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I' • A DUAL OPTIMIZ,ATIQN F~At1EWP~K FqR SQME PRQ~LEM$
~1 

OF INFORMATION THEORY ~ND STATfpllGS 

.. 

!n his ·,'Mathematical Foundations of Statistical Mechanics ll 

Khinchin 1 introduced the notion of conjugate function a~ the solution 

to. the maximization of relative entropy subject to a slngte constraint 

on the mean of the dls~ribution sought. In their developments of 

in format ion theoret ic methods. in ma'themat i c~ 1 ,s tat is tics, Ku 11 back and 

Leibler2 made a basis for treating problems of statistical estimation and 

hypothesJ~ testing which was exten~ivefy developed in the monograph of 

Kullback 'iinformation Theory and Statisticsll3 More recently, Akaike• 

In his paper IIlnformation·Theo,ry and an E?<t.ens'ion of the Maximum Likeli· 

hood Principlell has 'elnphasized the great breadth and depth of these' 

information theoret~c metho~s by indicating their app]icatlQn to many 

classes of atatlstical problems, and also including the representation- pf 

the maximum 1ikel ihood priJ:1ciple as asymptottt:', for large .sample"",to the 
" 

,..decision t~eoretic approach of '~rf(ormaHon the0ry. Again., more recent 

work In i-rreversible .statistical mechani'cs by. B.O. KooPIlJan4 has emphasized' 

the importance and analytic ~onvenience of a constrained e~tropy (or in

formation) approach in deducing important ,statistical mechanics phenomena 

with a.minlmum of ad hoa hypothesis. 

Inan of .th is work the ext remi zat Ion prob 1em has been solved 

explicitly only (as in Khinc~lnls case) for ~ single linear equality' 

constraint in non-negative variables. Not un~il the work of Charnes and 

• .. 
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Cooper5 t.6', has the fact been brought out that dual convex pr.ogramming 

p'roblems are involved, and that the dual of th'e ,constraioed entropy probleUl 

is' in terms of exponential a,:,.p li'near functions in unconstrained variables. 

The work of Charnes and Cooper, while,·tying in the method to other problel)1s 

of traffic.engineerin~ and econ9mi~s,a? well ~as providing a complete 

characterization of the dua.lity s'tates, has encompassed exp'licitly only 

the case qf finite ~iscret~ ~istributions (mea~ures). 

It is the pu r.pose of th i s pape r to extend' these r~?u 1~s and deve top 

a dua 1 opt i m,i zat i on f.ramework that can a'dequate~y hand 1e tlie~e classes of 

problems ,of i~formati9n theory ahd statistics. Ih particular we have 

developed a ~omplete duality theori for the case of general as well as 

finiti measures. 

Although our pri~al problem is an· infjnite di,mensional one (with fini
~,~ ~........_

tely many constraints), .tAe'?<fu·~l p'roblem is a finite dimensional one, without 

constraint and involving ol1ly 'exponeneial and linear terms. As we sh'bw 

elsewhere, such a dual optimizat~~n framework wi~h convenient analy~ical 

functions in an' unco[1strained d'ual seemS. to be'a unique property of the 

information theoretic functional.' 

The paper is c~nveniently s4mmari2ed by tQe titles of its sections 

as follows: 

... 
.f.~ 
1. A formal 'statement of the prolJlem. 

~!~ 

/' 2 •. Some -preliminaries from Convex Analysis. 

3. Linearly constrained' convex programs and t~ei r puaJs'. 

4. ConJugates and supgradient of inte.graf functionals. 

5. A complete;dualigy theory for pfoblem (A)., 

6. The case of probability measO~es. 

7. Genera 1i zat i=ons. 

J:. i 

-.--;::-5-'_5. 
s'''eM at be bat'" ; s "t" 
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1. A FORMAL STATEMENr OF THE PR~BLEM 

Let T be an arbitrary set, F the a-field of Barel subsets of T, 

dt a non7negative regular Borel measure (r~m) on T ~nd M{T) the linear 

space of rea1-v.a1ued finlt~~ r~~s on T. For an element ~ € M{T) we shall 

denote by ~~ Its Radon-Nikodyn derivative. 

