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Abstract 

Rigid transformation including rotation and translation can be elegantly represented by a unit dual quaternion. Thus, 

a non-differential model of the Helmert transformation (3D seven-parameter similarity transformation) is established 

based on unit dual quaternion. This paper presents a rigid iterative algorithm of the Helmert transformation using 

dual quaternion. One small rotation angle Helmert transformation (actual case) and one big rotation angle Helmert 

transformation (simulative case) are studied. The investigation indicates the presented dual quaternion algorithm 

(QDA) has an excellent or fast convergence property. If an accurate initial value of scale is provided, e.g., by the 

solutions no. 2 and 3 of Závoti and Kalmár (Acta Geod Geophys 51:245–256, 2016) in the case that the weights are 

identical, QDA needs one iteration to obtain the correct result of transformation parameters; in other words, it can be 

regarded as an analytical algorithm. For other situations, QDA requires two iterations to recover the transformation 

parameters no matter how big the rotation angles are and how biased the initial value of scale is. Additionally, QDA 

is capable to deal with point-wise weight transformation which is more rational than those algorithms which simply 

take identical weights into account or do not consider the weight difference among control points. From the per-

spective of transformation accuracy, QDA is comparable to the classic Procrustes algorithm (Grafarend and Awange in 

J Geod 77:66–76, 2003) and orthonormal matrix algorithm from Zeng (Earth Planets Space 67:105, 2015. https://doi.

org/10.1186/s40623-015-0263-6).
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Introduction
Helmert transformation (3D seven-parameter similarity 

transformation) is a frequently encountered task in geod-

esy, photogrammetry, geographical information science, 

mapping, engineering surveying, machine vision, etc. 

(see, e.g., Aktuğ (2009); Aktuğ 2012; Akyilmaz 2007; Arun 

et  al. 1987; Burša 1967; Chang 2015; Chang et  al. 2017; 

El-Habiby et  al. 2009;  El-Mowafy et  al. 2009; Grafarend 

and Awange 2003; Han 2010; Horn 1986, 1987; Han and 

Van Gelder 2006; Horn et al. 1988; Jaw and Chuang 2008; 

Jitka 2011; Kashani 2006; Krarup 1985; Leick 2004; Leick 

and van Gelder 1975;  Mikhail et  al. 2001; Neitzel 2010; 

Soler 1998; Soler and Snay 2004; Soycan and Soycan 

2008; Teunissen 1986; Teunissen 1988; Wang et al. 2014; 

Závoti and Kalmár 2016; Zeng 2014;  Zeng 2015; Zeng 

et  al. 2016; Zeng and Yi 2011). Helmert transforma-

tion problem is to determine the seven transformation 

parameters including three rotation angles, three trans-

lation parameters and one scale factor using a set of 

control points (the number of control points should be 

equal to or more than three because three equations can 

be constructed for one point). Numerous algorithms of 

Helmert transformation have been presented. On the 

one hand, the algorithms can be classified to a numeri-

cal iterative algorithm, e.g., El-Habiby et al. (2009), Zeng 

and Yi (2011), Paláncz et al. 2013, Zeng et al. (2016), etc., 

and an analytical algorithm, e.g., Grafarend and Awange 

(2003), Shen et  al. (2006a, b), Zeng (2015), etc. For the 

numerical iterative algorithm, initial values of transfor-

mation parameters are usually required. However, if a 

global optimization algorithm is employed to recover 
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the transformation parameters, then no initial values are 

needed (see, e.g., Xu 2002, 2003a, b). For the analytical 

algorithm, it is fast and reliable because it does not need 

iterative computation. On the other hand, the algorithms 

can be classified to different algorithms by the means of 

representation of the rotation matrix, such as algorithms 

based on Eulerian angle (see, e.g., Zeng and Tao 2003; El-

Habiby et al. 2009), algorithms based on quaternion (see, 

e.g., Horn 1987; Shen et al. 2006a, b; Zeng and Yi 2011), 

algorithms based on Rodrigues matrix and Gibbs vector 

see (e.g., Zeng and Huang 2008; Zeng and Yi 2010; Zeng 

et  al. 2016), algorithms based on dual quaternion (see, 

e.g.,Walker et al. 1991; Jitka 2011) and algorithms which 

regard the rotation matrix as a variant and directly solve 

the rotation matrix (see, e.g., Arun et al. 1987; Grafarend 

and Awange 2003; Zeng 2015).

Jitka (2011) presents a dual quaternion algorithm for 

geodetic datum transformation; however, the algorithm 

adopts a nonlinear method to solve a minimization prob-

lem, i.e., Lagrange multipliers, which has eight variants 

with two constraints equations, so its solution is complex 

and the solution process of transformation is not explicit. 

�e feasibility of this algorithm to big rotation angle trans-

formation is not verified; moreover, the algorithm does not 

deal with the weight of observation. Walker et  al. (1991) 

present a dual quaternion to estimate the 3D location 

parameters including both position and direction informa-

tion; however, it does not consider the scale factor of 3D 

coordinate transformation, so it is not suitable for Helmert 

section, an actual case, i.e., a small rotation angle case, 

and a simulative case, i.e., a big rotation angle case, are 

demonstrated to verify the presented algorithm. In the 

last section, i.e., “Conclusion”, a conclusion is drawn.

