
Citation: Zhang, J.; Cai, J. A

Dual-Population Genetic Algorithm

with Q-Learning for Multi-Objective

Distributed Hybrid Flow Shop

Scheduling Problem. Symmetry 2023,

15, 836. https://doi.org/10.3390/

sym15040836

Academic Editors: Chong Wang and

Zine El Abiddine Fellah

Received: 9 March 2023

Revised: 27 March 2023

Accepted: 28 March 2023

Published: 30 March 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

symmetryS S

Article

A Dual-Population Genetic Algorithm with Q-Learning
for Multi-Objective Distributed Hybrid Flow Shop
Scheduling Problem
Jidong Zhang 1 and Jingcao Cai 2,3,*

1 School of Mechanical Engineering, Anhui Institute of Information Technology, Wuhu 241000, China;
2014030@aiit.edu.cn

2 School of Mechanical Engineering, Anhui Polytechnic University, Wuhu 241000, China
3 Anhui Key Laboratory of Detection Technology and Energy Saving Devices, Anhui Polytechnic University,

Wuhu 241000, China
* Correspondence: caijingcao@foxmail.com

Abstract: In real-world production processes, the same enterprise often has multiple factories or one
factory has multiple production lines, and multiple objectives need to be considered in the production
process. A dual-population genetic algorithm with Q-learning is proposed to minimize the maximum
completion time and the number of tardy jobs for distributed hybrid flow shop scheduling problems,
which have some symmetries in machines. Multiple crossover and mutation operators are proposed,
and only one search strategy combination, including one crossover operator and one mutation
operator, is selected in each iteration. A population assessment method is provided to evaluate the
evolutionary state of the population at the initial state and after each iteration. Two populations adopt
different search strategies, in which the best search strategy is selected for the first population and the
search strategy of the second population is selected under the guidance of Q-learning. Experimental
results show that the dual-population genetic algorithm with Q-learning is competitive for solving
multi-objective distributed hybrid flow shop scheduling problems.

Keywords: genetic algorithm; Q-learning; distributed scheduling; hybrid flow shop; multi-objective
optimization

1. Introduction

The hybrid flow shop scheduling problem (HFSP) is a complex combinatorial op-
timization problem that has been extensively studied due to its practical relevance in a
wide range of manufacturing and production environments [1,2]. In HFSP, the produc-
tion process involves multiple stages or workstations, and each stage may have multiple
machines that can process different types of jobs. The problem is to determine the process-
ing sequence of jobs and the allocation of machines to each stage to minimize a specific
objective function [3].

The distributed shop scheduling problem (DSSP) is a complex optimization problem
that has gained significant attention in the literature due to its relevance to a wide range of
manufacturing and production environments [4–6]. In DSSP, there are multiple production
shops, each with its set of machines and jobs to be scheduled. The objective is to deter-
mine an optimal schedule for all the jobs and machines in the shops, subject to various
constraints, such as machine availability, processing times, and due dates. DSSP has been
studied extensively in the literature, and various algorithms have been proposed to solve
this problem. In recent years, there has been a growing interest in developing efficient
and effective algorithms to address DSSP with additional constraints such as uncertain
processing times [7], energy consumption [8], and the presence of multiple objectives [9].

The distributed hybrid flow shop scheduling problem (DHFSP) is an extension of
HFSP, which has attracted significant research attention due to its importance in production

Symmetry 2023, 15, 836. https://doi.org/10.3390/sym15040836 https://www.mdpi.com/journal/symmetry

https://doi.org/10.3390/sym15040836
https://doi.org/10.3390/sym15040836
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com
https://orcid.org/0000-0002-1440-9849
https://doi.org/10.3390/sym15040836
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com/article/10.3390/sym15040836?type=check_update&version=1

Symmetry 2023, 15, 836 2 of 15

environments [10–34]. The objective of DHFSP is to minimize the maximum completion
time for all production processes to enhance production efficiency. Several studies have
been conducted to address this problem using different approaches. Reference [26] pro-
posed a mixed-integer linear programming formulation and a self-tuning iterated greedy
(SIG) algorithm with an adaptive cocktail decoding mechanism to solve DHFSP with mul-
tiprocessor tasks. Reference [18] proposed a dynamic shuffled frog-leaping algorithm to
solve the same problem and provided a lower bound. References [32–34] developed a
hybrid brain storm optimization algorithm. References [10,16,22] designed many kinds
of artificial bee colony algorithms. Reference [11] proposed a bi-population cooperative
memetic algorithm. Reference [30] presented a novel shuffled frog-leaping algorithm
with reinforcement learning for DHFSP with assembly. Reference [29] formulated three
novel mixed-integer linear programming models and a constraint programming model
for DHFSP with sequence-dependent setup times. Reference [24] was the only one who
considered optimizing the minimization of the sum of earliness, tardiness, and delivery
costs in the single-objective optimization study of DHFSP. They proposed an adaptive
human-learning-based genetic algorithm. In summary, DHFSP is a significant problem in
production environments and several studies have been conducted to address it using dif-
ferent optimization techniques. These include mixed-integer linear programming, shuffled
frog-leaping algorithm, hybrid brain storm optimization algorithm, artificial bee colony
algorithm, and bi-population cooperative memetic algorithm, among others. The proposed
algorithms have shown promising results, but further research is needed to develop more
effective and efficient algorithms for more complex DHFSP variants.

2. Logical Scheme to DHFSP

Recent research has explored the use of Q-learning, a type of reinforcement learning,
in combination with intelligent optimization algorithms to improve algorithm
performance [35,36]. Reference [37] demonstrated the use of Q-learning to adjust key
parameters of a genetic algorithm, while Reference [38] used Q-learning to select a search
operator dynamically. Reference [30] embedded Q-learning in a memeplex search strat-
egy to select a search strategy dynamically. However, current research has only applied
this approach to solve single-objective shop scheduling problems. To apply Q-learning
and intelligent optimization algorithms to solve multi-objective optimization problems,
further exploration is needed to design appropriate actions and evaluate populations.
Therefore, there is a need for future research to investigate the combination of Q-learning
and intelligent optimization algorithms for multi-objective optimization problems. Such
research could contribute to developing effective algorithms for complex optimization
problems in diverse fields. Results from such studies would be of interest to researchers
and practitioners working in the area of intelligent optimization.

Optimization problems, such as the distributed hybrid flow shop scheduling prob-
lem, are often solved using intelligent optimization algorithms. Among these, genetic
algorithms have been widely applied due to their effectiveness in solving complex opti-
mization problems. Recently, the combination of intelligent optimization algorithms with
reinforcement learning algorithms, such as Q-learning, has received attention as a means
to improve algorithm performance. In this paper, we propose a dual-population genetic
algorithm with Q-learning to minimize the maximum completion time and the number
of tardy jobs for the distributed hybrid flow shop scheduling problem. The algorithm
combines genetic algorithm (GA) with Q-learning to guide the selection of crossover and
mutation operators. Multiple crossover and mutation operators are proposed, and only one
search strategy combination is selected in each iteration. To evaluate the evolutionary state
of the population, we provide a population assessment method at the initial state and after
each iteration. Two populations adopt different search strategies, in which the best search
strategy is selected for one population and the search strategy of the other population is
selected under the guidance of Q-learning. The approach proposed in this paper could
be applied to other optimization problems and could be of interest to researchers and

Symmetry 2023, 15, 836 3 of 15

practitioners working in the field of intelligent optimization. Figure 1 gives the logical
scheme to DHFSP.