For a given summab1~:posltive function c: T + R; continuous f~nctions 

F.: T + R '(i. 1, ... ,m) and real sc~lar~ 6.{i = 1, ... ,m) we seek to solve 
I	 I 

the following pr~blem 

tAl 
inf	 Ju{t)log[ ~~~~ ]dt 

T 

subJect to 

(1)	 I u{t)Fj{t)dt = 6i,. i· 1, .•. ,m.
 
·r
 

(2) \l. ~ M(:r) 

(3)	 ~ non-negative and abso'lute1y ~bnfinuous 
(with respect to dt) . 

•' r 

Consider the ltnear operatqr A: M{T) ,+ Rm given by' 

/ 

jJ -.~ 

and the integral functional 

• 

< • 7n ri 
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. u(itl·og[- ~~~~ ] dt if ~ is an absolutely 
"JT . co~ti~~ous non-negative rBm 

~nd u • _".. ,dl1'
dt _ 

.,f 

." 
otherwl sa. 

Then Proble~ (A) can be written as 

(p) in f{ J (~): A~ = a , ~ E S} 

where a • (a
1

, ••• ,am) T and S". domJ ~{~ : .J(~)<a;} 

'" It will be shown later (Secti'on 5) that- J is a conve~ functloJ'lal, 'and 

so (p) is a Zi,neai'Zy aons:t.rained aorvex optimifJat.ion problem. In Section 3 
... 

we study such programs, and Introduce a duality theory for them. Before 

doing so we collect In the next s~ction certain material from Convex 

Ana I ys i s needed 'i n ,the sequel., 

." 
Throughout the paper we as~ume that th~ linear system A~ - a is 

irre'duaibZe, i.e. 
.,:,. 

RmRange A • • 

In the fil'1Jte dimenslQnal case' (A is an mxn matrix) this assumption means 

that A is of full row rank so that,none _of its m. equat Ions 

(,i • l', ... ,m') tA i the i-th row of A) is redundant. Hence the termin

ology IIi rreduciblell
'. 

* 

-, 

_ ....iI' [& 

a - ~.- ::~ • eft .....c tioe cn 
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2. SOME PRELIM'INARIES FROM CONVEX ANALYSIS 

Let E and E* be real spaces, and ,<,>' a bilinear function 

* * * defined ~n pairs (x,x ), x E E ~. E E • Let' E .and E*. be< equipped 

with local,ly convex Hausdorff topologies, compatible wi th the bi 1inear 
~. 

form_ sa that every element of one space can be identified with a con

tinuous linear functional on the other. In this case E and E* are' 

called paiPed spaces and <,> is th~ pairing. iFor more information 

see [ 7, Chap.te~ IV]. 
" 

Afunction f:.E -+ R is aonve:c If for every x1 ,x E E and 0.< A < 12 

f(AX + (l-A)y) ~~f(x) + (l-A)f(y), 

f is pr-oper- if ,n' is. bounded be'low and Iii s not ide,:! t i ca 11 y +00. 

If, fpr all x, 

f(x) - lim inf f(z)
 
z-+x
 

then f is ZOlJer- semi-aontinuous ( 1. s •c) • 

,The funttion f*·. E* -+ R given by 

* *. -* ' " f (k ) - supb:x,x > .... 'f\~n
 
x'
 

is called the (conve~) aonjugate of f. This is always a los.c. convex 

funct ion. Conversely if f is a l.s.c. proper convex function then 

i . e. 

f - l* 

L , ., s::w:n . rtf eM , " 
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A vector x* € E* is a subgradient ofa convex function f at x if 

(4) f(z) ~ f(x) + -::Z-X,X*> for a 1·1 z € E. 

The se~off all suqgradients of f at x is denoted by af(x). If f is 

fin,ite and differentiable at f, with fl(X)~ aenQtlng Its (frechet)' derivative, 
then, 

A fU,nction 

of such function 

gis aonaave 

is definea by 

if -:.g is convex. 1he (concave)' 'conjugate 

t 

.. 
g*I,Y*)) 6 * • inf{<y ,Y> 

Y 
~ ( ) 9 Y }. 

3. LI~EARLY CONSTRAI~ED CONVEX PROGRAMS AND THEIR DUALS' 

~et E and F be ~eal vector spaces 4 A: E + F 

h: E + R a' convex fun~tion with dom h K, Sand g: 

function with dom 9 • B. 

a linear operator, 

F + R a concave 

Consider the primal problem 

(1) jnf{h(x) - g(Ax): xES, Ax € B}. 

