (X, Y) in a two-dimensional Euclidean space (E2)
such that IF(X, Y)j < E, where F(X, Y) is a continuous
function that describes the elevation of the terrain and E
is the elevation limit.

2) Path: A path is defined as a route that connects two

points (Xi, Y1) and (Xl, Y.) such that the elevation of every
point of the route satisfies IF(X, Y)j < E.

3) Obstacle. An obstacle is defined as a finite bounded
region in the domain of the elevation function F where
the magnitude ofF is greater than E, i.e., IF(X, Y)I > E.

4) Target Distance Sequence: Let (X0, Y,) and (Xn, Yn)
be the coordinates of the initial point P0 and target point
Pn, respectively. The target distance sequence generated
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Fig. 1. Path from local mode only.

by moving toward the target point is {d1, d2, , d,}
= {dk} where the kth member of the sequence is defined as

dk = [(Xn - Xk-l) + (1n - k 1)2]2 (1)

An obvious property that follows from 4) is that, if there
exists a path from the starting point to the target point,
then there exists a subsequence {dkJ} of {dk} that is
monotonically decreasing, and the last term of the
sequence is dn<e, where e is an arbitrary constant. The
local mode of the path-finding algorithm is based on
two propositions whose proof can be found in [1].

Proposition 1: If there exists a path from the point
P0 to the point Pn, and there are no obstacles between
these two points, then the path can be found.

Proposition 2: If a path exists from the point P0
to the point Pn, and there exists at least one obstacle
between the two points, then following either the right
or left contour of the obstacle and always heading toward
the target point Pn will result in determining a path POjn.
Local Mode Algorithm

Step 0: Compute dm=[(Xn-Xn)2+( nYj)2]2.
Step 1: From PO go directly to Pn if there are no ob-

stacles between the starting point and the target point.
Every point generated in this case is an acceptable point,
and every di generated is such that di< di for j>i, where

di= [(Xn Xn..)2 + ( in- 1)2]2 (2)
with

Xi = Xi-1 + R cosOj, K = Y-1 + R sinOi,

Oi = tan Y - Yi1

where R is the scanning range. However, if there is an

Fig. 2. Gaussian terrain.

obstacle encountered at point Pk with coordinates
(Xk, Yk), replace dm by dk, and go to Step 2.

Step 2: At point Pk, scan alternately right then left at
appropriate increments in the angle 0 until an acceptable
point is found. Let Pk,+ be the acceptable point. If dkI 1
<dk, replace dm by dk+l, Pk bypk+1,± and return to Step 1.
If dk~l dk, go to Step 3.

Step 3: Determine whether the point Pk+, was the
result of scanning right or scanning left. If Pk+ 1 was the
result of the right scanning process, stay on the right
contour of the obstacle. Similarly, if Pk+ 1 was determined
from the left scanning process, stay on the left contour
of the obstacle. In either case, the right or left contour
is followed until an acceptable point Pq (Xq, Y.) that
satisfies the relationship dm > dq is found. Once this rela-
tionship has been satisfied, replace dm by dq, Pq -1 by
Pq, and return to Step 1. The process is repeated until
Pn is reached.

Local Mode Example
The local mode algorithm was coded in FORTRAN IV as

implemented in the IBM 7090/94 IBJOB system. An
example of a route generated by the local mode program
is shown in Fig. 1. The terrain function used for the simu-
lation is the summation of several Gaussian functions-
this provides the elevation contours shown in Fig. 2.
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Because the local mode uses only local terrain informa-
tion, the determined path may be far from desirable in
terms of distance traveled, energy expended, or some
other measure of system performance. Furthermore,
gross terrain information will normally be available from
orbital reconnaissance missions before the landing of a
planetary roving vehicle. Therefore, the global mode was
introduced to overcome the above limitations and to take
advantage of the orbital reconnaissance information.

The Global Mode

Let (Xi, Yi), i= 1, 2, , N, be the coordinates of a set of
N points (or nodes) in two-dimensional Euclidean space
(E2). Let the cost of moving from the point Pk with co-
ordinates (Xk, Yk) to the point Pj with coordinates
(Xj, Yj) along the straight line joining these two points be
denoted by tkj. Assume that reconnaissance data from
previous Mars orbiter mission has been used to select
this grid of N points, and that the values of tkj corre-
sponding to these grid points have been calculated and
stored in a matrix T whose elements have the properties

k>0 if k j
=kjt0 if k = j

k,j= 1, ,N.

The problem is to find a sequence of nodes to be tra-
versed in moving from an initial point Pk to any other
specified grid point Pi so that the minimum cost is
incurred; such a path will be called an "optimal path"
from Pk to Pj. From the principle of optimality [2] the
functional recurrence equation

Ckj = min {tki + Cij},
i~k

k,j= 1,2<,,N

is obtained. Ckj the kjth entry of the cost matrix C is,
by definition, the minimum cost of going from point Pk
to point Pj via any number of intermediate points.
Clearly, the number of intermediate points cannot exceed
(N -2) since this implies that at least one loop exists,
and eliminating such a loop reduces the cost. The initial
condition for (4) is

Ckk =: 0, k = 1, 2, ,N.
To solve (4) directly is a difficult task because the

quantities to be determined (the c's) appear on both sides
of the equation; however, one way to obtain a solution is
to use Picard's method of successive approximations;
that is,

CJ ) = min {tki + C(JI
i~k

k,j-1,2,-.,N

with the initial values

C) = tkj k,j = 1,2,, ",N. (6)

These successive approximations have the following
physical interpretation:

1) c(7) is the minimum cost to go from node Pkto node
Pj directly, i.e., via no intermediate nodes.