Start

End

Population initialization

Q-table initialization

Crossover process and mutation

process with Q-learning

Selection operation

Q-table updating

Information exchange

Results outputting

Figure 1. The logical scheme to DHFSP.

The remainder of the paper is organized as follows. The distributed hybrid flow shop
scheduling problem is described in Section 2, and an introduction to GA and Q-learning
is provided in Section 3. Section 4 presents a dual-population genetic algorithm with
Q-learning and numerical experiments on the performance of the algorithm are reported
in Section 5. In conclusion, our approach demonstrates promising results for solving the
distributed hybrid flow shop scheduling problem.

3. Description of Distributed Hybrid Flow Shop Scheduling Problem

DHFSP is described as follows. There are n jobs, J1, J2, . . . , Jn, that need to be processed.
There are F factories, each of which is a hybrid flow shop. In the process of processing, each
job has S processes. Each job in different processes needs to be processed on a different
machine and the performance and function of these machines are identical. There are m f s
identical parallel machines, M f s1, M f s2, . . . , M f sl , at stage s in factory f . The processing
time of Ji on M f sl is pis. di is the due date of Ji. The machine distribution in different
factories has symmetry.

Symmetry 2023, 15, 836 4 of 15

The goal of DHFSP is to minimize the maximum completion time and the number of
tardy jobs simultaneously through reasonable scheduling.

Cmax = max
i∈{1,2,...,n}

{Ci} (1)

U =
n

∑
i=1

Wi (2)

where Cmax is the maximum completion time of all jobs, Ci is the completion time of Ji, U is
the number of tardy jobs, Wi represents whether Ji is delivered on time, Wi = 1, if Ci > di,
and Wi = 0, if Ci ≤ di.

DHFSP has three sub-problems, factory assignment, machine assignment, and pro-
cessing sequence assignment. Obviously, an acceptable solution can be obtained only when
all three of these assignments are reasonable.

Table 1 describes an illustrative example of DHFSP with 20 jobs, 2 stages and 2
factories. For example, the processing time of J1 in the first stage is 39. There are four
parallel machines in the first stage and five parallel machines in the second stage. Figure 2
shows a schedule of the example which is described in Table 1. As can be seen from
Figure 2, job J1 is processed in machine M2,1,2, which is the second machine in the first
stage of factory 1, and the processing time is p11 = 39.

Table 1. An illustrative example.

Job/i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

pi1 39 81 88 43 61 36 48 100 45 61 30 98 85 99 62 89 39 69 61 98
pi2 53 41 81 41 85 98 47 45 84 42 92 75 69 74 52 86 38 80 45 92

0 50 100 150 200 250

M
1,1,1

M
1,1,2

M
1,1,3

M
1,1,4

M
1,2,1

M
1,2,2

M
1,2,3

M
1,2,4

M
1,2,5

M
2,1,1

M
2,1,2

M
2,1,3

M
2,1,4

M
2,2,1

M
2,2,2

M
2,2,3

M
2,2,4

M
2,2,5

0 81
2

0 61
19

0 100
8

0 98
20

0 85
13

0 43
4

0 98
12

0 48
7

43 82
17

61 100
1

48 147
14

81 150
18

82 170
3

98 143
9

100 162
15

85 121
6

98 159
10

100 161
5

143 173
11

121 210
16

81 122
2

61 106
19

100 145
8

98 190
20

85 154
13

43 84
4

98 173
12

48 95
7

82 120
17

100 153
1

147 221
14

150 230
18

170 251
3

143 227
9

162 214
15

121 219
6

159 201
10

161 246
5

173 265
11

210 296
16

M
ac

h
in

e

Time

Figure 2. Gantt chart of the case.

4. Introduction to GA and Q-Learning

The main steps of GA are as follows: initialization, evaluation, selection, crossover,
and mutation. (1) Initialization: the initial population contains many candidate solutions,
usually generated using random numbers. (2) Evaluation: evaluate the fitness function

Symmetry 2023, 15, 836 5 of 15

value for each individual. (3) Selection: select individuals based on their fitness function
values to be preserved in later evolution. (4) Crossover: perform crossover between
two selected individuals to generate new offspring. (5) Mutation: randomly select some
individuals and mutate them to increase diversity in the population. (6) Repeat steps (2)–(5)
until a stopping condition is met. (7) Output the final best solution.

The main steps of Q-learning are as follows: (1) Initialize the Q-table: First, a table
that stores Q values (Q-table) needs to be created, with each element representing the Q
value corresponding to the current state and action. (2) Select an action: Under the current
state, select an action. The action can be selected randomly or based on the current Q value
(for example, selecting the action with the highest current Q value). (3) Perform the action:
Perform the selected action, thereby updating the state of the environment. (4) Calculate
the reward: based on the new state, calculate the reward obtained. (5) Update the Q value:
Use the Q-learning formula to update the Q value corresponding to the current state and
action. (6) Repeat steps (2)–(5) until the environment reaches the terminal state or reaches
the maximum number of steps set. (7) Output the result: Output the learned optimal
strategy, that is, the action corresponding to the maximum Q value in the Q-table. Table 2
gives an example of a Q-table, and the Q-table will be updated as the algorithms runs.

Table 2. An example of a Q-table.

Action 1 Action 2 Action 3 Action 4

State 1 0.029 0.783 0.069 0.684
State 2 0.320 0.381 0.577 0.732
State 3 0.548 0.486 0.006 0.316
State 4 0.636 0.416 0.615 0.630
State 5 0.451 0.005 0.735 0.469
State 6 0.429 0.639 0.647 0.512
State 7 0.742 0.209 0.386 0.442
State 8 0.583 0.691 0.347 0.209
State 9 0.674 0.181 0.164 0.346

State 10 0.104 0.811 0.135 0.224

5. A Dual-Population Genetic Algorithm with Q-Learning
5.1. Coding and Decoding

DHFSP encompasses three sub-problems: factory assignment, machine assignment,
and processing sequence assignment. A reasonable coding method is the foundation for
solving this problem using intelligent optimization algorithms. A double-string coding
method is adopted to encode the solution of the problem, where the encoding string
contains machine assignment and processing sequence assignment.

An encoding of DEHFSP is represented as a factory string [α1, α2, ..., αn] and a sequence
string [β1, β2, ..., βn], and αi ∈ {1, 2, ..., F}, βi ∈ {1, 2, ..., n}, βi 6= β j, ∀i, j, i 6= j. The
decoding procedure is described as follows: Assign all jobs to factories according to the
factory string, where Ji is assigned to factory αi. In each factory, the order in which all jobs
are processed is determined by a sequence string. If two jobs, Jβi and Jβ j , are such that i < j,
then Jβi is given priority and assigned to the machines. When selecting a machine for a job,
the set of machines that can be selected is first determined and then the machine is chosen
that will minimize the completion time of the job.

To further explain the decoding process, a solution is provided in Section 2. This
solution consists of a factory string [2,2,1,1,2,1,1,2,2,1,2,2,1,1,2,1,1,2,2,1] and a sequence
string [2,19,8,20,13,4,12,7,17,1,14,18,3,9,15,6,10,5,11,16]. Based on the factory string, jobs J3,
J4, J6, J7, J10, J13, J14, J16, J17, and J20 are assigned to factory 1, and their process sequence
is determined by the sequence string to be J20, J13, J4, J7, J17, J14, J3, J6, J10, and J16. The
scheduling scheme can be obtained and the Gantt chart is shown in Figure 2. The final
value of Cmax is 296 and the number of tardy jobs is 13.