" ... 

The FenaheZ-RoakaieZZar duaZity theoPy [8'l associates with (I) 

the dual problem 

( I I ) * * * * * * *.* .* * sup{g (x ) - h (A x ): x € B , A x .€ S } 

* * * * *where A: F + E is the adjoint of A, E, and F are the spaces paired 

/ 

-tiS- r r&t C en be. '" tit ...... .5'-- t··, ') &tttr"c't·{ .etr 
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wi th "E and R (with the pairing <-'->E'
 

9* are the "convex (resp. concave) conjugates of hand g, i.e.
 

h*(~)	 ( ) = SUP{~x'->r - h ~ : x € 5}
 

9*(.,) s- in f{ <y , - >F - 9 (x): 'I E: B}.
 

The main restflt-concernfng ("1) and (II), ~s that if the supel"-' 

consistency assumption holds. i.e. 

(5) 3.x·E.5 ~u~h that Ax ~ iht B 

then	 inf (1) = max (I I) • Duatly if 

* * **. *( 5') 3 x € 5 such tnat A x € int B 

Then 

t
mine,) • -sup(ll) 

Furthermore, whenever min(l) • max(LI), a pai~ )(' x * sol ve~ ( I ) and (I I )
 

respectively if and only if (see [8], p.18S).
 

(6" , x € ah*( * A x *) , Ax- € ag*( x*) •
 

. It .shourd be mentioned that in the absence of assumption (5) ~ (51) 

or simi lar assumption, one sti 1.1 has the so called weak duaUty relation: 

*h , 

t We wr i te ..min .. ("max"') if
.' 

the infinum (supremum). is attained. 

art" - 5	 ''1' irE' 
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~ere we cOAslCler the followlng,specla1 case 'Of'"(!').: 

(p)	 Inf{h(x}: Ax· b, x, € S}
 

and we further assume:
 

~ 

(I) E is a Ban~ch space J F, is a Hilbert space (wi th inner product < ,>) , 

(I i ) i nt S .;. <~ 

(III)	 [J'irr.educibi1Ity assump,tion ll 
] Range A,- F. 

Note that (P}.corresponds to (I)' wi th B = (b} and 

'g (. ~ • 0 (·1 B) ~ th¢ Inefl cator f..ul)ct i on of. B,. 
! .. 

Thi,s	 Imp 11 es : ;}'/

'.	 / 

..	 .*g* (x*) • <b,x > B'* •. F ,*
 

therefore,the dual of (p) Is
 

.	 * * ** ** '* ( D) sup{<b ,x >: -·h (Ax )': A ~ € ,S }. 

Unfortunately, 'the super.consi"stency,'assumptio,n' J5) does not hord 

here ~ince 'Int B • 0. However, we shall rnqke use of a less familiar 

re~ular.ity cOndition ([9], p.50), whl~.h· for -the pair (P)-(O)' reduces to 

( 7) o € core(A(S} - b}., 
." 

This condition. also impl ies, that inf(-P), = max(O). We -recaLl that for a 

subset Q c F 

If Q is ~ convex set wi~h nonempty interior
 

core Q'. in t Q.. "
 

\ 

c	 ,," .0.1 111 ( 
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3. 

The fol,lowing lerrvna shows that the irreducib'il(ty"assumption is 

ess~ntial for the v.aiidity 9f (71. 

Lemma 10 'Regul?lrJ~y condit"ion' (7} holds only i'f ass'umption (iii) l101ds. 

'. 
." 

Proof. Suppose that (7.) :~o Ids, then 

" 

(a) 3x € S ~ Ax = b 
. " 

, 
(b)' Vv € F, 3e: ;> 0 such that, for: eve r'l )..€ [ "e: , e:l , 3x € ' ,S s-atisfyin~ 

Ax+ )..v ... b. 

Since F is ~ Hilb~rt space 

. *
 (8) F • ~ange A + ~(A,) ') 

Let x be a solyttOl1 of Ax; + ·)..v :III, b for' ~qme ,given ).. > O' (such x 

exists ~y (b)). Now 

~ - .....*- ~ 
O~;~<v,v>'''' <v,b-Ax>·. <v.,b>"'<Av,x>· O:by (9) ~nd (10),.