Mathematical model and algorithm of Helmert 
transformation based on dual quaternion
Helmert transformation

�e Helmert transformation (i.e., seven-parameter simi-

larity transformation) model can be written as

subject to

where poi =

[

xoi yoi zoi
]T

 and pti =

[

xti yti z
t

i

]T
 

(i = 1, 2, . . . , n) are the 3D coordinate vectors of a con-

trol point in the original coordinate system (labeled with 

superscript o) and the target coordinate system, respec-

tively (labeled with superscript t). I is a 3  ×  3 identity 

matrix, superscript T represents transpose computation, 

and det stands for determinant computation of matrix. � 

is the scale parameter, t =

[

tx ty tz
]T

 denotes the three 

translation parameters, and R stands for the 3 × 3 rota-

tion matrix, which is produced by the three rotation 

angles parameters. Assuming R is formed by rotating 

angles (Eulerian angles) θx, θy, θz counterclockwise about 

the X, Y and Z axes, respectively, then R can be expressed 

by rotation angles as

(1)pt
i
= �Rpo

i
+ t,

(2)R
T
R = I, det(R) = 1,

transformation. Motivated by these studies, this paper 

aims to construct the Helmert transformation based on 

quaternion and present a new dual quaternion algorithm 

for Helmert transformation which has explicit compu-

tation steps, no initial value problem of transformation 

parameters, fast computation and reliable result no mat-

ter how big the rotation angles are. Meanwhile, it is able to 

deal with the different weight of observation since different 

control points usually have different positioning accuracy.

�e remainder of the paper is organized as follows. In 

“Mathematical model and algorithm of Helmert transfor-

mation based on dual quaternion” section, firstly Helmert 

transformation and dual quaternion (and its preliminary, 

i.e., quaternion) are introduced in brief. Secondly, the 

mathematic model of Helmert transformation based on 

dual quaternion is established, and then a new dual qua-

ternion algorithm of Helmert transformation is presented 

by Lagrangian extremum law and eigenvalue–eigenvec-

tor decomposition. Lastly, the solution of initial value 

of scale is introduced. In “Case study and discussion” 

(3)

R =





cos θz cos θy sin θz cos θx + cos θz sin θy sin θx sin θz sin θx − cos θz sin θy cos θx

− sin θz cos θy cos θz cos θx − sin θz sin θy sin θx cos θz sin θx + sin θz sin θy cos θx

sin θy − cos θy sin θx cos θy cos θx



.

Reversely if the rotation matrix R is given, the rotation 

angles θx, θy, θz can be computed by Eq. (3) as

where Rij is the element of R in the ith row and jth 

column.

Helmert transformation aims to recover the seven 

parameters, i.e., one scale factor, three translation param-

eters and three rotation angles based on Eqs. (1) and (2) 

given the coordinates of at least three control points.

Quaternion and dual quaternion

Quaternion was invented by Irish mathematician Hamil-

ton in 1843, which is generally expressed as follows.

where q1, q2, q3, q4 are real numbers, i, j and k are basic 

quaternion units, and they meet the properties: ① 

(4)

θx = − tan
−1 R32

R33

, θy = sin
−1(R31), θz = − tan

−1 R21

R11

.

(5)q = iq1 + jq2 + kq3 + q4,
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i2 = j2 = k2 = −1, ② ij = −ji = k, ③ jk = −kj = i, ④ 

ki = −ik = j.

Usually quaternion q is also expressed in the vector 

form as

where q is called the vector part, q4 is called the scalar 

part. If the scalar is zero, q is nonzero vector, and then q 

is called pure imaginary. �e conjugate quaternion of q is 

defined as

�e norm of quaternion q is defined as

If �q� = 1, q is called unit quaternion. Based on the above 

definitions, it is easy to prove the properties:

where p and q are arbitrary quaternions, q−1 is the 

inverse of q. �e symbols · and × denotes dot and cross-

product, respectively, and the dot and cross-product of 

vectors are defined as

where C(p) is a skew symmetric matrix. �e product of 

pq can also be written in the form of product of matrix 

and vector quaternion as

where

(6)q =

�

q
q4

�

, q =





q1
q2
q3



,

(7)q∗
= −iq1 − jq2 − kq3 + q4.

(8)�q� =
√

qq∗ =

√

q2
1

+ q2
2

+ q2
3

+ q2
4
.

(9)p + q =

(

p + q
p4 + q4

)

,

(10)pq =

(

p × q + p4q + q4p
p4q4 − p · q

)

,

(11)(pq)∗ = q∗p∗
,

(12)q−1 =
q∗

�q�
.

(13)p · q = pTq,

(14)

p × q = C(p)q

=





0 −p3 p2
p3 0 −p1

−p2 p1 0



q,

(15)pq = Q(p)q = W (q)p,

(16)Q(p) =

[

p4I + C(p) p

−pT p4

]

,

(17)
W(q) =

[

q4I − C(q) q

−qT q4

]

.

A dual quaternion is written as follows.

where r and s are quaternions, ε is a dual unit with the 

property ε2 = 0 and ε commutes with quaternion units. 

qd4 is the scalar part (dual number), 
(

qd1 qd2 qd3
)T

 is 

the vector part (dual number vector). �e product of dual 

quaternions q̄ and p̄ = u + εv is defined as

�e conjugate of a dual quaternion is defined based on 

the conjugate of quaternion as follows.