Symmetry 2023, 15, 836 6 of 15

5.2. Crossover Operator

The crossover operator is a way of generating new solutions in genetic algorithms. Its
purpose is to combine the genetic information of two parents to produce a new individual,
with the new solution containing some features of both parents.

A crossover operator CO(x, y) is designed for DHFSP, where x and y represent two
parents. The process of CO(x, y) is as follows: (1) randomly select a set A of jobs; (2) swap
the values of the elements corresponding to jobs in A in x with those in y for the factory
string; (3) rearrange the order of jobs in x belonging to A to match the order of these jobs in
y for the sequence string. Figure 3 gives the process of global search and it can be observed
that two offspring are significantly different from the previous parents, indicating a large
variation in the search process during global search.

2 2 1 1 2 1 1 2 2 1 2 2 1 1 2 1 1 2 2 1

2 19 8 20 13 4 12 7 17 1 14 18 3 9 15 6 10 5 11 16

1 2 1 2 2 1 2 2 1 1 1 2 2 2 1 1 2 1 2 2

9 6 1 3 8 7 17 14 4 20 10 18 5 15 13 2 11 12 16 19

1 2 1 2 2 1 2 2 1 1 1 2 1 2 1 1 1 2 2 2

2 9 8 1 13 6 12 14 17 4 20 18 3 5 15 6 10 11 19 16

2 2 1 1 2 1 1 2 2 1 2 2 2 1 2 1 2 1 2 1

19 6 20 3 8 4 17 7 1 14 10 18 9 15 13 2 5 12 16 11

the sequence string

the factory string

the sequence string

parent 1

offspring1

offspring 2

parent 2

the factory string

the sequence string

the factory string

the sequence string

the factory string

A={5,7,4,1,9,11,14,15,19,20}

Figure 3. The process of global search.

5.3. Mutation Operator

Mutation is a common operator used in evolutionary algorithms to generate new
individuals in a population, increasing the diversity of the algorithm. Mutation is typically
performed by introducing random changes to the gene values of an individual at some gene
locus, either by randomizing or by applying some transformation rule. Mutation is usually
applied to an individual in the current population to generate a new individual with slight
variations. Unlike crossover, mutation does not require the pairing of individuals and
can explore the search space independently. Mutation is often used in combination with
crossover to increase the diversity of the population and facilitate better exploration of the
search space.

Two mutation operators, MO1 based on insertion and MO2 based on exchange, are
designed to generate new solutions by changing the factory string and the sequence string.
In MO1, randomly select jobs Ji and Jj such that i < j, and let πpos1 = i and πpos2 = j. Then,
insert πpos2 = j into the position of πpos1 in the sequence string and let θj = θi. In MO2,
randomly choose jobs Ji and Jj such that i < j, and let πpos1 = i and πpos2 = j. Then, swap
the values of πpos1 and πpos2 in the sequence string and swap the values of θj and θi in the
factory string. The process of generating new solutions in MO1 and MO2 are illustrated
in Figures 4 and 5.

Symmetry 2023, 15, 836 7 of 15

2 2 1 1 2 1 1 2 2 1 2 2 1 1 2 1 1 2 2 1

2 19 8 20 13 4 12 7 17 1 14 18 3 9 15 6 10 5 11 16

2 2 1 1 2 1 1 2 2 1 1 2 1 1 2 1 1 2 2 1

2 19 8 20 13 4 12 7 17 1 14 18 3 9 15 11 6 10 5 16

the sequence string

the factory string

parent

the sequence string

offstring

the factory string

Figure 4. The process of local search MO1.

2 2 1 1 2 1 1 2 2 1 2 2 1 1 2 1 1 2 2 1

2 19 8 20 13 4 12 7 17 1 14 18 3 9 15 6 10 5 11 16

2 2 1 1 2 2 1 2 2 1 1 2 1 1 2 1 1 2 2 1

2 19 8 20 13 4 12 7 17 1 14 18 3 9 15 11 10 5 6 16

the factory string

offstring

the sequence string

the factory string

parent

the sequence string

Figure 5. The process of local search MO2.

5.4. Q-Learning Process

The Q-learning algorithm consists of a state set st, an action set at, a reward function,
and an action selection strategy. The environment state is determined based on population
evaluation, while actions are represented by various search strategies. A novel reward
function is designed and the action selection strategy adopts the ε-greedy strategy.

A new method is provided for evaluating the state of the population. The evaluation
value of the population in generation t is calculated as

Et =
Nt

N
(3)

where Nt represents the number of solutions in the t-th generation population that are not
dominated by any solutions in the (t-1)-th generation population and Et represents the
evaluation value of the population in generation t.

The evaluation value Et of t-th generation is bounded by [E1, E2] with E1 = 0 and
E2 = 2. The state set S = 1, 2, ..., 10 is defined by dividing the interval [E1, E2] into 10 equal
parts, where the state value st = k if Et ∈ [0.2× (k− 1), 0.2× k) for 1 ≤ k ≤ 10, and at = 10
if Et ≥ 2.

Two variants of CO have been created, namely CO1 and CO2. Each of these variants
modifies only one string, with CO1 changing the factory string and CO2 altering the
sequence string.

The set of actions, denoted by A, has been constructed by combining various crossover
operators and mutation operators. Specifically, there are two crossover operators and two
mutation operators, resulting in a total of four possible combinations. Table 3 illustrates
the corresponding relationships between these combinations and the resulting actions
in the set A.

Symmetry 2023, 15, 836 8 of 15

Table 3. The corresponding relationship between action and search method.

Action Search Method

1 CO1 + MO1
2 CO1 + MO2
3 CO2 + MO1
4 CO2 + MO2

Since the current metric st is relatively small, indicating that the population is closer
to the set of Pareto front in the solution space, we define rt+1 as the difference between st+1
and st. If we take action at in state st to improve the population’s state, we will receive a
positive gain. Conversely, we will be penalized.

To select an action, the ε-greed method is employed. Typically, all entries in the initial
Q-table are initialized to 0.

5.5. Dual-Population Genetic Algorithm with Q-Learning

QDGA is an algorithm that combines GA and Q-learning, and Q-learning is used
in the process of crossover process and mutation process to choose a suitable crossover
operator and mutation operator. The main steps of QDGA include population initialization
and Q-table initialization, selection operation, crossover process and mutation process
with Q-learning, Q-table updating, the information exchange of two populations, and
outputting results.

In the population initialization, the two initial populations are randomly generated.
The initial Q-table is initialized to 0. The two populations perform crossover, mutation, and
selection operations independently. The two solutions are chosen according to the roulette
wheel, which belongs to the parent population, then crossover operator and mutation
operator corresponding to the action are selected according to the Q-table. The Q-table is
updated according to the performance of action in the state. Then non-dominant sorting is
performed on all individuals in both populations and a portion of individuals from both
populations are randomly exchanged, accounting for 50% of the population. The result is
output when the termination condition is satisfied.

6. Computation Experiments

All experiments are programmed using Visual Studio 2022 C++ and run on a computer
with 16.0G RAM 12th Gen Intel(R) Core(TM) i7-12700H 2.70GHz.