: ~. . 

Th i s contradiction shows that (i ii) ·'must hold whenever (.7) is va 1i d. o 
i. •• ; 

The regu.Jarity condition (7) is not easyt.q check, therefore we 

'introduce in the following-lemm~ a much simple'r one. 

'. / ..... 
. ' 

. p,-",~ » 
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Lemma" 2. 

Imp ned by 

If 

the 

(p) 
/ 

satisfies (I) (Ii) and (iir), then condition 

fo llowi n9 stl?'iat teas 1biUty assumpt i on: 

(7) is 

( 11.) 3x € intS sa,t is fy I n9: ,AX''' b. 

P<roof. 

intS .f. fI, 

Let 

intS 

,. 
sat I sfy (11) • x Note tha't, since S is 

Now 
,. 

= coreS. .J( .€ coreS if and only if 

convex and 

x + Xx € S for all x and a·H A € [-:e: e:] for some e: > O. 

In particular 

x ~ x+ AX(v) € S 

where ,xCv) is a. ~olutionof 

Ax .. v. 

(That. such 

Further 

a solution exists ,follows fro!!t the ft"r~duclbll Ity assump·tton.) 

b-.A,-X .. b r J\(x + AX(v» .. b - Ax + ·AAx'(.v) '.. 0 + Av.
 

The. 1atte r ·shows that. for 'every Y € F, ther~ '~xlst x sat Is fy 1ng
 

Ax + A'v: ~ b 

'f •e. 

o € core(A(S~-b). 
o 

We will summarize the results concerning the 1i.neqrly constrained 

problem (p) and Its d,ual (D) In the-following' 

';	 
Theorem tons I de r p rob 1em (p) atld ,assurrie that< ( i), (i I) and' (i I J) 

are satisfied. (1) If the strict feasfblll;.ty hypothesis (q) holds then 

) 
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tnf (p) -·max (0). 

(2)" Whenever min (p) • max, ([jh a necessar,y' and 'sufficlent conditions 

for \9 pai r: x€ :s x'* E S * to solve (p) and (0), respectively, 'areo .o ' 
Ax 8'b and' o
 

*( « *)
x € ah' A xo . 0 

Proof~, Condition (11) Imp)!es (7), by LemmJ:l 2., ,and the latter implies 

inf(P) • max(D) by the above cited result L.9 ~. 50]. The optlma(rtyt 

conditions (12) ar-e the ~pe.cial.17;atlo~ of (6) to pur special case. 

Jndeed; for g(-) - o(·HbJ) we have 'g:(--) • <b,-? so that* 
.
'. 

- o 

--~ 

4. CON JUGATES·AN O.SU BGRAD I EN'FS Of IN"(EGRAL FUNCTI ONALS· 
I' 

The duality theory presented in" the preViOlJs._sectl~!:l Is statetl ferm 
~';.,~ . 

of the ~"OnJugate 'function of the objective 'funcdon. arrd Hs s'ubgradient 

In Probl~m (A) however, the object.ive function ts.the integroZ functional 

J(lJ). The-r:efore, we .shan .co-llect In this section results' concerning the 

computa1:iol) of J* and, aj(-L For more deta'ils the ,reader-Is referred 

to ['0] and J 11] • 

Let C(T) be the VE!cto'r space of cont Inuous fUl1ct'lons x: T -+.R with 

the nqrm 

.-II xII • 'maxnx(t) I: t E. T}. 

t. 
We. recall that the space M(r)' of Section Is the dual of C(T). Further 

5 '.a"r' " '" $" t .. " . K ~ g 7III 
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'let f:. T .x R -+ R be a function' satisfying-

Ca) 'v't E T, f (t,·) .i s 1:. s. c. prop~r conv~ funct ion'. 

(b)	 f(t ,x) is measurqb1e in t for' all x E: R and the {norempty convex) 

set 

has	 a nonemp ty inJe r'i o'r. 

(c)	 D(t} is fuZZy Z.8.a. (see {l.O,p.457] tni~ condition holds e.g. when 

D(t) does not depend on t. The Jatt~r -is· enough for our purposes). 