And the norm of a dual quaternion is a dual scalar and is 

defined as

If �q̄� = 1, thus q̄ is called a unit dual quaternion, which 

means it meats this condition:

Unit dual quaternion q̄ can be elegantly employed 

to represent the rigid transformation including rota-

tion about an axis and translation along this axis (e.g., 

Walker et al. 1991; Jitka 2011). �e rotation matrix can be 

expressed as (Zeng and Yi 2011; Jitka 2011)

or

Suppose t is the pure imaginary quaternion made of 

translation t, i.e.,

thus according to Jitka (2011), one can get

(18)

q̄ = r + εs

= (r1 + εs1)i + (r2 + εs2)j + (r3 + εs3)k + (r4 + εs4)

= qd1i + qd2j + qd3k + qd4

,

(19)p̄q̄ = ur + ε(us + vr).

(20)q̄∗
= r∗

+ εs∗.

(21)�q̄� =
√

q̄∗q̄ =

√

q2
d1

+ q2
d2

+ q2
d3

+ q2
d4
.

(22)r
T
r = 1,

(23)r
T
s = 0.

(24)R =

(

r
2
4 − r

T
r

)

I + 2

(

rr
T

+ r4C(r)

)

,

(25)

[

R 0

0
T
1

]

= W(r)TQ(r).

(26)t =

1

2







tx
ty
tz
0






=

1

2

�

t

0

�

,

(27)tr = s,

(28)t = sr
−1 = s

r
∗

�r�
= sr

∗ = W (r∗)s = W (r)Ts.
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Formulation and a dual quaternion algorithm of Helmert 

transformation

�e 3D coordinate vector quaternion can be defined as

thus Eq. (1) can be rewritten in the quaternion form as

Substituting Eqs. (25) and (28) into Eq. (30), one gets

Considering the transformation error, Eq.  (30) can be 

rewritten as

where ei is the transformation error vector. �us, the solu-

tion to Helmert transformation problem in the least squares 

principle is essentially a Lagrangian extremum problem as

subject to Eqs. (22) and (23). In Eq. (33), αi is point-wise 

weight. In order to solve the Lagrangian extremum prob-

lem with constraints, it can be transformed to a Lagran-

gian extremum problem without constraints by adding 

the constraints into the error function e as

where β1 and β2 are the Lagrangian multipliers. We can 

obtain the expression of ei from Eq. (32), substitute it into 

error function ẽ and expand the error function ẽ, thus

(29)poi =







xoi
yoi
zoi
0






=

�

poi
0

�

, pti =







xti
yti
zti
0






=

�

pti
0

�

,

(30)pt
i
= �

[

R 0

0
T
1

]

po
i

+ 2t .

(31)pti = �W(r)TQ(r)poi + 2W(r)Ts.

(32)pti = �W(r)TQ(r)poi + 2W(r)Ts + ei,

(33)min
r,s,�

{

e =

n
∑

i=1

αie
T
i ei

}

,

(34)min
r,s,�,β1,β2

{

ẽ =

n
∑

i=1

αie
T
i ei + β1

(

r
T
r − 1

)

+ β2s
T
r

}

,

�e derivation of Eq. (35) makes use the good properties 

of quaternions as

where u and v are arbitrary quaternions.

Let

thus

(36)Q(u)TQ(u) = Q(u)Q(u)T = u
T
uI,

(37)W(u)TW(u) = W(u)W(u)T = u
T
uI,

(38)Q(u)v = W(v)u,

(39)a =

n∑

i=1

αip
t
i

T
pti ,

(40)b =

n∑

i=1

αip
o
i

T
poi ,

(41)c =

n∑

i=1

αi,

(42)A =

n∑

i=1

αiW (poi )
TQ(pti),

(43)B =

n∑

i=1

αiQ(pti),

(44)C =

n∑

i=1

αiW (poi ),

(35)

�e =

n�

i=1

αi

�
pti − �W(r)TQ(r)poi − 2W(r)Ts

�T�
pti − �W(r)TQ(r)poi − 2W(r)Ts

�
+ β1

�
rTr − 1

�
+ β2s

Tr

=

n�

i=1

αi

�
pti

T
− �poi

T
Q(r)TW(r) − 2sTW(r)

��
pti − �W(r)TQ(r)poi − 2W(r)Ts

�
+ β1

�
rTr − 1

�
+ β2s

Tr

=

n�

i=1

αi




pti
T
pti + �

2poi
TQ(r)TW(r)W(r)TQ(r)poi + 4sTW(r)W(r)Ts

−�pti
T
W(r)TQ(r)poi − 2pti

T
W(r)Ts − �poi

TQ(r)TW(r)pti
+2�poi

TQ(r)TW(r)W(r)Ts − 2sTW(r)pti + 2�sTW(r)W(r)TQ(r)poi


 + β1

�
rTr − 1

�
+ β2s

Tr

=

n�

i=1

αi

�
pti

T
pti + �

2poi
Tpoi + 4sTs − �rTQ(pti)

T
W(poi )r − 2rTQ(pti)

Ts

−�rTW (poi )
TQ(pti)r + 2�rTW (poi )

Ts − 2sTQ(pti)r + 2�sTW (poi )r

�
+ β1

�
rTr − 1

�
+ β2s

Tr

=

n�

i=1

�
αi

�
pti

T
pti + �

2poi
Tpoi + 4sTs − 2�rTW (poi )

TQ(pti)r − 4sTQ(pti)r + 4�sTW (poi )r
�

+β1

�
rTr − 1

�
+ β2s

Tr
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According Lagrangian extremum law, the Lagrangian 

extremum exists if and only if the following conditions 

are satisfied:

Transposing Eq. (46) gives

It is proved that A is a symmetric matrix, and the proof 

is given in “Appendix 1”. So Eq. (51) is rewritten as

Transposing Eq. (47) gives

Dividing Eq. (48) by 2 gives

Left multiplying Eq. (53) by rT gives

B and C are skew symmetric matrixes, and the follow-

ing property is proved, for the proof the reader can refer 

to “Appendix 2”.