6.1. Instances

To evaluate the effectiveness of the algorithm proposed in this study, 140 instances
have been made available for download. These instances comprise varying numbers of jobs,
factories, and stages, and can be obtained from https://gitee.com/caijingcao/DHFSP002
(30 March 2022). Each instance is represented by the notation n× F× S, where n denotes
the number of jobs, F denotes the number of factories, and S denotes the number of stages.

6.2. Calculational Metrics

Metric ρ is the proportion of solutions that an algorithm A can provide for the reference
solution set Ω∗. ρ is calculated as

ρ =
|{x ∈ ΩA | x ∈ Ω∗}|

|Ω∗| (4)

where ΩA is the set of non-dominated solutions obtained by algorithm A, Ω∗ represents
the reference solution set, and |Ω∗| indicates the number of solutions in Ω∗.

https://gitee.com/caijingcao/DHFSP002

Symmetry 2023, 15, 836 9 of 15

Metric C is applied to compare the approximate Pareto optimal set obtained by algo-
rithms. C(L, B) measures the fraction of members of B that are dominated by members of L.

C(L, B) =
|{b ∈ B : ∃h ∈ L, h � b}|

|B| (5)

where x � y indicates that x dominates y and |B| indicates the number of solutions in B. The
Pareto optimal solution refers to a set of solutions in multi-objective optimization problems,
in which improving one objective further would result in a degradation of at least one
other objective.

Metric IGD (inverted generational distance) is a comprehensive performance indicator
to evaluate algorithms. The smaller the value of IGD, the better the algorithm’s overall
performance of A. IGD is calculated as

IGD(ΩA, Ω∗) =
1
|Ω∗| ∑

x∈Ω∗
min
y∈ΩA

d(x, y) (6)

where d(x, y) is the Euclidean distance between solution x and y by normalized objectives.

6.3. Comparison Algorithms

To assess the effectiveness of QDGA, two widely recognized multi-objective evolution-
ary algorithms were selected for comparison: non-dominated sorting genetic algorithm-II
(NSGA-II [39]) and strength Pareto evolutionary algorithm2 (SPEA2 [40]). These algorithms
were chosen based on their reputation and their demonstrated ability to effectively solve
complex multi-objective optimization problems. By comparing the performance of QDGA
against these established algorithms, we can gain a better understanding of the strengths
and weaknesses of QDGA in tackling multi-objective optimization challenges. In order to
assess the impact of Q-learning on the algorithm, a variant of the QDGA algorithm was
implemented in which the crossover and mutation operators were randomly selected. This
variant is referred to as GA. By introducing this variant, we aim to determine whether the
incorporation of Q-learning leads to improvements in the algorithm’s performance. The
GA variant serves as a control group against which the performance of the original QDGA
algorithm can be compared and the results can be used to evaluate the effectiveness of
Q-learning in the algorithm.

6.4. Parameter Settings

QDGA relies on N, Pc, Pm, α, γ, ε and stopping condition. Although longer algorithm
runs could potentially result in better outcomes, experiments have demonstrated that
both QSFLA and its comparison algorithm tend to converge or experience only minor
improvements after running for 0.1× n × S seconds. To ensure a fair comparison, we
chose 0.1× n× S seconds as the stopping condition for all algorithms, which is consistent
with similar studies [30].

The Taguchi method [31] is a powerful statistical approach to optimize the performance
of a product or process by identifying the best combination of controllable factors or
parameters. This method has been widely used in various fields including engineering,
manufacturing, and healthcare. The Taguchi method was utilized to determine the optimal
settings for the other parameters, with several instances featuring varying numbers of jobs,
factories, or stages used in parameter experiments.

By conducting Taguchi experiments on examples of different scales, a set of optimal
parameters can be obtained that is best for all examples. Based on the results, it can be
concluded that, among different combinations of parameters for QDGA, the setting with
N = 100, Pc = 0.8, Pm = 0.05, α = 0.1, γ = 0.9, and ε = 0.2 achieves the best performance.
Therefore, we adopt these settings for QDGA in our further experiments. All parameters of
NSGAII, SPEA2, and GA are determined by the same way.

Symmetry 2023, 15, 836 10 of 15

6.5. Results and Analyses

The computational results of four algorithms, which were run 10 times for each
instance, were reported. Tables 4–6 display the performance metrics of the algorithms. The
reference set Ω∗ was created by aggregating the non-dominated solutions obtained by the
four algorithms.

Table 4. Computational results of four algorithms on metric ρ.

Instance QDGA GA NSGAII SPEA2 Instance QDGA GA NSGAII SPEA2

1 0.833 0.000 0.167 0.000 43 0.800 0.000 0.200 0.000
2 0.667 0.000 0.333 0.000 44 0.400 0.000 0.200 0.400
3 0.500 0.000 0.500 0.500 45 1.000 0.000 0.000 0.000
4 0.000 0.500 0.500 0.000 46 1.000 0.000 0.000 0.000
5 0.667 0.667 0.333 0.000 47 1.000 0.000 0.000 0.000
6 0.400 0.400 0.200 0.000 48 0.333 0.667 0.000 0.000
7 1.000 1.000 1.000 1.000 49 0.333 0.000 0.333 0.667
8 0.667 0.333 0.000 0.000 50 0.333 0.000 0.000 0.667
9 1.000 1.000 1.000 1.000 51 0.667 0.000 0.333 0.000
10 1.000 0.000 0.000 0.000 52 0.250 0.000 0.750 0.000
11 1.000 0.000 0.000 0.000 53 0.500 0.000 0.500 0.000
12 0.800 0.200 0.200 0.000 54 1.000 0.000 0.000 0.000
13 1.000 0.000 0.000 0.000 55 0.000 0.000 1.000 0.000
14 1.000 0.000 0.000 0.000 56 0.500 0.000 0.000 0.500
15 0.500 0.000 0.000 0.500 57 0.667 0.333 0.000 0.000
16 0.500 0.250 0.250 0.000 58 1.000 0.000 0.000 0.000
17 0.667 0.333 0.000 0.000 59 0.667 0.000 0.000 0.333
18 0.000 0.333 0.333 0.333 60 1.000 0.000 0.000 0.000
19 0.000 0.000 1.000 0.000 61 0.000 0.000 0.000 1.000
20 0.000 0.333 0.000 0.667 62 0.000 0.000 0.500 0.500
21 0.167 0.333 0.500 0.000 63 0.250 0.250 0.000 0.500
22 0.429 0.429 0.000 0.143 64 0.000 0.000 0.000 1.000
23 0.250 0.750 0.000 0.250 65 0.333 0.333 0.333 0.000
24 1.000 0.000 0.000 0.000 66 0.000 0.000 1.000 0.000
25 0.500 0.500 0.000 0.000 67 0.000 1.000 0.000 0.000
26 1.000 0.000 0.000 0.000 68 0.000 0.000 0.500 0.500
27 0.500 0.000 0.000 0.500 69 0.000 0.000 0.200 0.800
28 0.000 0.000 0.000 1.000 70 0.000 0.250 0.750 0.000
29 1.000 0.000 0.000 0.000 71 0.667 0.000 0.000 0.667
30 0.500 0.500 0.000 0.000 72 0.667 0.000 0.000 0.333
31 0.333 0.333 0.333 0.000 73 0.667 0.000 0.000 0.333
32 1.000 0.000 0.000 0.000 74 0.500 0.500 0.000 0.000
33 0.000 0.333 0.333 0.333 75 0.667 0.000 0.000 0.333
34 1.000 0.000 0.000 0.000 76 0.333 0.000 0.333 0.333
35 0.667 0.000 0.333 0.000 77 0.500 0.000 0.000 0.500
36 0.000 0.333 0.667 0.000 78 0.000 0.333 0.000 0.667
37 0.500 0.500 0.000 0.000 79 1.000 0.000 0.000 0.000
38 0.000 1.000 0.000 0.000 80 0.333 0.167 0.500 0.000
39 1.000 0.000 0.000 0.000 81 0.000 0.500 0.500 0.000
40 1.000 0.000 0.000 0.000 82 1.000 0.000 0.000 0.000
41 0.500 0.000 0.500 0.000 83 0.667 0.333 0.000 0.000
42 0.500 0.500 0.250 0.000 84 1.000 0.000 0.000 0.000