D~f'ine the fntegral functional on C(T):
.-" 

J 

i f (.x~	 ~ IT f (t ,x).dt. 

'The	 conjugate of If is then, by qefini~ion 

*. JI (llt;:l. su~· { 
.T 

The	 fol10~Lng result follows di rectJy from [10]: We remark that 
•.'l 

conclitions (a) and (b) above imply that f(t~x)- Is, so-called, normaZ 

inf;egPant • 

../	 
Lemma 3 Iff(t ,x) .l·s a summab 1e funct ion, for- ev.e r,-y ~ E R, and 

satisfies (a)-, -(I?) and (c) the.n· 

(A)	 If is'we),l-defined, fJn'ite." contin.uQus and conv~x functlon·on cCr); 

..(~), the conjugate of ~I f is the function I.:* tot(T} -+ R ~iven by: 
"'..; .!'~ ... ')......~ "~ 

'." 

'f*«t, _ddllt')' "f is')II.	 ... abso utely continuous with respectJ.' . r. ,~ ~odt 
.' 

otherwise, 
, . 

where f*(t ,x*) is ,the. .(:onj ugate of f (~ ,.) ev.a 1uated at x*• o 

• 3ct rt"'- '" en·. t-- t C" S d<' iet	 dt 
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Next~ one can derr~e from '[l~, Cor. 4B1, the followIng formula 

for comp4~ing th~,subgradient of . If 0 

Lerrma If Under the assumption of Lemma 
,

3, 'and 
" 

the following additional 
" 

assumption 

(d)	 , {f(t,u(t)· +. x) is s!Jmmable for all x insome.neighbourhood 
of zero t 

i~. follows that p E 'plf~.u) if and only 'if alJl10St everywhere (a.e.) 

(14) dlJ 'E H(t"u-(t)) almost everywhere (a.e)
dt 

Here af(t,u) is tlie subgradient of f(t,e) at u., o 

5.. A COMPLE"rE. DUALI TY THEORY FOR, PROBLEM (A) 

We ,retu'rn to the setting des.cribed in ,Section I. 

Consider the inte,gral funcHonal .': C(T) -+' R, 
,.-' 

The integrand f(t,x~ .. ch)x(t)-l cle~rJy satisfies assl,.lmptions (a), (b) 

and·{;d) of Se'ction -z.. lReca.IJ that c(t)is sU!TI.l11able' and positive.) 

'The conjugate 'Of f(t,·) is 'by 'definition 

*(* '*. ' x-lf t,~) =~UR ~xx - c(t)e }.
 
xER
 

" 

The s~p can be easily computed by ~quatiqn the'derivative of the suprimand 

to zero, so One obtai.n~ 

,. .
 

• • tt	 1'"'" r 7" rl '" ~'. •	 • 
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if x '* ~ 0 

", 

f *(t,x.)* = 

00 othetWi se 

(we use the convenHon Olog 0 = 0). 

It fPJ lows fro{l1 J:emma. 3 that 
" 

(A) I·(x) is conti'nuous convex functional 

(B) 

The:last relation ~m~di.aJely impl)es (seeSeetlon. 2) that J is' a 

.l.s.c. co~ve>s flJnctional. /'toreover, r.n regard'of th~ continuity of 

*. **
( 15)· J (l1)'" L (u) = I(u~ 

( 16) doln J*' .. C(T) • 

We, "further note tHat the adjoint of the 1inear transformation A of 

* m ()SectioIT 1 is, the mappi~g A: ~ ~C1T 

* * T m * (x" ..• ,x} ~ ~}(:F.(t),. 
m' .,' I ',- . 

We 'have now pI 1 tWe elements reeded t~ specifX the dval problem 

of (A)., as described in Sect ion> 3. 'In fact, proo,lem (p) become~ here 

m * 
~x.F.(t}-l . ~f; I I .'m· ,

(B) sup { ~ * - J c (t ~ ~ J ~, ' df} , . x.e. 
• , , I 
I.... .J; 

r 
an unaonstrained finite di~ensiondZ concave pr.ogram. (The relation 

m.. A*'/ E $* is h~re ;*E R since, by (19), S~ = C(T), I.e. the whole"'space.) 

".
 

, ..; -
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" 

The relations between the primal problem (A) and tis dua'l '(8) are
 

eXRre~sed in the -following resu~ts.
 