2) The minimum cost to go from node Pk to node Pj
via at most one intermediate node is

() = mn {tki CiJ}

i~k

= min {tki + ti}.
i~k

3) The minimum cost to go from Pk to Pj via at most
(1+ 1) intermediate nodes is

Ck) = mmn {tki + Cj}.

itk

To solve for ckj5 1) tki, iok, i= 1, 2, N (the kth row
of the matrix T) and c), i Oj, i= 1, 2, N (thejth column
of the C(') matrix) are required. The solution is found
simply by comparing the values of tki + cil? for i= 1, 2, ,

N, iA#k, to find the minimizing value of i and the cor-
responding minimum cost.
The solution is carried out by first setting C0)=T,

that is, Co)= tkj, k, j= 1, 2, , N. Using C0), C(1) can be
generated from (4).
The iterative process continues until C('+1) C("); this

must occur in at most (N -2) iterations because the
optimal path can contain at most (N -2) intermediate
nodes. In addition to determining the minimum costs to
move from point to point, the algorithm also generates
information which is sufficient to determine the sequence
of nodes on an optimal path [3 ].
To use the algorithm, a grid of points must be selected,

and the costs of traveling directly between any two points
must be determined. Factors which may influence the
number and placement of grid points are:

1) the resolution of reconnaissance data which is
available,

2) the observed topographical features of the terrain,
3) the range of vehicle sensors, and
4) the amount of computer storage available.

Computer storage availability should not be critical since

it is envisioned that the computations will be performed
on earth, and relevant information concerning optimal
routes relayed to the vehicle through a command link.

Several possible selections for the elements of the cost

function matrix T were considered:

1) two-dimensional Euclidean distance,
2) three-dimensional Euclidean distance,
3) elapsed time,
4) energy expended, and
5) various statistical estimates of the cost functions 1)

through 4).

The solution of (4) is carried out in the same manner

regardless of the particular choice of T (assuming, of
course, that the properties of T given in (3) are satisfied).
As an example, reconsider the terrain configuration
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Fig. 4. Actual path.

TABLE

Characteristic Features of the Local and Global Modes

Local Mode Global Mode

Merit Requires no a priori terrain Determines an optimal path
information to negotiate from available terrain in-
obstacles formation

Limitation May determine a devious No capability of avoiding
and costly route when con- obstacles whose presence is
fronted by large obstacles not indicated in the terrain

information

shown in Fig. 3. If it is desired to travel from point 36
(-5.0, 1.25) to point 13 (5.0,2.5) via the path having mini-
mum length in the X-Y plane, it is found that the nodes
to be traversed are 36-46-24-43-41-13. The total distance
traveled along this optimal path is 12.0 units, compared
with the path length of 17.9 found previously using the
local mode. The optimal path is shown in Fig. 3.

Dual-Mode Operation

The motivation for complementary use of these two
algorithms is made apparent by Table I in which the
characteristics of the two modes are summarized.
The global mode uses available terrain data to deter-

mine the sequence of nodes which defines an optimal
path between two specified grid points. This optimal path
is called the "nominal path" because obstacles which are
not detected from the terrain data may require the roving
vehicle to deviate from the optimal path. The vehicle
follows the nominal path as long as no obstacles are

detected by on-board sensors; when an obstacle is
detected, an intermediate target point, which lies on the

nominal path beyond the obstacle, is selected and the
local mode is used to circumnavigate the obstacle. Upon
arriving at the intermediate target point, the vehicle
resumes its journey along the nominal path. By combin-
ing the local mode's capability of negotiating obstacles
with the global mode's capability of determining optimal
paths, an efficient and feasible routing procedure is
obtained.
To illustrate the dual-mode operation, consider the

terrain configuration shown in Fig. 4. Notice that the
topography is identical with that of Fig. 3 except that an
obstacle appears on the nominal path. This obstacle
would not be accounted for in the global mode, because
its presence would not be known. The vehicle proceeds
along the nominal path until reaching point a where a
"long wall" is encountered. An intermediate target point
b is selected, and the local mode routes the vehicle around
the wall. At point b the vehicle resumes its journey along
the nominal path.

Notice that before reaching point d the vehicle departs
from the nominal path and moves directly to point e.

This is in response to an additional feature of the dual-

KIRK AND LIM: ROUTING ALGORITHM FOR AUTONOMOUS ROVING VEHICLE 293

Fig. 3. Optimal path.
x

STARTII
Pol r



mode algorithm in which the grid points on the nominal
optimal path are regarded as secondary target points.
Whenever a secondary target is within sensor range, and
there is an unobstructed straight-line path from the cur-
rent location to this secondary target, the vehicle follows
this path. As shown in Fig. 4, this feature reduces the
effect of grid coarseness.

Conclusion
A dual-mode routing strategy which utilizes available

terrain information to determine a nominal optimal
path, and negotiates obstacles using only on-board
sensor information has been proposed and illustrated.
Further investigation is required to ascertain the feasi-

bility of using statistical measure of cost, perhaps in con-
junction with pattern recognition techniques, to cause
avoidance of terrain areas with a high incidence of
obstacles. It also may be beneficial to consider making
the global mode adaptive by using cost information de-
rived from actual Martian explorations to revise the
entries in the cost matrix T.
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