The computational results presented in Table 4 indicate that QDGA outperforms GA,
NSGAII, and SPEA2 in most instances in terms of the metric ρ. Specifically, the metric ρl
of QDGA is higher than that of its comparative algorithms in 45 instances and it equals
1 in 22 instances. This implies that all members of the reference set Ω∗ are generated by
CVS. Moreover, the statistical results displayed in Figure 6 support the advantage of QDGA
over the other algorithms. These findings suggest that QDGA is a more effective method
for DHFSP.

Table 5 shows the computational results of four algorithms on metric C where ‘Ins’, ‘Q’,
‘G’, ‘N’, and ‘S’ represent ‘Instance’, ‘QDGA’, ‘GA’, ‘NSGAII’, and ‘SPEA2’, respectively. The
results presented in Table 5 demonstrate that, in 41 instances, the non-dominated solutions
are not dominated by any solutions of GA, as C(G, Q) equals 0. C(Q, N) is smaller than
C(N, Q) in 58 instances and C(Q, N) equals 1 in 38 instances indicating that all solutions

Symmetry 2023, 15, 836 11 of 15

of NSGAII are dominated by the non-dominated solutions of QDGA. Compared with
SPEA2, QDGA also has obvious advantages in terms of metric C. The statistical results
presented in Figure 7 illustrate the differences in C among QDGA and its three comparative
algorithms. It can be concluded that QDGA can generate better results compared to the
comparative algorithms.

Table 5. Computational results of four algorithms on metric C.

Ins C(Q, G) C(G, Q) C(Q, N) C(N, Q) C(Q, S) C(S, Q) Ins C(Q, G) C(G, Q) C(Q, N) C(N, Q) C(Q, S) C(S, Q)

1 1.000 0.000 0.857 0.000 0.833 0.000 43 1.000 0.000 0.667 0.000 1.000 0.000
2 1.000 0.000 0.750 0.333 1.000 0.000 44 1.000 0.000 0.750 0.000 0.500 0.000
3 1.000 0.000 0.333 0.333 0.333 0.333 45 1.000 0.000 1.000 0.000 1.000 0.000
4 0.667 0.000 0.000 1.000 1.000 0.000 46 1.000 0.000 1.000 0.000 1.000 0.000
5 0.333 0.333 0.667 0.000 1.000 0.000 47 1.000 0.000 1.000 0.000 1.000 0.000
6 0.600 0.500 0.667 0.500 0.833 0.000 48 0.333 0.750 0.250 0.500 1.000 0.000
7 0.000 0.000 0.000 0.000 0.000 0.000 49 1.000 0.000 0.667 0.000 0.000 0.500
8 0.500 0.333 1.000 0.000 1.000 0.000 50 0.000 0.600 1.000 0.000 0.000 0.800
9 0.000 0.000 0.000 0.000 0.000 0.000 51 1.000 0.000 0.500 0.333 1.000 0.000
10 1.000 0.000 1.000 0.000 1.000 0.000 52 0.500 0.333 0.000 0.667 1.000 0.000
11 1.000 0.000 1.000 0.000 1.000 0.000 53 1.000 0.000 0.667 0.500 0.500 0.500
12 0.750 0.000 0.750 0.000 1.000 0.000 54 1.000 0.000 1.000 0.000 1.000 0.000
13 1.000 0.000 1.000 0.000 1.000 0.000 55 0.000 0.333 0.000 1.000 0.000 1.000
14 1.000 0.000 1.000 0.000 1.000 0.000 56 1.000 0.000 1.000 0.000 0.000 0.500
15 1.000 0.000 0.750 0.200 0.000 0.600 57 0.500 0.333 1.000 0.000 1.000 0.000
16 0.500 0.333 0.667 0.000 1.000 0.000 58 1.000 0.000 1.000 0.000 1.000 0.000
17 0.667 0.333 0.667 0.333 1.000 0.000 59 1.000 0.000 1.000 0.000 0.750 0.333
18 0.500 0.500 0.667 0.000 0.500 0.500 60 1.000 0.000 1.000 0.000 1.000 0.000
19 1.000 0.000 0.000 1.000 1.000 0.000 61 0.000 1.000 0.000 1.000 0.000 1.000
20 0.667 0.333 1.000 0.000 0.000 1.000 62 0.500 0.000 0.000 1.000 0.000 1.000
21 0.400 0.333 0.250 0.667 1.000 0.000 63 0.667 0.000 0.400 0.333 0.000 0.667
22 0.500 0.571 1.000 0.000 0.750 0.000 64 0.333 0.667 0.000 1.000 0.000 1.000
23 0.000 0.750 1.000 0.000 0.000 0.500 65 0.750 0.000 0.667 0.750 1.000 0.000
24 1.000 0.000 1.000 0.000 1.000 0.000 66 0.500 0.500 0.000 1.000 0.667 0.000
25 0.000 0.500 1.000 0.000 0.667 0.000 67 0.000 1.000 0.500 0.500 1.000 0.000
26 1.000 0.000 1.000 0.000 1.000 0.000 68 1.000 0.000 0.000 0.333 0.000 1.000
27 0.500 0.200 0.667 0.200 0.333 0.600 69 0.000 1.000 0.000 1.000 0.000 1.000
28 1.000 0.000 1.000 0.000 0.000 1.000 70 0.333 0.500 0.000 1.000 1.000 0.000
29 1.000 0.000 1.000 0.000 1.000 0.000 71 1.000 0.000 1.000 0.000 0.333 0.333
30 0.000 0.750 1.000 0.000 0.250 0.625 72 1.000 0.000 1.000 0.000 0.500 0.500
31 0.500 0.000 0.500 0.500 0.750 0.000 73 1.000 0.000 1.000 0.000 0.667 0.333
32 1.000 0.000 1.000 0.000 1.000 0.000 74 0.667 0.667 1.000 0.000 0.750 0.667
33 0.500 0.250 0.000 0.750 0.000 0.750 75 1.000 0.000 0.500 0.250 0.500 0.500
34 1.000 0.000 1.000 0.000 1.000 0.000 76 1.000 0.000 0.667 0.000 0.750 0.000
35 1.000 0.000 0.667 0.333 1.000 0.000 77 0.000 0.200 1.000 0.000 0.000 0.600
36 0.000 1.000 0.000 1.000 0.667 0.333 78 0.000 1.000 0.000 1.000 0.000 1.000
37 0.000 0.500 1.000 0.000 1.000 0.000 79 1.000 0.000 1.000 0.000 1.000 0.000
38 0.000 1.000 0.000 0.500 0.667 0.250 80 0.333 0.333 0.000 0.667 1.000 0.000
39 1.000 0.000 1.000 0.000 1.000 0.000 81 0.000 1.000 0.000 1.000 0.000 0.667
40 1.000 0.000 1.000 0.000 1.000 0.000 82 1.000 0.000 1.000 0.000 1.000 0.000
41 1.000 0.000 0.000 0.667 1.000 0.000 83 0.500 0.000 1.000 0.000 1.000 0.000
42 0.333 0.000 0.500 0.000 0.667 0.000 84 1.000 0.000 1.000 0.000 1.000 0.000

Based on the comprehensive analysis presented in Table 6, it is discernible that QDGA
surpasses GA, NSGA-II, and SPEA2 with regard to convergence in the majority of instances
examined. Specifically, QDGA demonstrates a significantly lower diversity indicator IGD
compared to the three comparative algorithms in 50 instances and it attains a value of 0 in
22 instances, which unequivocally suggests that all members of the reference set Ω∗ are
generated solely by QDGA. The statistical results reported in Figure 8 further validate the
superior convergence performance of QDGA.