Theorem 2 The supremum bf Problem (~) is attaihed only if
 

positive (a.e.) 'rBm l.!, whose derivative u • ~~
 
( 17} 

satisfies the linear equi3tions (1)..
 

Proof. Since (B) 'is an unconstrained pr9blem, its supremum is
 

-* -* attained ~say at x) only if ~ is a critical point of the supremand. 

-* I.e. x is a solution of 

e. 
I 

= I ,'" .. ,.,m 

." 
which, by the definition of"the mappi~g A, is nothi~g else but 

I 

All • e 

where ~ is the measure with 

Hence '(17) is satisfied by ~ c' ~ o 

Theorem 3. Problem (B) is bounded abc;ve'if and only if Problem 

has a fe~sible solution. 
J;.>f .....".iI1' 

Proof. The IIi fll part follows from"'the weak dual ity relation 

in~\A) ~ sup(B). We- proceed to prove· the ilohly ifll .par.t_ 

(A) 
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i 

f 
I 

Suppose tliat (A) has no feasible solution and cons.lder· the following, 
; 

msubset of R

K· {y € Rm: y =. A).l for some ).l € M(r)' satisfying (3) } • 

By our assump~ion then 

(19~ a E£ K. 

Since K Is a closed convex cone. It follows from (19) that exist 

a hyperplane. passing t~rough the origin. anq strictly separates e 

and K. I.e. 

. zly .e;;; '0 vy € K 
Z ~ 0 such that { 

zle > 0 

•• or 

_{ , Z 1 (A).l) .e;;; 0 V).l E M(r) satisfying (3) 

z Ie"> 0 

or 

* 'Satisfyi[lg (3)<A z. lJ>' .e;;; 0, .'
 
{
 

z 1'6 > 0 " 

Now 

and tbe latter In non~negative for every 

non-negative rB~ only if 

We conclude that 

(20') 3P ; z E Rm such that and Z,I e > o. 

3t ' 

Note that' Pr.oblem (8) 
-, 

is in fact 

o' 

• f 
.. " ..... 
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(2]) suP { >,<.le 
riI\ x€R 

Let z be the vector in (20), then, with 

x • Mz (M positive scalar), 

.the objective funct'lpn ,In (21) can be made arbitrary large by choosing 

MIa rge enough. o 

Theorem 4 If Problem (A) Is fea$lble then the Inflnlmu~ Is attained and 

-~ 

j'f Problem (A) ts strictly feasible, i.e. (17) 
..

Is ,satisfied. .th'en 
. ., 

min.(A) III max(il). ! 

Proof. Sln~e for Problem (A): S* ... C(:r) and B* = R'm I t fo 1·1 ows 

that condition (51) trlvlalfy hold" and hence the conclusion (22). 

Now, for Ptob'lem (A), the strict fe~sibll Ity assumption (11) reduces to 

(1·7) and so (23) follows from the fi rS,t conclusion In· THeorem 1 and (22).0 

The last result gives theoptlma]'ity conditions for the pair of dual 

Problems' (A) and, (B). 

m
Theorem 5. Let (A) be strlctfy feasible. Then IJ € M(T) and ;.* € R

are optimal solution pf (A) and (B), respectl"vely, If and only i f ~ 

satisfies (1), (2) ,.(3) and 

-* ~x. F. (t}-1 
(24) -d1J_s c{t}e I I (a.e. )dt, 

~ ....,;i,, ""' "'_'''( '''''' ___,- .-'-.>_""' 
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Proof. The optimality conditions expressed in the secoQd part of 

Theore!!l are here: (i) feasibility of. ~ .and ((0 
; ..! 