Considering Eqs. (22), (23) or Eqs. (49), (50) and (56), it 

is obtained from Eq. (55) that

By Eq. (53), we get

(45)

ẽ = a + b�
2
+ 4cs

T
s − 2�r

T
Ar − 4s

T
Br

+ 4�s
T
Cr + β1

(
r
T
r − 1

)
+ β2s

T
r.

(46)

δẽ

δr
= −2�r

T
(
A + A

T
)

− 4s
T
B

+ 4�s
T
C + 2β1r

T
+ β2s

T
= 0,

(47)
δẽ

δs
= 4cs

T
− 2r

T
B
T

+ 2�r
T
C
T

+ β2r
T

= 0,

(48)
δẽ

δ�
= 2b� − 2r

T
Ar + 4s

T
Cr = 0,

(49)
δẽ

δβ1

= r
T
r − 1 = 0,

(50)
δẽ

δβ2

= s
T
r = 0.

(51)

4�C
T
s − 2�

(

A + A
T

)

r − 4B
T
s + 2β1r + β2s = 0.

(52)4�C
T
s − 4�Ar − 4B

T
s + 2β1r + β2s = 0.

(53)4cs − 2Br + 2�Cr + β2r = 0.

(54)b� − r
T
Ar + 2s

T
Cr = 0.

(55)4cr
T
s − 2r

T
Br + 2�r

T
Cr + β2r

T
r = 0.

(56)r
T
Br = 0, r

T
Cr = 0.

(57)β2 = 0.

Substituting Eq. (58) into Eq. (52) gives

Arranging Eq. (59) gives

Let

thus Eq. (60) can be rewritten as

So β1 and r are the eigenvalue and eigenvector of D. 

Since D is symmetric and real, there are four real eigen-

values and four orthogonal real eigenvectors. To obtain 

the only solution, we need to refer back to the error func-

tion Eq. (33).

Left multiplying Eq. (52) by rT gives

Left multiplying Eq. (53) by sT gives

Substituting Eqs. (64) and (65) to error function e gives

thus when β1 is the largest eigenvalue, e gets its minimal 

value. In other words, the solution of r is the eigenvector 

of D corresponding to the largest eigenvalue.

Substituting Eq. (58) into Eq. (54) gives

From the solution process of r and Eq.  (67), it is seen 

that there is no analytical formula for r and �. �erefore, 

an iterative algorithm is presented in Table 1.

It is worthy of note that the mathematic model and 

algorithm have a special property, i.e., they do not require 

the difference process of coordinates (e.g., centrobaric 

coordinate) as other relative studies do, e.g., Grafarend 

and Awange (2003), Chen et al. (2004), Shen et al. (2006a, 

b), Zeng and Huang (2008), Han (2010), Zeng and Yi 

(2010, 2011), Zeng (2015), Závoti and Kalmár (2016), 

(58)s =

1

2c
(B − �C)r

(59)
1

c

(

�C
T

− B
T

)

(B − �C)r − 2�Ar + β1r = 0.

(60)

[

2�A +
1

c
(B − �C)T (B − �C)

]

r = β1r.

(61)D = 2�A +
1

c
(B − �C)

T
(B − �C),

(62)Dr = β1r.

(63)2�r
T
C
T
s − 2�r

T
Ar − 2r

T
B
T
s + β1 = 0,

(64)2�r
T
Ar = 2�r

T
C
T
s − 2r

T
B
T
s + β1.

(65)4cs
T
s = 2s

T
Br − 2�s

T
Cr.

(66)e = a + b�
2
− β1,

(67)� =

r
T
Ar − c

−1
r
T
B
T
Cr

b − c−1rTCTCr
.
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Zeng et al. (2016), etc. But the difference process of coor-

dinates has no necessary relation with transformation 

accuracy.

Computation of initial value of scale parameter

From the presented algorithm in Table 1, we can see an 

initial value of scale parameter is needed before iterative 

computation. Some studies have given a formula for scale 

which is independent to the rotation angles and transla-

tion. For example, Han (2010) presented following for-

mula to estimate the scale:

where dxij is coordinate difference of the original points 

i and j, dx
′

ij is coordinate difference of the transformed 

points i and j, �H is the scale estimation. Závoti and 

Kalmár (2016) presented three solutions of scale as 

follows.

where xis, yis, zis are the centrobaric coordinates in the 

original coordinate system, i.e.,

(68)�H = mean





�

�

�
dx

′

ij

�

�

�

�

�dxij
�

�



 i �= j,

(69)�Z1 =

∑n
i=1

√

X2
is + Y 2

is + Z2
is

∑n
i=1

√

x2is + y2is + z2is

,

(70)�Z2 =

√

∑n
i=1

(

X2
is + Y 2

is + Z2
is

)

∑n
i=1

(

x2is + y2is + z2is
) ,

(71)�Z3 =

∑n
i=1

√

(

x2is + y2is + z2is
)(

X2
is + Y 2

is + Z2
is

)

∑n
i=1

(

x2is + y2is + z2is
) ,

(72)

xis = xi − xs, yis = yi − ys, zis = zi − zs,

xs =

1

n

n∑

i=1

xi, ys =

1

n

n∑

i=1

yi, zs =

1

n

n∑

i=1

zi,

Xis, Yis, Zis are the centrobaric coordinates in the target 

coordinate system, i.e.,

Case study and discussion
Actual case (small rotation angles)

�e data are chosen from Grafarend and Awange (2003), 

and the rotation angles are very small (less than 1′′) in 

this case. �e 3D coordinate of control points in the 

original system and the target system is listed in Table 2. 