The performance of QDGA is superior, primarily due to the significant role played
by Q-learning in the search process. The results presented in Tables 4–6 demonstrate that
QDGA achieves outstanding performance. The statistical results shown in Figures 6–8
indicate, with statistical significance, that QDGA outperforms the compared algorithms.

Symmetry 2023, 15, 836 12 of 15

Q-learning is capable of effectively determining which of the various designed crossover
and mutation operators should be used to achieve better algorithm performance.

SPEA2NSGAIIGAQDGA

1.0

0.8

0.6

0.4

0.2

0.0

SPEA2NSGAIIGAQDGA

1.0

0.8

0.6

0.4

0.2

0.0

Figure 6. The box plots of metric ρ for four algorithms.

Table 6. Computational results of four algorithms on metric IGD.

Instance QDGA GA NSGAII SPEA2 Instance QDGA GA NSGAII SPEA2

1 0.021 0.020 0.014 0.015 43 0.011 0.165 0.146 0.437
2 0.002 0.037 0.003 0.235 44 0.092 0.252 0.027 0.023
3 0.029 0.221 0.155 0.142 45 0.000 0.065 0.723 0.453
4 0.445 0.018 0.531 0.179 46 0.000 0.029 0.037 0.167
5 0.001 0.027 0.027 0.083 47 0.000 0.248 0.091 0.057
6 0.161 0.098 0.008 0.087 48 0.040 0.042 0.062 0.157
7 0.000 0.000 0.000 0.000 49 0.189 0.277 0.039 0.149
8 0.001 0.021 0.036 0.040 50 0.037 0.145 0.289 0.029
9 0.000 0.000 0.000 0.000 51 0.014 0.341 0.168 0.168
10 0.000 0.027 0.009 0.024 52 0.109 0.098 0.085 0.210
11 0.000 0.063 0.500 0.813 53 0.073 0.100 0.014 0.037
12 0.013 0.087 0.038 0.041 54 0.000 0.573 0.401 1.190
13 0.000 0.255 0.407 0.276 55 0.416 0.309 0.000 0.262
14 0.000 0.176 0.077 0.103 56 0.000 0.627 0.044 0.131
15 0.016 0.247 0.022 0.091 57 0.004 0.057 0.113 0.539
16 0.059 0.213 0.072 0.145 58 0.000 0.063 0.397 0.253
17 0.003 0.026 0.042 0.028 59 0.012 0.020 0.168 0.049
18 0.100 0.103 0.035 0.139 60 0.000 0.324 0.431 0.403
19 0.203 0.700 0.000 1.000 61 0.042 0.029 0.032 0.000
20 0.060 0.076 0.058 0.033 62 0.546 0.583 0.189 0.223
21 0.030 0.055 0.058 0.060 63 0.034 0.176 0.076 0.023
22 0.036 0.021 0.080 0.076 64 0.403 0.337 0.049 0.000
23 0.056 0.000 0.142 0.072 65 0.039 0.194 0.155 0.185
24 0.000 0.072 0.032 0.113 66 0.534 1.111 0.000 0.588
25 0.020 0.135 0.055 0.046 67 0.137 0.000 0.176 0.798
26 0.000 0.083 0.141 0.163 68 0.173 0.398 0.372 0.514
27 0.022 0.119 0.234 0.120 69 0.353 0.192 0.156 0.000
28 0.023 0.346 0.040 0.000 70 0.030 0.062 0.013 0.324
29 0.000 1.160 0.058 0.400 71 0.002 0.719 0.245 0.007
30 0.020 0.134 0.108 0.084 72 0.005 0.095 0.087 0.077
31 0.064 0.063 0.191 0.158 73 0.005 0.052 0.079 0.014
32 0.000 0.038 0.192 0.628 74 0.053 0.053 0.051 0.022
33 0.057 0.073 0.107 0.141 75 0.014 0.327 0.298 0.050
34 0.000 0.025 0.017 0.084 76 0.095 0.083 0.078 0.061
35 0.000 0.099 0.046 0.201 77 0.008 0.086 0.136 0.082
36 0.088 0.378 0.000 0.124 78 1.398 0.204 0.394 0.054
37 0.000 0.040 0.038 0.161 79 0.000 0.166 0.134 0.122
38 0.012 0.000 0.012 0.013 80 0.042 0.142 0.036 0.352
39 0.000 0.428 1.121 0.376 81 0.297 0.000 0.070 0.102
40 0.000 0.134 0.043 0.113 82 0.000 0.138 0.130 0.901
41 0.016 0.168 0.501 0.289 83 0.189 0.274 0.427 0.426
42 0.151 0.017 0.127 0.141 84 0.000 0.176 0.566 0.795

Symmetry 2023, 15, 836 13 of 15

C(S,Q)C(Q,S)C(N,Q)C(Q,N)C(G,Q)C(Q,G)

1.0

0.8

0.6

0.4

0.2

0.0

C(S,Q)C(Q,S)C(N,Q)C(Q,N)C(G,Q)C(Q,G)

1.0

0.8

0.6

0.4

0.2

0.0

Figure 7. The box plots of metric C for four algorithms.

SPEA2NSGAIIGAQDGA

1.4

1.2

1.0

0.8

0.6

0.4

0.2

0.0

SPEA2NSGAIIGAQDGA

1.4

1.2

1.0

0.8

0.6

0.4

0.2

0.0

Figure 8. The box plots of metric IGD for four algorithms.

7. Conclusions

A dual-population genetic algorithm with Q-learning is proposed to address the dis-
tributed hybrid flow shop scheduling problem. This problem is common in the real-world
production process, where multiple objectives need to be considered. QDGA can also solve
other problems, such as multi-legged robot control, multiple agents moving cooperatively
on another, voltage control of power systems, distribution networks, urban water resource
management system, etc. The proposed algorithm employs multiple crossover and mu-
tation operators, and a population assessment method to evaluate the evolutionary state
of the population. The algorithm also utilizes Q-learning to guide the search strategy of
the second population. The experimental results demonstrate that the proposed algorithm
outperforms the basic genetic algorithm. Therefore, the dual-population genetic algorithm
with Q-learning can be considered an effective solution for distributed hybrid flow shop
scheduling problems.