~	 J u(t)~1
Now t by (J 5~ J (u) ... I (u) eo cH)e dt· ~o that, by Lemma (4),t 

T . 
(25) ho 1d if and ,only if 

(26) 

wher::e f(~:u)· •.,c(t}eu~l whose subgrac;fi,eht s.imply coincide with its 

derivative; Hence (26) is equivq1.ent: to 

- *-* d\l	 '. (.) A x .:.1
dt .. c· t e 

w~ich is J~st (24). o 

6.	 T~E CASE OF PMBABJ LI'TV .MEASURES 

'IQ ··thi,s, sect·ion .we 'stud,y problem? of type (A) wi-th the addrtiona.1 

in· which case II becomes a probabi 1ity measure'. Of cdurse one can write 

r, ,and :der i ve ,the fo U owi n9 dua·l p rob lem: 

Ie 
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.. 
m *' 
~ x·. F. (t) + x* -1

<-' ,r-.l I m+L 
m * * J 

(28) sup { ~·x.a. + x ~ ::;.' .I c(,de. 1 I I m+,
17' :T 

an uncons~rained problem ~n R~l. However, one can derive the 

followin$! dual 

* m ' * . J' ~xi Fi (t)(8 I) sup { 1; x.a. - log Tc(t)e 'dt}.
• 1 I I1= 

an unaon8t~ained prch Zem in Jfl. To dert'\ie (B I ~ from (28), one merely 

maxi mi zes the object i ve funct Jon: in (28) wi th r.~sl'ect to x*+ for m 1
 
. (* *)
fixeq xl , ... ,x ' which can be done by equati,ng it,S ,derivative to zet:0. m 

The analytic solution ~h4S obtaine~ 

~'e 
' ,~x.*F•. (t}-.1
 

xm+l - -16g c (t) e ~"', d~
JT 

is then substituted again to (Z8) and the re~ult' is Indeed (8,1.). 

AJI the result of the pr~v,lou~,sectt~:>n .~an.be. appl.led to the 

present case'. If, in condition' (17)" we add the" requirement .that u 
t " 

s~~ I,s fTes .(27)., " then Theo re'tns ,2 ,3, anA. 4 rel1la i n, VIilH d',; In Tbeo rem 5 

the .opt Imali ty .cond It ion (24) has to be rep laced ,by 

"(a.e. ) 

...
 

.. .... 
t i! ri ;$" 
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7.	 GENERALIZATlElNS
 

The -reason .that 'the dua'l Prob lem (B) is unaon8tl'ained is that
 

'*, A' * S ... 'dom J",. C(T).
 

This ,in turn holds since
 

which	 in t~rn results from the fact that 
'f 

d '((29)	 ax f t,x) = R.
 

. x '
 
Here f waS the integral1d f(x,t~ • ~ log ettr
 
.These observations lead" to the followin~: 

.\
 

.p ropos i t'i on Cons i de r a .pr: i rna I prob ~er:n of the form' 

inf	 { I f(t.~ ~ )d~: \1 satis,fies (l), (2)., an,.d '(3)} 
'T 

d i fferen t rab Te
 

And as.sume that f is a norm!al 'convex inte!iJr::andt.q,iff~tentiable in X
 

/	 . 
for	 ,all t € T and, sat·isfyl"ng (29). Jhen Problem (30) ~as the following

//	 ., 
unco~strained 'dua] : 

/. 

r ..	 ,'t L* m '* . (31). 5 UP l. a x -	 f {t '. };. x. F• {t» dt } '. 
x*€R ffi	 

I I .i-' 
wher~ 

,* '	 * f. (t',y~ .. yr(t,x ) 

.\ 

j 

.,.
 

~ __	 ' ..ilis ";;",,.;-------- ...t......... ..... _
..... ....:.__......__.:;,-,-I.....	 ._· ~ta._ 5_.;..;
 l 
i 
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and where x -.r(t,x*) Is·a solution of the equation 

d * dx f(t,x) = ~ o 

, 
If f(x,t), 'satisfies condieion (a)-(d1 of Section (4) '> then result;s 

analogous to Theorems 4 and 5 are vafid Tor t~E. dual pair (30)-(31). 

It is al~o e~sy to see f~o~.the proof of Theo~em 3 that, if 

*. 
11m f (t,Y) < <Xl " 

y+-CD 
~. 

then Problem (31) is boun4'~above if and on~y if, ~rGblem (30) has a 

feas; ble 'Sol4t Ion.. 
\ 

We fi na 11 y remark tq~t~ the cons t r~ ints (1), 'can- be r~p 1aced, by 

the mor~ gen,eral C911.s.traJnt 

( 

~ .where b .is an eleQ1ent of an Hi"lbert spa·c~. ~th~ g,etier.aJ izatio(lof 

Theorems 2-5 to, this ca~e is straigh~for~ard; 

-, 

+
( . _ . 

sit 
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