When the weights of control points are not considered 

or identical, the computed transformation parameters 

with presented dual quaternion algorithm (DQA), ortho-

normal matrix algorithm (OMA) from Zeng (2015) and 

Procrustes algorithm (PA) from Grafarend and Awange 

(2003) are listed in Table  3. DQA sets the threshold τ 

to 1.0 × 10−10 and adopts six initial values of �, i.e., the 

solution of Han (2010), the three solutions of Závoti 

and Kalmár (2016), a biased one (solution 5 with initial 

value as 10) and a seriously biased one (solution 6 with 

initial value as 100). From Table 2 it is seen that for the 

two initial values, i.e., �Z2 and �Z3, which are identical 

to the least square estimate, one iterative computation 

is enough to recover the correct seven transformation 

parameters. For the rest cases of initial values of �, two 

iterative computation can converge to the correct solu-

tion of transformation parameters no matter how biased 

(slightly biased, biased or seriously biased) the initial val-

ues of � are from best estimate. So DQA converges in two 

iterations for all situations. OMA and PA have the identi-

cal results. From the viewpoint of solution accuracy, the 

DQA is comparable to the OMA and PA.

At times the weight of the control point needs to be 

considered because different control points have different 

accuracy of positioning, and the weight can be obtained 

based on the different accuracies of the control points. 

(73)

Xis = Xi − Xs, Yis = Yi − Ys, Zis = Zi − Zs,

Xs =

1

n

n∑

i=1

Xi, Ys =

1

n

n∑

i=1

Yi, Zs =

1

n

n∑

i=1

Zi.

Table 1 An dual quaternion algorithm of Helmert transformation

Initiation: input 3D coordinates of control points and construct 3D coordinate vector quaternion by Eq. (29), and input the point-wise weight αi, and the 
initial value � = �0

Step 1 Compute a, b, c, A, B, C by Eq. (39) to Eq. (44)

Step 2 Compute D by Eq. (61), and carry out the eigenvalue–eigenvector decomposition of D. β1 is set to the largest eigenvalue, and r  is set to the 
eigenvector corresponding to the largest eigenvalue

Step 3 Compute �i (subscript i  denotes the iterative number) by Eq. (67). If |�i − �i−1| < τ where τ is a threshold (e.g., 1.0 × 10−10), turn to Step 4, 
otherwise turn to Step 2 with the value � = �i

Step 4 Compute R by Eq. (24), furthermore, if rotation angles θx, θy, θz are needed, compute them by Eq. (4). Compute s by Eq. (58) and then t  by Eq. (28) 
and lastly translation t Eq. (26)

Step 5 Compute ei first by substituting solution of r , s, � into Eq. (32) and then compute e by Eq. (33). Lastly, compute the root-mean-square error 
rmse =

√

e

3n−7
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For the situation that the weight is a point-wise one, i.e., 

the weight of every point is isotropic for the three axes 

(x-axis, y-axis, z-axis) directions and control points are 

independent of each other, the point-wise weight is gen-

erated by the means from Grafarend and Awange (2003) 

and is given in Table  4. �e computed results of seven 

parameters with DQA, OMA and PA are listed in Table 5. 

For this situation, because the Han (2010) and Závoti 

and Kalmár (2016) do not consider the weight of con-

trol point when computing the solution of scale, all the 

four solutions (solution 1 to solution 4) just offer slightly 

biased initial values of �. And it is seen from Table 5 that 

two iterations are needed to obtain the correct result 

of seven parameters regardless of slightly biased initial 

value, biased one or seriously biased one. OMA and PA 

have the identical results if the bias caused by decimal 

rounding is ignored. From the perspective of computa-

tion accuracy, the DQA is consistent with OMA and PA.

Simulative case (big rotation angles)

In this case, the big rotation angles are considered and 

the data are simulated as follows. �e control points and 

their 3D coordinates in the original system are firstly 

given in Table 6. Secondly, the true seven transformation 

parameters are given in Table 7 with randomly generated 

big rotation angles. �irdly, the 3D coordinates of control 

points in target system are computed by Eq.  (1). Lastly, 

in order to simulate the real-world data which always 

has noise, the 3D coordinates in the original system are 

added N(0, 0.022) noise and the 3D coordinates in the tar-

get system are added N(0, 0.012) noise. Namely, the case 

assumes the errors of coordinate in three axes direction 

equivalent and independent. �e normally distributed 

random noise is produced and listed in Tables 6 and 8.

When the weights of control points are not taken into 

account or identical, the transformation parameters 

are computed with DQA, OMA and PA. DQA sets the 

threshold τ to 1.0  ×  10−10 and adopts six initial values 

of � which are listed in Table 9. DQA requires two itera-

tions to obtain the final result for the all six initial values 

of �. And DQA, OMA and PA obtain the identical results 

which are listed in Table 10.