In the near future, we will continue our research on distributed scheduling problems.
We aim to apply meta-heuristics such as the imperialist competitive algorithm to solve these
problems. Additionally, we plan to address the problem with energy-related objectives and
focus on developing solutions for energy-efficient HFSP. By incorporating energy-efficient
objectives, we can create solutions that align with the current trend of sustainability in
industrial manufacturing. Therefore, we anticipate that this area of research will continue
to gain importance in the future, and our work will contribute to the development of
sustainable and efficient manufacturing practices.

Author Contributions: Conceptualization, J.C.; methodology, J.C.; software, J.C.; validation, J.C.;
formal analysis, J.C.; investigation, J.C.; resources, J.C.; data curation, J.Z.; writing—original draft
preparation, J.C.; writing—review and editing, J.C.; visualization, J.Z.; supervision, J.Z.; project
administration, J.C. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the Research Initiation Foundation of Anhui Polytech-
nic University (2022YQQ002), Anhui Polytechnic University Research Project (Xjky2022002), and
the Open Research Fund of AnHui Key Laboratory of Detection Technology and Energy Saving
Devices (JCKJ2022B01).

Symmetry 2023, 15, 836 14 of 15

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declared that they have no conflicts of interest in this work.

References
1. Qin, H.X.; Han, Y.Y.; Zhang, B.; Meng, L.L.; Liu, Y.P.; Pan, Q.K.; Gong, D.W. An improved iterated greedy algorithm for the

energy-efficient blocking hybrid flow shop scheduling problem. Swarm Evol. Comput. 2022, 69, 100992. [CrossRef]
2. Qin, M.; Wang, R.; Shi, Z.; Liu, L.; Shi, L. A Genetic Programming-Based Scheduling Approach for Hybrid Flow Shop With a

Batch Processor and Waiting Time Constraint. IEEE Trans. Autom. Sci. Eng. 2021, 18, 94–105. [CrossRef]
3. Meng, L.L.; Zhang, C.Y.; Shao, X.Y.; Zhang, B.; Ren, Y.P.; Lin, W.W. More MILP models for hybrid flow shop scheduling problem

and its extended problems. Int. J. Prod. Res. 2020, 58, 3905–3930. [CrossRef]
4. Wang, G.; Li, X.; Gao, L.; Li, P. An effective multi-objective whale swarm algorithm for energy-efficient scheduling of distributed

welding flow shop. Ann. Oper. Res. 2021, 310, 223–255. [CrossRef]
5. Zhao, F.Q.; Zhang, L.X.; Cao, J.; Tang, J.X. A cooperative water wave optimization algorithm with reinforcement learning for the

distributed assembly no-idle flowshop scheduling problem. Comput. Ind. Eng. 2021, 153, 107082. [CrossRef]
6. Zhang, Z.Q.; Qian, B.; Hu, R.; Jin, H.P.; Wang, L. A matrix-cube-based estimation of distribution algorithm for the distributed

assembly permutation flow-shop scheduling problem. Swarm Evol. Comput. 2021, 60, 116484. [CrossRef]
7. Yang, J.; Xu, H. Hybrid Memetic Algorithm to Solve Multiobjective Distributed Fuzzy Flexible Job Shop Scheduling Problem

with Transfer. Processes 2022, 10, 1517. [CrossRef]
8. Shao, W.; Shao, Z.; Pi, D. A multi-neighborhood-based multi-objective memetic algorithm for the energy-efficient distributed

flexible flow shop scheduling problem. Neural Comput. Appl. 2022, 34, 22303–22330. [CrossRef]
9. Meng, L.; Ren, Y.; Zhang, B.; Li, J.Q.; Sang, H.; Zhang, C. MILP Modeling and Optimization of Energy-Efficient Distributed

Flexible Job Shop Scheduling Problem. IEEE Access 2020, 8, 191191–191203. [CrossRef]
10. Li, Y.; Li, F.; Pan, Q.K.; Gao, L.; Tasgetiren, M.F. An artificial bee colony algorithm for the distributed hybrid flowshop scheduling

problem. Procedia Manuf. 2019, 39, 1158–1166. [CrossRef]
11. Wang, J.J.; Wang, L. A bi-population cooperative memetic algorithm for distributed hybrid flow-shop scheduling. IEEE Trans.

Emerg. Top. Comput. Intell. 2020, 5, 947–961. [CrossRef]
12. Cai, J.C.; Lei, D.M. A cooperated shuffled frog-leaping algorithm for distributed energy-efficient hybrid flow shop scheduling

with fuzzy processing time. Complex Intell. Syst. 2021, 7, 2235–2253. [CrossRef]
13. Zheng, J.; Wang, L.; Wang, J.J. A cooperative coevolution algorithm for multi-objective fuzzy distributed hybrid flow shop.

Knowl.-Based Syst. 2020, 194, 105536. [CrossRef]
14. Wang, J.J.; Wang, L. A cooperative memetic algorithm with learning-based agent for energy-aware distributed hybrid flow-Shop

scheduling. IEEE Trans. Evol. Comput. 2021, 26, 461–475. [CrossRef]
15. Jiang, E.D.; Wang, L.; Wang, J.J. Decomposition-based multi-objective optimization for energy-aware distributed hybrid flow

shop scheduling with multiprocessor tasks. Tsinghua Sci. Technol. 2021, 26, 646–663. [CrossRef]
16. Li, Y.; Li, X.; Gao, L.; Zhang, B.; Pan, Q.K.; Tasgetiren, M.F.; Meng, L. A discrete artificial bee colony algorithm for distributed

hybrid flowshop scheduling problem with sequence-dependent setup times. Int. J. Prod. Res. 2021, 59, 3880–3899. [CrossRef]
17. Lei, D.M.; Xi, B.J. Diversified teaching-learning-based optimization for fuzzy two-stage hybrid flow shop scheduling with setup

time. J. Intell. Fuzzy Syst. 2021, 41, 4159–4173. [CrossRef]
18. Cai, J.C.; Zhou, R.; Lei, D.M. Dynamic shuffled frog-leaping algorithm for distributed hybrid flow shop scheduling with

multiprocessor tasks. Eng. Appl. Artif. Intell. 2020, 90, 103540. [CrossRef]
19. Wang, L.; Li, D.D. Fuzzy distributed hybrid flow shop scheduling problem with heterogeneous factory and unrelated parallel

machine: A shuffled frog leaping algorithm with collaboration of multiple search strategies. IEEE Access 2020, 8, 214209–214223.
[CrossRef]

20. Cai, J.C.; Zhou, R.; Lei, D.M. Fuzzy distributed two-stage hybrid flow shop scheduling problem with setup time: Collaborative
variable search. J. Intell. Fuzzy Syst. 2020, 38, 3189–3199. [CrossRef]

21. Dong, J.; Ye, C. Green scheduling of distributed two-stage reentrant hybrid flow shop considering distributed energy resources
and energy storage system. Comput. Ind. Eng. 2022, 169, 108146. [CrossRef]

22. Li, Y.L.; Li, X.Y.; Gao, L.; Meng, L.L. An improved artificial bee colony algorithm for distributed heterogeneous hybrid flowshop
scheduling problem with sequence-dependent setup times. Comput. Ind. Eng. 2020, 147, 106638. [CrossRef]

23. Li, J.Q.; Yu, H.; Chen, X.; Li, W.; Du, Y.; Han, Y.Y. An improved brain storm optimization algorithm for fuzzy distributed hybrid
flowshop scheduling with setup time. In Proceedings of the Genetic and Evolutionary Computation Conference, GECCO, New
York, NY, USA, 8–12 July 2020; pp. 275–276; Association for Computing Machinery, Inc.: New York, NY, USA, 2020. . [CrossRef]