Furthermore, the performance of DQA, OMA and PA 

is compared taking into the weights of control points. 

Firstly, the positional error sphere which is defined from 

Grafarend and Awange (2003) is calculated and listed 

in Tables  6 and 8, respectively. And then the point-

wise weight matrix is computed by the approach from 

Table 2 Coordinates of control points in local system and WGS-84 system

Station name Local system (original system) (m) WGS-84 system (target system) (m)

x
o yo z

o
x
t yt z

t

Solitude 4,157,222.543 664,789.307 4,774,952.099 4,157,870.237 664,818.678 4,775,416.524

Buoch Zeil 4,149,043.336 688,836.443 4,778,632.188 4,149,691.049 688,865.785 4,779,096.588

Hohenneuffen 4,172,803.511 690,340.078 4,758,129.701 4,173,451.354 690,369.375 4,758,594.075

Kuehlenberg 4,177,148.376 642,997.635 4,760,764.800 4,177,796.064 643,026.700 4,761,228.899

Ex Mergelaec 4,137,012.190 671,808.029 4,791,128.215 4,137,659.549 671,837.337 4,791,592.531

Ex Hof Asperg 4,146,292.729 666,952.887 4,783,859.856 4,146,940.228 666,982.151 4,784,324.099

Ex Kaisersbach 4,138,759.902 702,670.738 4,785,552.196 4,139,407.506 702,700.227 4,786,016.645

Table 3 Computed transformation parameters (identical weight)

Parameters DQA OMA PA

Solution 1 
(�H)

Solution 2 
(�Z1)

Solution 3 
(�Z2)

Solution 4 
(�Z3)

Solution 5 Solution 6 – –

�0 1.000005421 1.000004788 1.000005583 1.000005583 10 100 – –

Iterative times 2 2 1 1 2 2 1 1

θx (″) − 0.998502912 − 0.998502948 − 0.998502968 − 0.998502645 − 0.998502985 − 0.998502912 − 0.998501973 − 0.998501973

θy (″) 0.893693386 0.893693331 0.893693483 0.893692963 0.893693803 0.893693386 0.893690956 0.893690956

θz (″) 0.993092526 0.993092564 0.993092561 0.993092355 0.993092530 0.993092526 0.993092056 0.993092056

tx (m) 641.8804 641.8806 641.8804 641.8804 641.8804 641.8804 641.8804 641.8804

ty (m) 68.6554 68.6554 68.6554 68.6554 68.6554 68.6554 68.6553 68.6553

tz (m) 416.3981 416.3983 416.3981 416.3981 416.3981 416.3981 416.3982 416.3982

� 1.000005583 1.000005583 1.000005583 1.000005583 1.000005583 1.000005583 1.000005583 1.000005583

rmse (m) 0.077233661 0.077233748 0.077233663 0.077233668 0.077233683 0.077233661 0.077233661 0.077233661
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Grafarend and Awange (2003) with the positional error 

sphere and the recovered transformation parameters 

(identical weight) as listed in Table 10. �e weight result 

is listed in Table  11 which ignores the magnitude since 

that ratio of weight rather than absolute weight is more 

important. Finally, the transformation parameters are 

computed with DQA, OMA and PA. At this time, DQA 

has the same setup of threshold τ and initial values of � 

as that in the identical weight situation. DQA needs two 

iterations to obtain the final result for the all six initial 

values of �. And DQA, OMA and PA obtain the identical 

results which are listed in Table 12.

�e transformation residuals of coordinates are com-

puted by subtracting the calculated coordinates by Eq. (1) 

Table 4 Point-wise weight

Station name Solitude Buoch Zeil Hohenneuffen Kuehlenberg Ex Mergelaec Ex Hof Asperg Ex Kaisersbach

Number i 1 2 3 4 5 6 7

αi 2.170137 2.097755 2.208968 2.201671 2.182928 2.268808 2.643404

Table 5 Calculated transformation parameters (point-wise weight)

Parameters DQA OMA PA

Solution 1 (�H) Solution 2 (�Z1) Solution 3 (�Z2) Solution 4 (�Z3) Solution 5 Solution 6 – –

�0 1.000005421 1.000004788 1.000005583 1.000005583 10 100 – –

Iterative times 2 2 2 2 2 2 1 1

θx (″) − 0.997716767 − 0.997716882 − 0.997716767 − 0.997716882 − 0.997716767 − 0.997716767 − 0.997716185 − 0.997716186

θy (″) 0.896086322 0.896087012 0.896086322 0.896087012 0.896086322 0.896086322 0.896085615 0.896085615

θz (″) 0.985885473 0.985885475 0.985885473 0.985885475 0.985885473 0.985885473 0.985885069 0.985885070

tx (m) 641.8395 641.8395 641.8395 641.8395 641.8395 641.8395 641.8395 641.8395

ty (m) 68.4729 68.4729 68.4729 68.4729 68.4729 68.4729 68.4729 68.4729

tz (m) 416.2155 416.2155 416.2155 416.2155 416.2155 416.2155 416.2156 416.2156

� 1.000005611 1.000005611 1.000005611 1.000005611 1.000005611 1.000005611 1.000005611 1.000005611

rmse (m) 0.114082157 0.114082183 0.114082157 0.114082183 0.114082157 0.114082157 0. 114082157 0.114082157

Table 6 3D coordinates of control points in original system and noises added (m)

Point no. x
o yo z

o Noise in xo Noise in yo Noise in zo Positional error sphere

1 10.00000 30.00000 5.00000 − 0.03190 0.02380 0.01060 0.00057

2 20.00000 30.00000 12.50000 − 0.02880 − 0.02400 0.00440 0.00047

3 30.00000 30.00000 15.00000 0.01140 − 0.00040 − 0.01840 0.00016

4 10.00000 20.00000 9.50000 − 0.00800 − 0.00310 − 0.04340 0.00065

5 20.00000 20.00000 11.00000 0.01380 − 0.03210 − 0.00120 0.00041

6 30.00000 20.00000 10.00000 0.01630 0.00510 − 0.02020 0.00023

7 10.00000 10.00000 14.50000 0.01420 − 0.02110 0.01230 0.00027

8 20.00000 10.00000 4.50000 0.02580 0.02830 0.01020 0.00052

9 30.00000 10.00000 4.00000 0.01340 − 0.01610 0.03380 0.00053

Table 7 True values of transformation parameters

tx (m) ty (m) tz (m) θx (°) θy (°) θz (°) �

20 10 30 32 77 63 1.000039
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with the recovered transformation parameters and coor-

dinates in the source system to known coordinates in the 

target system. �e result is listed in Table 13, where dx , 

dy and dz denote the transformation residuals of coor-

dinates in the three axes direction. And the root-mean-

square errors are also computed and listed in Table 13. It 

is seen from Table  13 that the transformation residuals 

of coordinates are consistent with the noises added into 

coordinates of control points in the original system.

According to the above analysis, DQA, OMA and 

PA have the identical performance for the big rotation 

angles. �us, the presented algorithm is correct and 

reliable.

Conclusions
Unit dual quaternion can be elegantly employed to 

describe the rigid transformation including rotation 

and translation. Based on unit dual quaternion, a non-

differential model of Helmert transformation (seven-

parameter similarity transformation) is constructed 

and a rigid iterative algorithm of Helmert transfor-

mation using dual quaternion is presented. The case 

study shows the presented algorithm requires one 

iteration to recover the transformation parameter if 

accurate initial value of scale is provided like the solu-

tions no. 2 and 3 of Závoti and Kalmár (2016) for the 

situation that the weights are identical; otherwise, 

Table 8 3D coordinates of control points in target system and noises added (m)

Point no. x
t yt z

t Noise in xt Noise in yt Noise in zt Positional error sphere

1 51.20845 10.62821 37.12165 0.00800 0.00390 − 0.00270 0.00003

2 52.95745 15.95030 48.29655 0.00940 0.00090 − 0.01190 0.00008

3 54.22132 16.38806 58.51758 − 0.00990 − 0.00640 − 0.02200 0.00021

4 41.74440 15.77468 39.17225 0.00210 − 0.00560 0.00990 0.00004

5 42.91124 15.23557 49.20249 0.00240 0.00440 − 0.00520 0.00002

6 43.83551 12.25430 58.75580 − 0.01010 − 0.00950 0.00330 0.00007

7 32.32886 21.40958 41.31824 − 0.00740 0.00780 0.00230 0.00004

8 32.37989 9.63651 49.15455 0.01080 0.00570 0.00020 0.00005

9 33.35267 7.14367 58.80324 − 0.00130 − 0.00820 − 0.01000 0.00006

Table 9 Six initial values of scale parameter

Solution 1 (�H) Solution 2 (�Z1) Solution 3 (�Z2) Solution 4 (�Z3) Solution 5 Solution 6

0.99957261825858 0.99966151537312 0.99951849936829 0.99951723170141 10 100

Table 10 Recovered transformation parameters (identical weight) by DQA (with six initial values of scale parameter), 

OMA and PA

tx (m) ty (m) tz (m) θx (°) θy (°) θz (°) �

20.030886056 10.008832821 29.984374281 31.779990101 76.995092442 63.207363719 0.999514725

Table 11 Point-wise weight

Point no. i 1 2 3 4 5 6 7 8 9

αi 0.5561 0.6066 0.9013 0.4835 0.7759 1.1119 1.0762 0.5853 0.5655

Table 12 Recovered transformation parameters (point-wise weight) by DQA (with six initial values of scale parameter), 

OMA and PA

tx (m) ty (m) tz (m) θx (°) θy (°) θz (°) �

20.030653667 10.000879600 29.982867237 31.823984134 77.015960132 63.160103415 0.999540353
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exact two iterative computation converges to the cor-

rect solution of transformation parameters no matter 

how big the rotation angles are and how biased the ini-

tial value of scale is. Hence, the presented algorithm 

has an excellent or fast convergence, and it becomes 

an analytical algorithm when the accurate initial value 

of scale is offered. In addition, the presented algorithm 

is able to deal with point-wise weight transformation 

which is more rational than those algorithms which 

do not consider the weight difference among control 

points. And from the viewpoint of solution accuracy, 

the presented algorithm is comparable to the classic 

Procrustes algorithm and orthonormal matrix algo-

rithm from Zeng (2015).

Authors’ contributions

HZ carried out the theoretic studies including establishing the Helmert trans-

formation model using dual quaternion, deriving the solution of transforma-

tion parameters by Lagrangian extremum law and designing the case study, 

additionally drafted the manuscript. XF conceived of the study and helped to 

draft the manuscript. GC participated in deriving the solution of transforma-

tion parameters. RY carried out the case computation and performed case 

analysis. All authors read and approved the final manuscript.