24. Qin, H.; Li, T.; Teng, Y.; Wang, K. Integrated production and distribution scheduling in distributed hybrid flow shops. Memetic
Comput. 2021, 13, 185–202. [CrossRef]

25. Li, J.; Chen, X.l.; Duan, P.; Mou, J.h. KMOEA: A knowledge-based multi-objective algorithm for distributed hybrid flow shop in a
prefabricated system. IEEE Trans. Ind. Inform. 2021, 18, 5318–5329. [CrossRef]

26. Ying, K.C.; Lin, S.W. Minimizing makespan for the distributed hybrid flowshop scheduling problem with multiprocessor tasks.
Expert Syst. Appl. 2018, 92, 132–141. [CrossRef]

http://doi.org/10.1016/j.swevo.2021.100992
http://dx.doi.org/10.1109/TASE.2019.2947398
http://dx.doi.org/10.1080/00207543.2019.1636324
http://dx.doi.org/10.1007/s10479-021-03952-1
http://dx.doi.org/10.1016/j.cie.2020.107082
http://dx.doi.org/10.1016/j.swevo.2020.100785
http://dx.doi.org/10.3390/pr10081517
http://dx.doi.org/10.1007/s00521-022-07714-3
http://dx.doi.org/10.1109/ACCESS.2020.3032548
http://dx.doi.org/10.1016/j.promfg.2020.01.354
http://dx.doi.org/10.1109/TETCI.2020.3022372
http://dx.doi.org/10.1007/s40747-021-00400-2
http://dx.doi.org/10.1016/j.knosys.2020.105536
http://dx.doi.org/10.1109/TEVC.2021.3106168
http://dx.doi.org/10.26599/TST.2021.9010007
http://dx.doi.org/10.1080/00207543.2020.1753897
http://dx.doi.org/10.3233/JIFS-210764
http://dx.doi.org/10.1016/j.engappai.2020.103540
http://dx.doi.org/10.1109/ACCESS.2020.3041369
http://dx.doi.org/10.3233/JIFS-191175
http://dx.doi.org/10.1016/j.cie.2022.108146
http://dx.doi.org/10.1016/j.cie.2020.106638
http://dx.doi.org/10.1145/3377929.3389986
http://dx.doi.org/10.1007/s12293-021-00329-6
http://dx.doi.org/10.1109/TII.2021.3128405
http://dx.doi.org/10.1016/j.eswa.2017.09.032

Symmetry 2023, 15, 836 15 of 15

27. Shao, W.S.; Shao, Z.S.; Pi, D.C. Modeling and multi-neighborhood iterated greedy algorithm for distributed hybrid flow shop
scheduling problem. Knowl.-Based Syst. 2020, 194, 105527. [CrossRef]

28. Shao, W.S.; Shao, Z.S.; Pi, D.C. Multi-objective evolutionary algorithm based on multiple neighborhoods local search for
multi-objective distributed hybrid flow shop scheduling problem. Expert Syst. Appl. 2021, 183, 115453. [CrossRef]

29. Meng, L.; Gao, K.; Ren, Y.; Zhang, B.; Sang, H.; Chaoyong, Z. Novel MILP and CP models for distributed hybrid flowshop
scheduling problem with sequence-dependent setup times. Swarm Evol. Comput. 2022, 71, 101058. [CrossRef]

30. Cai, J.; Lei, D.; Wang, J.; Wang, L. A novel shuffled frog-leaping algorithm with reinforcement learning for distributed assembly
hybrid flow shop scheduling. Int. J. Prod. Res. 2023, 61, 1233–1251. [CrossRef]

31. Cai, J.; Lei, D.; Li, M. A shuffled frog-leaping algorithm with memeplex quality for bi-objective distributed scheduling in hybrid
flow shop. Int. J. Prod. Res. 2020, 59, 5404–5421. [CrossRef]

32. Hao, J.H.; Li, J.Q.; Du, Y.; Song, M.X.; Duan, P.; Zhang, Y.Y. Solving distributed hybrid flowshop scheduling problems by a hybrid
brain storm optimization algorithm. IEEE Access 2019, 7, 66879–66894. [CrossRef]

33. Lei, D.; Wang, T. Solving distributed two-stage hybrid flowshop scheduling using a shuffled frog-leaping algorithm with
memeplex grouping. Eng. Optim. 2019, 52, 1461–1474. [CrossRef]

34. Li, J.Q.; Li, J.K.; Zhang, L.J.; Sang, H.Y.; Han, Y.Y.; Chen, Q.D. Solving type-2 fuzzy distributed hybrid flowshop scheduling using
an improved brain storm optimization algorithm. Int. J. Fuzzy Syst. 2021, 23, 1194–1212. [CrossRef]

35. Atallah, M.J.; Blanton, M. Algorithms and Theory of Computation Handbook, Volume 2: Special Topics and Techniques; CRC Press: Boca
Raton, FL, USA, 2009.

36. Charu, A. Neural Networks and Deep Learning, A Textbook; Springer: Berlin/Heidelberg, Germany, 2018.
37. Chen, R.; Yang, B.; Li, S.; Wang, S. A self-learning genetic algorithm based on reinforcement learning for flexible job-shop

scheduling problem. Comput. Ind. Eng. 2020, 149, 106778. [CrossRef]
38. Wang, J.; Lei, D.; Cai, J. An adaptive artificial bee colony with reinforcement learning for distributed three-stage assembly

scheduling with maintenance. Appl. Soft Comput. 2021, 117, 108371. [CrossRef]
39. Deb, K.; Pratap, A.; Agarwal, S.; Meyarivan, T. A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol.

Comput. 2002, 6, 182–197. [CrossRef]
40. Zitzler, E.; Laumanns, M.; Thiele, L. SPEA2: Improving the Strength Pareto Evolutionary Algorithm for Multiobjective Optimization;

Technical Report Gloriastrasse; 103, TIK-Rep; Swiss Federal Institute of Technology: Lausanne, Switzerland, 2001; pp. 1–20.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1016/j.knosys.2020.105527
http://dx.doi.org/10.1016/j.eswa.2021.115453
http://dx.doi.org/10.1016/j.swevo.2022.101058
http://dx.doi.org/10.1080/00207543.2022.2031331
http://dx.doi.org/10.1080/00207543.2020.1780333
http://dx.doi.org/10.1109/ACCESS.2019.2917273
http://dx.doi.org/10.1080/0305215X.2019.1674295
http://dx.doi.org/10.1007/s40815-021-01050-9
http://dx.doi.org/10.1016/j.cie.2020.106778
http://dx.doi.org/10.1016/j.asoc.2021.108371
http://dx.doi.org/10.1109/4235.996017

	Introduction
	Logical Scheme to DHFSP
	Description of Distributed Hybrid Flow Shop Scheduling Problem
	Introduction to GA and Q-Learning
	A Dual-Population Genetic Algorithm with Q-Learning
	Coding and Decoding
	 Crossover Operator
	Mutation Operator
	Q-Learning Process
	Dual-Population Genetic Algorithm with Q-Learning

	Computation Experiments
	Instances
	Calculational Metrics
	Comparison Algorithms
	Parameter Settings
	Results and Analyses

	Conclusions
	References