Author details
1 Key Laboratory of Geological Hazards on Three Gorges Reservoir Area, 

Ministry of Education, China Three Gorges University, Yichang 443002, China. 
2 Hubei Key Laboratory of Intelligent Vision Based Monitoring for Hydro-

electric Engineering, China Three Gorges University, Yichang 443002, China. 
3 Hubei Key Laboratory of Construction and Management in Hydropower 

Engineering, China Three Gorges University, Yichang 443002, China. 4 School 

of Geodesy and Geomatics, Wuhan University, Wuhan 430079, China. 5 School 

of Environmental Science and Spatial Informatics, China University of Mining 

and Technology, Xuzhou 221116, China. 6 School of Civil Engineering, Chong-

qing University, Chongqing 400030, China. 7 Chongqing Survey Institute, 

Chongqing 401121, China. 

Acknowledgements

The study is supported jointly by Hubei Provincial Natural Science Foundation 

of China (Grant No. 2016CFB443), the Open Foundation of the Key Laboratory 

of Precise Engineering and Industry Surveying, National Administration of 

Surveying, Mapping and Geoinformation of China (Grant No. PF2015-14), the 

2015 Open Foundation of Hubei Key Laboratory of Intelligent Vision Based 

Monitoring for Hydroelectric Engineering, China Three Gorges University 

(Grant No. 2015KLA06), the Open University Teaching Research Project of 

China Three Gorges University (Grant No. KJ2015019), the Open Foundation 

of Hubei Key Laboratory of Construction and Management in Hydropower 

Engineering, China Three Gorges University (Grant No. 2014KSD13) and 

National Natural Science Foundation of China (Grant No. 41774009, 41774005, 

41104009). The first author is grateful to Professor Daniel Chaney for polishing 

the English of the paper. Last but not the least, the author’s special thanks are 

given to Dr. Thomas Hobiger and two anonymous reviewers for their valuable 

comments and suggestions, which enhance the quality of this manuscript.

Ethics approval and consent to participate

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Availability of data and materials

The actual case data are collected from Grafarend and Awange (2003). In the 

simulative case, the 3D coordinates of control points in the target system 

are produced given the 3D coordinates in the original system and the seven 

transformation parameters.

Appendix 1: Proof of symmetric property of matrix A
Substituting Eq. (29) into Eqs. (17) and (16) gives

(74)W (poi ) =







0 zoi −yoi xoi
−zoi 0 xoi yoi
yoi −xoi 0 zoi

−xoi −yoi −zoi 0






,

(75)

Q(pti) =









0 −zti yti xti
zti 0 −xti yti

−yti xti 0 zti
−xti −yti −zti 0









,

Table 13 Transformation residuals of coordinates (m)

Point no. Identical weight situation Point-wise weight situation

dx dy dz dx dy dz

1 − 0.02258 − 0.02006 0.02540 − 0.02302 − 0.01738 0.02667

2 0.03615 − 0.01216 0.01080 0.03619 − 0.01426 0.01390

3 − 0.00017 0.01748 − 0.02705 − 0.00004 0.01115 − 0.02406

4 − 0.00189 0.03076 0.02746 − 0.00168 0.03320 0.03082

5 0.02870 0.00602 − 0.01572 0.02895 0.00434 − 0.01283

6 − 0.01192 0.01675 0.00412 − 0.01183 0.01122 0.00554

7 − 0.00390 − 0.00201 − 0.00916 − 0.00299 0.00014 − 0.00347

8 − 0.03124 0.00145 − 0.00674 − 0.03115 0.00073 − 0.00599

9 0.00684 − 0.03822 − 0.00912 0.00681 − 0.04283 − 0.00963

rmse = 0.022510349 rmse = 0.017848379
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thus

(76)

W (poi )
TQ(pti) =







0 −zo
i

yoi −xoi
zoi 0 −xoi −yoi

−yoi xoi 0 −zoi
xoi yoi zoi 0















0 −zti yti xti
zti 0 −xti yti

−yti xti 0 zti
−xti −yti −zti 0









=









−zoi z
t

i − yoi y
t

i + xoi x
t

i yoi x
t

i + xoi y
t

i zoi x
t

i + xoi z
t

i −zoi y
t

i + yoi z
t

i
yoi x

t

i + xoi y
t

i −zoi z
t

i + yoi y
t

i − xoi x
t

i zoi y
t

i + yoi z
t

i −xoi z
t

i + zoi x
t

i
zoi x

t

i + xoi z
t

i zoi y
t

i + yoi z
t

i zoi z
t

i − yoi y
t

i − xoi x
t

i xoi y
t

i − yoi x
t

i
−zoi y

t

i + yoi z
t

i −xoi z
t

i + zoi x
t

i xoi y
t

i − yoi x
t

i zoi z
t

i + yoi y
t

i + xo
i
xti








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It is seen that W (poi )
TQ(pti) is a symmetric matrix; 

furthermore, A =

∑n
i=1

αiW (po
i
)TQ(pti) is a symmetric 

matrix.

Appendix 2: Proof of Eq. (56)
Suppose � is an arbitrary 4 × 4 skew symmetric matrix 

as follows

Since B and C are 4  ×  4 skew symmetric matrixes, 

r
T
Br = 0, rTCr = 0 is proved.
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